Skip to main content

Assessing Biodiversity by Airborne Laser Scanning

  • Chapter
  • First Online:
Forestry Applications of Airborne Laser Scanning

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 27))

Abstract

Estimating biodiversity in complex habitats, particularly in forests, is still a major challenge for ecologists and conservationists. In ground-breaking work, Robert MacArthur and his colleagues quantified relationships between bird and vertical vegetation diversity, and found that the diversity of vegetation structure strongly influenced bird species diversity. However, they were limited in spatial extent when describing vertical vegetation structure due to the labor-intensive nature of data collection. Current remote sensing techniques, such as LiDAR, can describe ecologically relevant measurements of forest structure across broad extents, and thus, there are increasing efforts to examine relationships between LiDAR-derived data and patterns of animal biodiversity. LiDAR-based data have been utilized for silvicultural assessments for over a decade, but LiDAR use in biodiversity studies is more recent. LiDAR data can assist in the assessment of local animal diversity across taxa, and might assist in larger scale biodiversity assessments in remote and rugged environments. In the following chapter, we first briefly discuss the role of vegetation structure in biodiversity studies, followed by a description of the variables that are most commonly used in biodiversity studies. We then give an overview of biodiversity studies that have utilized LiDAR in forests to date. Although there is a growing body of literature relating LiDAR-derived variables to single species distributions and habitat quality, we focus this chapter solely on studies that address animal species diversity in forested landscapes. We conclude with a discussion of future directions concerning biodiversity assessments in forested systems that might benefit from the use of LiDAR-based data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen CD, Macalady AK, Chenchouni H (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684

    Article  Google Scholar 

  • Bässler C, Müller J, Dziock F, Brandl R (2010) Microclimate and especially resource availability are more important than macroclimate for assemblages of wood-inhabiting fungi. J Ecol 98:822–832

    Article  Google Scholar 

  • Bergen KM, Goetz SJ, Dubayah RO, Henebry GM, Hunsaker CT, Imhoff ML, Nelson RF, Parker GG, Radeloff VC (2009) Remote sensing of vegetation 3-D structure for biodiversity and habitat: review and implications for lidar and radar spaceborne missions. J Geophys Res 114:G00E06

    Google Scholar 

  • Blakely TJ, Didham RK (2010) Disentangling the mechanistic drivers of ecosystem-size effects on species diversity. J Anim Ecol 79:1204–1214

    Article  PubMed  Google Scholar 

  • Blanc LA, Walters JR (2008) Cavity-nest webs in a longleaf pine ecosystem. Condor 110:80–92

    Article  Google Scholar 

  • Böhner J, McCloy KR, Strobl J (2006) SAGA-analysis and modelling applications. Göttinger Geographische Abhandlungen 115:1–130

    Google Scholar 

  • Brändle M, Brandl R (2001) Species richness of insects and mites on trees: expanding Southwood. J Anim Ecol 70:491–504

    Article  Google Scholar 

  • Clawges R, Vierling L, Calhoon M, Toomey M (2007) Use of a ground-based scanning lidar for estimation of biophysical properties of western larch (Larix occidentalis). J Remote Sens 28:4331–4344

    Article  Google Scholar 

  • Clawges R, Vierling K, Vierling L, Rowell E (2008) The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest. Remote Sens Environ 112:2064–2073

    Article  Google Scholar 

  • Cooke HA, Hannon SJ (2011) Do aggregated harvests with structural retention conserve the cavity web of old upland forest in the boreal plains. For Ecol Manage 261:662–674

    Article  Google Scholar 

  • Daily GC, Ehrlich PR, Haddad NM (1993) Double keystone bird in a keystone species complex. Proc Natl Acad Sci 90:592–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Didham RK, Fagan LL (2004) Forest canopies. In: Burley J, Evans J, Youngquist J (eds) Encyclopaedia of forest sciences. Academic Press/Elsevier Science, London, pp 68–80

    Chapter  Google Scholar 

  • Eitel JUH, Vierling LA, Long DS (2010) Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner. Remote Sens Environ 114:2229–2237

