Skip to main content

Modeling and Estimating Change

  • Chapter
  • First Online:
Forestry Applications of Airborne Laser Scanning

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 27))

Abstract

Airborne laser scanning (ALS) data are a source of spatial information that can be used to assist in the efficient and precise estimation of forest attributes such as biomass and biomass change, particularly for remote and inaccessible forests. This chapter includes an introduction to the use of ALS data for estimating change and a detailed review with tabular summary of the small number of known published reports on the topic. The review proceeds chronologically, noting the progression from exploratory and correlation studies to modeling and mapping and finally to statistically rigorous inference for population parameters. Both direct and indirect approaches for constructing models and mapping change are summarized. Although maps can be used to assist in the estimation procedure, systematic model prediction errors as reflected in maps induce bias into estimators. Thus, if the objective is rigorous inference for population parameters such as mean biomass change per unit area, rather than just maps of the populations, then bias must be estimated and incorporated into the parameter estimates, and uncertainty must be estimated. The design-based, model-assisted estimators that are presented for both independent estimation samples and single samples with repeated observations satisfy these criteria and produce inferences in the form of confidence intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen H-E, Reutebuch SE, McGaughey RJ (2006) A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Can J Remote Sens 32:355–366

    Article  Google Scholar 

  • Bollandsås OM, Gregoire TG, Næsset E, Øyen B-H (2013) Detection of biomass change in a Norwegian mountain forest area using small footprint airborne laser scanner data. Stat Method Appl 22:113–129

    Article  Google Scholar 

  • Cohen WB, Yang Z, Kennedy R (2010) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync – tools for calibration and validation. Remote Sens Environ 114:2911–2924

    Article  Google Scholar 

  • Dawid AP (1983) Statistical inference I. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical sciences, vol 4. Wiley, New York

    Google Scholar 

  • D’Oliveira MVN, Reutebuch SE, McGaughey RJ, Andersen H-E (2012) Estimation of forest biomass and identifying low-intensity logging areas using airborne scanning lidar in Antimary State Forest, Acre State, Western Brazilian Amazon. Remote Sens Environ 124:479–491

    Article  Google Scholar 

  • Ene LT, Næsset E, Gobakken T, Gregoire TG, Ståhl G, Nelson R (2012) Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach. Remote Sens Environ 123:579–592

    Article  Google Scholar 

  • Falkowski MJ, Smith AMS, Gessler PE, Hudak AT, Vierling LA, Evans JS (2008) The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data. Can J Remote Sens 34:338–350

    Article  Google Scholar 

  • Gobakken T, Næsset E (2004) Effects of forest growth on laser derived canopy metrics. Int Arch Photogramm Remote Sens Spat Inf Sci 36–8(W2):224–227

    Google Scholar 

  • Gobakken T, Næsset E, Nelson R, Bollandsås OM, Gregoire TG, Ståhl G, Holm S, Ørka HO, Astrup R (2012) Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning. Remote Sens Environ 123:443–456

    Article  Google Scholar 

  • Gregoire TG, Ståhl G, Næsset E, Gobakken T, Nelson R, Holm S (2011) Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, Norway. Can J For Res 41:83–95

    Article  Google Scholar 

  • Hansen MH, Madow WG, Tepping BJ (1983) An evaluation of model-depending and probability-sampling inferences in sample surveys. J Am Stat Assoc 78:776–793

    Article  Google Scholar 

  • Hirata Y, Tanaka H, Furuya N (2008) Canopy and gap dynamics analysed using multi-temporal airborne laser scanner data in a temperate deciduous forest. In: Hill R, Rosette J, Suárez J (eds) Proceedings of SilviLaser 2008, 8th international conference on LiDAR applications in forest assessment and inventory, Heriot-Watt University, Edinburgh, 17–19 September 2008, pp 144–150

    Google Scholar 

  • Höhne N, Wartmann S, Herold A, Freibauer A (2007) The rules for land use, land use change and forestry under the Kyoto Protocol – lessons learned for the future climate negotiations. Environ Sci Policy 10:353–369

    Article  Google Scholar 

  • Hopkinson C, Chasmer L, Hall RJ (2008) The uncertainty in conifer plantation growth prediction from multi-temporal lidar datasets. Remote Sens Environ 112:1168–1180

    Article  Google Scholar 

  • Hyyppä J, Inkinen M (1999) Detecting and estimating attributes for single trees using laser scanner. Photogramm J Finland 16:27–42

    Google Scholar 

  • Hyyppä J, Yu X, Rönnholm P, Kaartinen H, Hyyppä H (2003) Factors affecting laser-derived object-oriented forest height growth estimation. Photogramm J Finland 18:16–31

    Google Scholar 

  • Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke C, Hirschmugl K, Morsdorf F, Næsset E, Pitkänen J, Popescu P, Solberg S, Wolf BM, Wu J (2012) An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens 4:950–974

