Skip to main content

Biomaterials for Cardiac Tissue Engineering and Regeneration

  • Chapter
  • First Online:
Adult and Pluripotent Stem Cells

Abstract

Tissue regeneration after myocardial infarction (MI) represents a major challenge in cardiovascular therapy, as current clinical approaches are limited in their ability to regenerate damaged myocardium. This chapter presents an overview of two emerging strategies based on the use of biomaterials, as stand-alone therapy or in combination with regeneration signals and cells, for regenerating the infarcted heart. One strategy is cardiac tissue engineering, which creates cardiac patches from functional cells seeded in a biomaterial scaffold, bio-inspired to provide the appropriate interface for cellular interactions. Implementation of perfusion bioreactors and pre-vascularization strategies can nowadays produce thicker cardiac patches that are better integrated into the host, thus advancing the realization of this strategy in the clinics. The second strategy, injection of biomaterials, has shown great promise as a stand-alone therapy. The intracoronary delivery of alginate solution that undergoes gelation only at the infarct in the presence of elevated calcium ions, was shown to increase scar thickness and LV dimensions in acute MI models in rats and pigs and was proven safe in phase I/II clinical studies. To enable the spatio-temporal presentation of regeneration factors, the alginate was modified with sulfate groups to mimic the binding of heparin-binding proteins to heparin/heparan-sulfate. When combining alginate-sulfate with the in-situ formed alginate hydrogel, multiple factor delivery was prolonged in ischemic tissues and enabled regeneration and cardiac repair after MI. The chapter emphasizes the increasing important role of biomaterials in various therapeutic strategies aimed at cardiac regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhyari P, Kamiya H, Haverich A, Karck M, Lichtenberg A (2008) Myocardial tissue engineering: the extracellular matrix. Eur J Cardiothorac Surg 34(2):229–241. doi:S1010-7940(08)00362-X [pii]. (10.1016/j.ejcts.2008.03.062)

    PubMed  Google Scholar 

  • Barash Y, Dvir T, Tandeitnik P, Ruvinov E, Guterman H, Cohen S (2010) Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering. Tissue Eng Part C Methods 16(6):1417–1426. doi:10.1089/ten.TEC.2010.0068

    PubMed  CAS  Google Scholar 

  • BioLineRx Ltd. (2007) Safety and Feasibility of the Injectable BL-1040 Implant. Study NCT00557531, 2007. http://www.ClinicalTrials.gov. Accessed 5 Dec 2012.

  • Brown MA, Iyer RK, Radisic M (2008) Pulsatile perfusion bioreactor for cardiac tissue engineering. Biotechnol Prog 24(4):907–920. doi:10.1002/btpr.11

    PubMed  CAS  Google Scholar 

  • Cardin AD, Weintraub HJ (1989) Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9(1):21–32

    PubMed  CAS  Google Scholar 

  • Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G (2002) Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng 8(2):175–188. doi:10.1089/107632702753724950

    PubMed  CAS  Google Scholar 

  • Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IH, Gepstein L, Levenberg S (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100(2):263–272. doi:01.RES.0000257776.05673.ff [pii]. (10.1161/01.RES.0000257776.05673.ff)

    PubMed  CAS  Google Scholar 

  • Chachques JC, Trainini JC, Lago N, Masoli OH, Barisani JL, Cortes-Morichetti M, Schussler O, Carpentier A (2007) Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM clinical trial): one year follow-up. Cell Transplant 16(9):927–934

    PubMed  Google Scholar 

  • Chachques JC, Trainini JC, Lago N, Cortes-Morichetti M, Schussler O, Carpentier A (2008) Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg 85(3):901–908. doi:10.1016/j.athoracsur.2007.10.052

    PubMed  Google Scholar 

  • Chiu LL, Radisic M, Vunjak-Novakovic G (2010) Bioactive scaffolds for engineering vascularized cardiac tissues. Macromol Biosci 10(11):1286–1301. doi:10.1002/mabi.201000202