    Article  Google Scholar 

  • Erwin TL (1982) Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt Bull 36:74–75

    Google Scholar 

  • Ferster CJ, Coops NC, Trofymow JA (2009) Aboveground large tree mass estimation in a coastal forest in British Columbia using plot-level metrics and individual tree detection from LiDAR. Can J Remote Sens 35:270–275

    Article  Google Scholar 

  • Ferster CJ, Trofymow JA, Coops NC, Chen BZ, Black TA, Gougeon FA (2011) Determination of ecosystem carbon-stock distributions in the flux footprint of an eddy-covariance tower in a coastal forest in British Columbia. Can J For Res 41:138–1393

    Article  Google Scholar 

  • Finch S, Vierling LA, Vierling KT, Hudak AT (2012) A case study using field surveys and LiDAR to quantify aboveground carbon, bird diversity, and tree species richness to prioritize conservation based on multiple ecosystem services. In: Proceedings of SilviLaser 2012 conference, Vancouver, BC, Canada, pp 16–19

    Google Scholar 

  • Flashpoler DJ, Giardina CP, Asner GP, Hart P, Price JT, Lyons CK, Castaneda X (2010) Long-term effects of fragmentation and fragment properties on bird species richness in Hawaiian forests. Biol Conserv 143:280–288

    Article  Google Scholar 

  • Fleishman E, Mac Nally R (2006) Patterns of spatial autocorrelation of assemblages of birds, floristics, physiognomy, and primary productivity in the central Great Basin, USA. Divers Distrib 12:236–243

    Article  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405(6783):220–227

    Article  CAS  PubMed  Google Scholar 

  • Gentry DJ, Vierling KT (2008) Reuse of cavities during the breeding and nonbreeding season in old burns in the Black Hills, South Dakota. Am Midl Nat 160:413–429

    Article  Google Scholar 

  • Goetz S, Steinberg D, Dubayah R, Blair B (2007) Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens Environ 108:254–263

    Article  Google Scholar 

  • Gossner MM, Lachat T, Brunet J, Isacsson G, Bouget C, Brustel H, Brandl R, Weisser WW, Müller J (2013) Current “near-to-nature” forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv Biol 27:605–614. doi:10.1111/cobi.12023

    Article  PubMed  Google Scholar 

  • Grimbacher PS, Stork NE (2009) How do beetle assemblages respond to cyclonic disturbance of fragmented tropical rainforest landscape? Oecologia 161:591–599

    Article  PubMed  Google Scholar 

  • Harding D, Carabajal C (2005) ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophys Res Lett 32:L21S10

    Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community response to altitude. Biol Rev 80:489–513

    Article  PubMed  Google Scholar 

  • Hof C, Araujo MB, Jetz W, Rahbek C (2011a) Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480:516–519

    CAS  PubMed  Google Scholar 

  • Hof C, Levinsky I, Araujo MB, Rahbek C (2011b) Rethinking species’ ability to cope with climate change. Glob Change Biol 17:2987–2990

    Article  Google Scholar 

  • Hudak AT, Crookston NL, Evans JS, Hall DE, Falkowski MJ (2008) Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sens Environ 112:2232–2245

    Article  Google Scholar 

  • Imbeau L, Monkkonen M, Desrochers A (2001) Long-term effects of forestry on birds of the eastern Canadian boreal forests: a comparison with Fennoscandia. Conserv Biol 15:1151–1162

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957

    Article  Google Scholar 

  • Jones CG, Gutierrez JL, Byers JE, Crooks JA, Lambrinos JG, Talley TS (2010) A framework for understanding physical ecosystem engineering by organisms. Oikos 119:1862–1869

    Article  Google Scholar 

  • Jung K, Kaiser S, Böhm S, Nieschulze J, Kalko EKV (2012) Moving in three dimensions: effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. J Appl Ecol 49:523–531