    Article  Google Scholar 

  • Kellner JR, Clark DB, Hubbell P (2009) Pervasive canopy dynamics produce short-term stability in a tropical rain forest. Ecol Lett 12:155–164

    Article  PubMed  Google Scholar 

  • Kennedy RE, Cohen WB, Schroeder TA (2007) Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens Environ 110:370–386

    Article  Google Scholar 

  • Kennedy RE, Yang Z, Cohen WB (2010) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – temporal segmentation algorithms. Remote Sens Environ 114:2897–2910

    Article  Google Scholar 

  • McRoberts RE (2006) A model-based approach to estimating forest area. Remote Sens Environ 103:56–66

    Article  Google Scholar 

  • McRoberts RE (2010) Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data. Remote Sens Environ 114:1017–1025

    Article  Google Scholar 

  • McRoberts RE (2011) Satellite image-based maps: scientific inference or pretty pictures? Remote Sens Environ 115(2):715–724

    Article  Google Scholar 

  • McRoberts RE (2012) Estimating forest attribute parameters for small areas using nearest neighbors techniques. For Ecol Manag 272:3–12

    Article  Google Scholar 

  • McRoberts RE (2014) Post-classification approaches to estimating change in forest area using remotely sensed auxiliary data. Remote Sens Environ. doi:10.1016/j.rse.2013.03.036

  • McRoberts RE, Walters BF (2012) Statistical inference for remote sensing-based estimates of net deforestation. Remote Sens Environ 124:394–401

    Article  Google Scholar 

  • McRoberts RE, Gobakken T, Næsset E (2013a) Inference for lidar-assisted estimation of forest growing stock volume. Remote Sens Environ 128:268–275

    Article  Google Scholar 

  • McRoberts RE, Næsset E, Gobakken T (2013b) Accuracy and precision for remote sensing applications of model-based inference. IEEE J Sel Topics Appl Earth Observ 6:27–34

    Article  Google Scholar 

  • Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99

    Article  Google Scholar 

  • Næsset E (2004) Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand J For Res 19:164–179

    Article  Google Scholar 

  • Næsset E, Gobakken T (2005) Estimating forest growth using canopy metrics derived from airborne laser scanner data. Remote Sens Environ 96:453–465

    Article  Google Scholar 

  • Næsset E, Gobakken T, Solberg S, Gregoire TG, Nelson R, Ståhl G, Weydahl D (2011) Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: a case study from a boreal forest area. Remote Sens Environ 115:3599–3614

    Article  Google Scholar 

  • Næsset E, Bollandsås OM, Gobakken T, Gregoire TG, Ståhl G (2013a) Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: a case study with post-stratification to provide “activity data”. Remote Sens Environ 128:299–314

    Article  Google Scholar 

  • Næsset E, Gobakken T, Bollandsås OM, Gregoire TG, Nelson R, Ståhl G (2013b) Comparison of precision of biomass estimates in regional field sample surveys and airborne LiDAR-assisted surveys in Hedmark County, Norway. Remote Sens Environ 130:108–120

    Article  Google Scholar 

  • Nyström M, Holmgren J, Olsson H (2013) Change detection of mountain birch using multi-temporal ALS point clouds. Remote Sens Lett 4:190–199

    Article  Google Scholar 

  • Popescu SC, Wynne RH (2004) Seeing the trees in the forest: using lidar and multi-spectral data fusion with local filtering and variable windows size for estimating tree height. Photogramm Eng Remote Sens 70:589–604

    Article  Google Scholar 

  • Reichenbach H (1938) Experience and prediction: an analysis of the foundations and structure of knowledge. The Chicago University Press, Chicago

    Book  Google Scholar 

  • Rypdal K, Bloch VVH, Flugsrud K, Gobakken T, Hoem B, Tomter SM, Aalde H (2005) Emissions and removals of greenhouse gases from land use, land use-change, and forestry in Norway. NIJOS report 11/05, Ås, Norway

    Google Scholar 

  • Sannier C, McRoberts RE, Fichet L-V, Makaga E (2014) Using the regression estimator with Landsat data to estimate proportion forest cover and net proportion deforestation in Gabon. Remote Sens Environ. doi:10.1016/j.rse.2013.09.015

  • Särndal C-E, Swensson B, Wretman J (1992) Model assisted survey sampling. Springer, New York

    Book  Google Scholar 

  • Simpson, JA, Weiner ESC (Preparers) (1989) The Oxford English Dictionary, 2nd edn. Clarendon Press, Oxford, pp 923–924

    Google Scholar 

  • Solberg S, Næsset E, Bollandsås OM (2006a) Single tree segmentation using airborne laser scanner data in a structurally heterogeneous spruce forest. Photogramm Eng Remote Sens 12:1369–1378

    Article  Google Scholar 

  • Solberg S, Næsset E, Hanssen KH, Christiansen E (2006b) Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning. Remote Sens Environ 102:364–376