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chiu LL, Reis LA, Radisic M (2012) Controlled delivery of thymosin beta4 for tissue engineering and cardiac regenerative medicine. Ann N Y Acad Sci 1269(1):16–25. doi:10.1111/j.1749-6632.2012.06718.x

    PubMed  CAS  Google Scholar 

  • Christman KL, Lee RJ (2006) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 48(5):907–913

    PubMed  CAS  Google Scholar 

  • Christman KL, Fok HH, Sievers RE, Fang Q, Lee RJ (2004a) Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng 10(3-4):403–409

    CAS  Google Scholar 

  • Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ (2004b) Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 44(3):654–660

    CAS  Google Scholar 

  • Cohen S, Leor J (2004) Rebuilding broken hearts. Biologists and engineers working together in the fledgling field of tissue engineering are within reach of one of their greatest goals: constructing a living human heart patch. Sci Am 291(5):44–51

    PubMed  Google Scholar 

  • Conti E, Carrozza C, Capoluongo E, Volpe M, Crea F, Zuppi C, Andreotti F (2004) Insulin-like growth factor-1 as a vascular protective factor. Circulation 110:2260–2265

    PubMed  Google Scholar 

  • D’Amario D, Cabral-Da-Silva MC, Zheng H, Fiorini C, Goichberg P, Steadman E, Ferreira-Martins J, Sanada F, Piccoli M, Cappetta D, D’Alessandro DA, Michler RE, Hosoda T, Anastasia L, Rota M, Leri A, Anversa P, Kajstura J (2011) Insulin-like growth factor-1 receptor identifies a pool of human cardiac stem cells with superior therapeutic potential for myocardial regeneration. Circ Res 108(12):1467–1481. doi:10.1161/CIRCRESAHA.111.240648

    PubMed Central  PubMed  Google Scholar 

  • Dahlmann J, Krause A, Moller L, Kensah G, Mowes M, Diekmann A, Martin U, Kirschning A, Gruh I, Drager G (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34(4):940–951. doi:10.1016/j.biomaterials.2012.10.008

    PubMed  CAS  Google Scholar 

  • Dai W, Wold LE, Dow JS, Kloner RA (2005) Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J Am Coll Cardiol 46(4):714–719

    PubMed  CAS  Google Scholar 

  • Dar A, Shachar M, Leor J, Cohen S (2002) Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 80:305–312

    PubMed  CAS  Google Scholar 

  • Davis ME, Hsieh PC, Grodzinsky AJ, Lee RT (2005) Custom design of the cardiac microenvironment with biomaterials. Circ Res 97(1):8–15

    PubMed Central  PubMed  CAS  Google Scholar 

  • Davis ME, Hsieh PC, Takahashi T, Song Q, Zhang S, Kamm RD, Grodzinsky AJ, Anversa P, Lee RT (2006) Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A 103(21):8155–8160. doi:0602877103 [pii]. (10.1073/pnas.0602877103)

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48(3):504–511. doi:S0022-2828(09)00308-3 [pii]. (10.1016/j.yjmcc.2009.07.015)

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dvir T, Benishti N, Shachar M, Cohen S (2006) A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration. Tissue Eng 12:2843–2852

    PubMed  CAS  Google Scholar 

  • Dvir T, Levy O, Shachar M, Granot Y, Cohen S (2007) Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly. Tissue Eng 13(9):2185–2193. doi:10.1089/ten.2006.0364

    PubMed  CAS  Google Scholar 

  • Dvir T, Kedem A, Ruvinov E, Levy O, Freeman I, Landa N, Holbova R, Feinberg MS, Dror S, Etzion Y, Leor J, Cohen S (2009) Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci U S A 106(35):14990–14995. doi:0812242106 [pii]. (10.1073/pnas.0812242106)