    Article  Google Scholar 

  • Kim Y, Yang Z, Cohen WB, Pflugmacher D, Lauver CL, Vankat JL (2009) Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data. Remote Sens Environ 113:2499–2510

    Article  Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Lassau SA, Hochuli DF (2008) Testing predictions of beetle community patterns derived empirically using remote sensing. Divers Distrib 14:138–147

    Article  Google Scholar 

  • Lassau SA, Cassis G, Flemons PKJ, Wilkie L, Hochuli DF (2005a) Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns? Ecography 28:495–504

    Article  Google Scholar 

  • Lassau SA, Hochuli DF, Cassis G, Reid CAM (2005b) Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently? Divers Distrib 11:73–82

    Article  Google Scholar 

  • Lefsky M (2010) A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophys Res Lett 37:L15401

    Google Scholar 

  • Lefsky M, Harding D, Keller M, Cohen W, Carabajal C (2005) Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett 32:L22S02

    Article  Google Scholar 

  • Lesak AA, Radeloff VC, Hawbaker TJ, Pidgeon AM, Gobakken T, Contrucci K (2011) Modeling forest song bird species richness using LiDAR-derived measures of forest structure. Remote Sens Environ 115:2823–2835

    Article  Google Scholar 

  • Leutner BF, Reineking B, Müller J, Bachmann M, Beierkuhnlein C, Dech S, Wegmann M (2012) Modelling forest α-diversity and floristic composition – on the added value of LiDAR plus hyperspectral remote sensing. Remote Sens 4:2818–2845

    Article  Google Scholar 

  • Lindo Z, Winchester NN (2008) Scale dependent diversity patterns in arboreal and terrestrial oribatid mite (Acari: Oribatida) communities. Ecography 31:53–60

    Article  Google Scholar 

  • Lucas KL, Raber GT, Carter GA (2010) Estimating vascular plant species richness of Horn Island, Mississippi using small-footprint airborne LiDAR. J Appl Remote Sens 4:033545

    Google Scholar 

  • MacArthur RH, MacArthur J (1961) On bird species diversity. Ecology 42:594–598

    Article  Google Scholar 

  • Martin K, Aitken KEH, Wiebe KL (2004) Nest sites and nest webs for cavity-nesting communities in interior British Columbia, Canada: nest characteristics and niche partitioning. Condor 106:5–19

    Article  Google Scholar 

  • Martinuzzi S, Vierling LA, Gould WA, Falkowski MJ, Evans JS, Hudak AT, Vierling KT (2009) Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sens Environ 113:2533–2546

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Moning C, Müller J (2008) Environmental key factors and their thresholds for the avifauna of temperate montane forests. For Ecol Manag 256:1198–1208

    Article  Google Scholar 

  • Müller J, Brandl R (2009) Assessing biodiversity by remote sensing and ground survey in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. J Appl Ecol 46:897–905

    Article  Google Scholar 

  • Müller J, Moning C, Bässler C, Heurich M, Brandl R (2009) Using airborne laser scanning to model potential abundance and assemblages of forest passerines. Basic Appl Ecol 10:671–681

    Article  Google Scholar 

  • Müller J, Stadler J, Brandl R (2010) Composition versus physiognomy of vegetation as predictors of bird assemblages: the role of lidar. Remote Sens Environ 114:490–495

    Article  Google Scholar 

  • Müller J, Mehr M, Bässler C, Fenton MB, Hothorn T, Pretzsch H, Klemmt H-J, Brandl R (2012) Aggregative response in bats: prey abundance versus habitat. Oecologia 169:673–684

    Article  PubMed  Google Scholar 

  • Ohlson M, Söderström L, Hörnberg G, Zackrisson O, Hermansson J (1997) Habitat qualities versus long-term continuity as determinants of biodiversity in boreal old-growth swamp forests. Biol Conserv 81:221–231

    Article  Google Scholar 

  • Parker GG, Harding DJ, Berger ML (2004) A portable LIDAR system for rapid determination of forest canopy structure. J Appl Ecol 41:755–767

    Article  Google Scholar 

  • Pausas JG, Verdu M (2010) The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60(8):614–625