    Article  Google Scholar 

  • Ståhl G, Holm S, Gregoire TG, Gobakken T, Næsset E, Nelson R (2011) Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway. Can J For Res 41:96–107

    Article  Google Scholar 

  • St-Onge B, Vepakomma U (2004) Assessing forest gap dynamics and growth using multi-temporal laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci 36:173–178

    Google Scholar 

  • Strunk J, Reutebuch SE, Andersen H-E, Gould PJ, McGaughey RJ (2012) Model-assisted forest yield estimation with light detection and ranging. West J Appl For 27:53–59

    Article  Google Scholar 

  • Tesfamichael SG, Ahmed F, van Aardt JAN, Blakeway F (2009) A semivariogram approach for estimating stems per hectare in Eucalyptus grandis plantations using discrete-return lidar height data. For Ecol Manag 258:1188–1199

    Article  Google Scholar 

  • Tomppo EO, Gagliano C, De Natale F, Katila M, McRoberts RE (2009) Predicting categorical forest variables using an improved k-nearest neighbour estimator and Landsat imagery. Remote Sens Environ 113:500–517

    Article  Google Scholar 

  • Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (2010) National Forest Inventories: pathways for harmonised reporting. Springer, Dordrecht

    Book  Google Scholar 

  • Vastaranta M, Korpela I, Uotila A, Hovi A, Holopainen M (2011) Area-based snow damage classification of forest canopies using bi-temporal lidar data. Int Arch Photogramm Remote Sens Spat Inf Sci 38:169–173

    Google Scholar 

  • Vastaranta M, Korpela I, Uotila A, Hovi A, Holopainen M (2012) Mapping of snow-damaged trees based on bitemporal airborne LiDAR data. Eur J For Res 131:1217–1228

    Article  Google Scholar 

  • Vauhkonen J, Ene L, Gupta S, Heinzel J, Holmgren J, Pitkänen J, Solberg S, Wang Y, Weinacker H, Hauglin KM, Lien V, Packalén P, Gobakken T, Koch B, Næsset E, Tokola T, Maltamo M (2012) Comparative testing of single-tree detection algorithms under different types of forest. Forestry 85(1):27–40

    Article  Google Scholar 

  • Vepakomma U, St-Onge B, Kneeshaw D (2008) Spatially explicit characterization of borel forest gap dynamics using multi-temporal lidar data. Remote Sens Environ 112:2326–2340

    Article  Google Scholar 

  • Vepakomma U, Kneeshaw D, St-Onge B (2010) Interactions of multiple disturbances in shaping boreal forest dynamics: a spatially explicit analysis using multi-temporal lidar and high-resolution imagery. J Ecol 98:526–539

    Article  Google Scholar 

  • Vibrans AC, McRoberts RE, Moser P, Nicoletti AL (2013) Using satellite image-based maps and ground inventory data to estimate the area of the remaining Atlantic forest in the Brazilian state of Santa Catarina. Remote Sens Environ 130:87–95

    Article  Google Scholar 

  • Yu X, Hyyppä J, Rönnholm P, Kaartinen H, Maltamo M, Hyyppä H (2003) Detection of harvested trees and estimation of forest growth using laser scanning. In: Proceedings of the Scandlaser scientific workshop on airborne laser scanning of forests, Umeå, Sweden, 3–4 September, pp 115–124

    Google Scholar 

  • Yu X, Hyyppä J, Kaartinen H, Maltamo M (2004) Automatic detection of harvested trees and determination of forest growth using airborne laser scanning. Remote Sens Environ 90:451–462

    Article  Google Scholar 

  • Yu X, Hyyppä J, Kaartinen H, Hyyppä H, Maltamo M, Rönnholm P (2005) Measuring the growth of individual trees using multi-temporal airborne laser scanning points clouds. In: Proceedings of the ISPRS WG III/3, III/4, V/3 workshop: laser scanning 2005, Enschede, Nederlands, pp 202–208

    Google Scholar 

  • Yu X, Hyyppä J, Kukko A, Maltamo M, Kaartinen H (2006) Change detection techniques for canopy height growth measurements using airborne laser scanner data. Photogramm Eng Remote Sens 72:1339–1348

    Article  Google Scholar 

  • Yu X, Hyyppä J, Kaartinen H, Maltamo M, Hyyppä H (2008) Obtaining plotwise mean height and volume growth in boreal forests using multi-temporal laser surveys and various change detection techniques. Int J Remote Sens 29(5):1367–1386

    Article  Google Scholar 

  • Zhu A, Woodcock CE, Olofsson P (2012) Continuous monitoring of forest disturbance using all available landsat imagery. Remote Sens Environ 122:75–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald E. McRoberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McRoberts, R.E., Bollandsås, O.M., Næsset, E. (2014). Modeling and Estimating Change. In: Maltamo, M., Næsset, E., Vauhkonen, J. (eds) Forestry Applications of Airborne Laser Scanning. Managing Forest Ecosystems, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8663-8_15

Download citation

Publish with us

Policies and ethics