    PubMed Central  PubMed  CAS  Google Scholar 

  • Eitan Y, Sarig U, Dahan N, Machluf M (2009) A cellular cardiac extracellular matrix as a scaffold for tissue engineering: In-vitro cell support, remodeling and biocompatibility. Tissue Eng Part C Methods 16(4):671–683. doi:10.1089/ten.TEC.2009.0111

    Google Scholar 

  • Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, Zimmermann W, Dohmen HH, Schafer H, Bishopric N, Wakatsuki T, Elson EL (1997) Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J 11(8):683–694

    PubMed  CAS  Google Scholar 

  • Frantz S, Bauersachs J, Ertl G (2009) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81(3):474–481. doi:cvn292 [pii] 10.1093/cvr/cvn292

    PubMed Central  PubMed  CAS  Google Scholar 

  • Freed LE, Guilak F, Guo XE, Gray ML, Tranquillo R, Holmes JW, Radisic M, Sefton MV, Kaplan D, Vunjak-Novakovic G (2006) Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng 12(12):3285–3305. doi:10.1089/ten.2006.12.3285

    PubMed  CAS  Google Scholar 

  • Freeman I, Cohen S (2009) The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 30(11):2122–2131. doi:S0142-9612(08)01060-0 [pii]. 10.1016/j.biomaterials.2008.12.057

    PubMed  CAS  Google Scholar 

  • Freeman I, Kedem A, Cohen S (2008) The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29(22):3260–3268. doi:S0142-9612(08)00278-0 [pii]. 10.1016/j.biomaterials.2008.04.025

    PubMed  CAS  Google Scholar 

  • Furuta A, Miyoshi S, Itabashi Y, Shimizu T, Kira S, Hayakawa K, Nishiyama N, Tanimoto K, Hagiwara Y, Satoh T, Fukuda K, Okano T, Ogawa S (2006) Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ Res 98(5):705–712

    PubMed  CAS  Google Scholar 

  • Gao J, Liu J, Gao Y, Wang C, Zhao Y, Chen B, Xiao Z, Miao Q, Dai J (2011) A myocardial patch made of collagen membranes loaded with collagen-binding human vascular endothelial growth factor accelerates healing of the injured rabbit heart. Tissue Eng Part A. 17(21–22): 2739–2747. doi:10.1089/ten.TEA.2011.0105

    PubMed  CAS  Google Scholar 

  • Godier-Furnemont AF, Martens TP, Koeckert MS, Wan L, Parks J, Arai K, Zhang G, Hudson B, Homma S, Vunjak-Novakovic G (2011) Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci U S A 108(19):7974–7979. doi:1104619108 [pii]. (10.1073/pnas.1104619108)

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goumans M-J, de Boer TP, Smits AM, van Laake LW, van Vliet P, Metz CHG, Korfage TH, Kats KP, Hochstenbach R, Pasterkamp G, Verhaar MC, van der Heyden MAG, de Kleijn D, Mummery CL, van Veen TAB, Sluijter JPG, Doevendans PA (2008) TGF-[beta]1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 1(2):138–149

    Google Scholar 

  • Hao X, Silva EA, Mansson-Broberg A, Grinnemo KH, Siddiqui AJ, Dellgren G, Wardell E, Brodin LA, Mooney DJ, Sylven C (2007) Angiogenic effects of sequential release of VEGF-A(165) and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res 75(1):178–185

    PubMed  CAS  Google Scholar 

  • Haraguchi Y, Shimizu T, Yamato M, Okano T (2011) Regenerative therapies using cell sheet-based tissue engineering for cardiac disease. Cardiol Res Pract 2011:845170. doi:10.4061/2011/845170

    PubMed Central  PubMed  Google Scholar 

  • Hausenloy DJ, Yellon DM (2009) Cardioprotective growth factors. Cardiovasc Res 83(2):179–194. doi:cvp062 [pii]. (10.1093/cvr/cvp062)