    Article  Google Scholar 

  • Remm J, Lohmus A (2012) Tree cavities in forests: the broad distribution of a keystone structure for biodiversity. For Ecol Manag 262:579–585

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  • Schaffers AP, Raemakers IP, Sýkora KV, ter Braak CJF (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794

    Article  PubMed  Google Scholar 

  • Scherrer D, Schmid S, Körner C (2011) Elevational species shifts in a warmer climate are overestimated when based on weather station data. Int J Biometeorol 55:645–654

    Article  PubMed  Google Scholar 

  • Schuldt A, Assmann T (2010) Invertebrate diversity and national responsibility for species conservation across Europe – a multi-taxon approach. Biol Conserv 143:2747–2756

    Article  Google Scholar 

  • Seavy NE, Viers JH, Wood JK (2009) Riparian bird response to vegetation structure: a multiscale analysis using LiDAR measurements of canopy height. Ecol Appl 19:1848–1857

    Article  PubMed  Google Scholar 

  • Sendtner O (1860) Die Vegetations-Verhältnisse des Bayerischen Waldes nach den Grundsätzen der Pflanzengeographie. Literarisch-artistische Anstalt, München, p 505

    Google Scholar 

  • Siitonen J, Martikainen P (1994) Occurrence of rare and threatened insects living on decaying Populus tremula: a comparison between Finnish and Russian Karelia. Scand J For Res 9:89–95

    Article  Google Scholar 

  • Simonson WD, Allen HD, Coomes DA (2012) Use of an airborne Lidar system to model plant species composition and diversity of Mediterranean oak forests. Conserv Biol 26:840–850

    Article  PubMed  Google Scholar 

  • Ter Braak CJF, Schaffers AP (2004) Co-correspondence analysis: a new ordination method to relate two community compositions. Ecology 85(3):834–846

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Tilman D, Knops J, Weldin D, Reich P, Ritchie M, Sieman E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Turner WR, Brandon K, Brooks TM, Costanza R, da Fonseca GAB, Portela R (2007) Global conservation of biodiversity and ecosystem services. BioScience 57:868–873

    Article  Google Scholar 

  • Unterseher M, Otto P, Morawetz W (2005) Species richness and substrate specificity of lignicolous fungi in the canopy of a temperate, mixed deciduous forest. Mycol Prog 42:117–132

    Article  Google Scholar 

  • Vierling KT, Vierling LA, Gould WA, Martinuzzi S, Clawges RM (2008) Lidar: shedding new light on habitat characterization and modeling. Front Ecol Environ 6:90–98

    Article  Google Scholar 

  • Vierling KT, Bässler C, Brandl B, Vierling LA, Weiß I, Müller I (2011) Spinning a laser web: predicting spider distributions using lidar. Ecol Appl 21:577–588

    Article  CAS  PubMed  Google Scholar 

  • Vierling LA, Vierling KT, Adam P, Hudak AT (2013) Using satellite and airborne LiDAR to model woodpecker habitat occupancy at the landscape scale. PLoS ONE 8(12):e80988

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogeler JC, Hudak AT, Vierling LA, Evans J, Green P, Vierling KT (2014) Terrain and vegetation structural influences on local avian species richness in two mixed-conifer forests. Remote Sens Environ (in press)

    Google Scholar 

  • Wei Y, Krzystek P, Heurich M (2012) Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sens Environ 123:368–380

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Wilson EO (1987) An urgent need to map biodiversity. Scientist 1:11

    Google Scholar 

  • Wünsche A (2012) Erfassung der lichtökologischen Situation im Nationalpark Bayerischer Wald. Technical University Dresden, Dresden

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Müller, J., Vierling, K. (2014). Assessing Biodiversity by Airborne Laser Scanning. In: Maltamo, M., Næsset, E., Vauhkonen, J. (eds) Forestry Applications of Airborne Laser Scanning. Managing Forest Ecosystems, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8663-8_18

Download citation

Publish with us

Policies and ethics