    PubMed  CAS  Google Scholar 

  • Hsieh PC, Davis ME, Gannon J, MacGillivray C, Lee RT (2006) Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest 116(1):237–248. doi:10.1172/JCI25878

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, Gorman JH 3rd, Gorman RC, Burdick JA (2010) Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci U S A 107(25):11507–11512. doi:1004097107 [pii]. (10.1073/pnas.1004097107)

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ikaria Holdings Inc. (2010) IK-5001 for the Prevention of Remodeling of the ventricle and congestive heart failure after acute myocardial infarction (PRESERVATION 1). Study NCT01226563, 2010. http://www.ClinicalTrials.gov. Accessed 5 Dec 2012

    Google Scholar 

  • Iraqi W, Rossignol P, Angioi M, Fay R, Nuee J, Ketelslegers JM, Vincent J, Pitt B, Zannad F (2009) Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the eplerenone post-acute myocardial infarction heart failure efficacy and survival study (EPHESUS) study. Circulation 119(18):2471–2479. doi:10.1161/circulationaha.108.809194

    PubMed  CAS  Google Scholar 

  • Jugdutt BI (2003) Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108(11):1395–1403. doi:10.1161/01.CIR.0000085658.98621.49 108/11/1395 [pii]

    PubMed  Google Scholar 

  • Kutschka I, Chen IY, Kofidis T, Arai T, von Degenfeld G, Sheikh AY, Hendry SL, Pearl J, Hoyt G, Sista R, Yang PC, Blau HM, Gambhir SS, Robbins RC (2006) Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation 114(1 Suppl):I167–I173. doi:114/1_suppl/I-167 [pii]. (10.1161/CIRCULATIONAHA.105.001297)

    PubMed  Google Scholar 

  • Landa N, Miller L, Feinberg MS, Holbova R, Shachar M, Freeman I, Cohen S, Leor J (2008) Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117(11):1388–1396. doi:10.1161/circulationaha.107.727420

    PubMed  CAS  Google Scholar 

  • Lee H, Cusick RA, Utsunomiya H, Ma PX, Langer R, Vacanti JP (2003) Effect of implantation site on hepatocytes heterotopically transplanted on biodegradable polymer scaffolds. Tissue Eng 9(6):1227–1232. doi:10.1089/10763270360728134

    PubMed  CAS  Google Scholar 

  • Lee RJ, Hinson A, Helgerson S, Bauernschmitt R, Sabbah HN (2012) Polymer-based restoration of left ventricular mechanics. Cell Transplant. 22(3): 529–533. doi:10.3727/096368911X637461

    PubMed  Google Scholar 

  • Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S (2000) Bioengineered cardiac grafts. A new approach to repair the infarcted myocardium? Circulation 102(suppIII):56–61

    Google Scholar 

  • Leor J, Tuvia S, Guetta V, Manczur F, Castel D, Willenz U, Petnehazy O, Landa N, Feinberg MS, Konen E, Goitein O, Tsur-Gang O, Shaul M, Klapper L, Cohen S (2009) Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J Am Coll Cardiol 54 (11):1014–1023. doi:S0735-1097(09)02060-9 [pii]. (10.1016/j.jacc.2009.06.010)

    PubMed  Google Scholar 

  • Lesman A, Habib M, Caspi O, Gepstein A, Arbel G, Levenberg S, Gepstein L (2009) Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng Part A. 16(1): 115–125. doi:10.1089/ten.TEA.2009.0130

    Google Scholar 

  • Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura J, Baserga R, Anversa P (1997) Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 100(8):1991–1999. doi:10.1172/JCI119730

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM (1999) Survival and function of bioengineered cardiac grafts. Circulation 100(19 Suppl):II63–II69

    Google Scholar 

  • LoneStar Heart, Inc. (2009a) A randomized, controlled study to Evaluate Algisyl-LVRâ„¢ as a method of left ventricular augmentation for heart failure (AUGMENT-HF). Study NCT01311791, 2011. http://www.ClinicalTrials.gov. Accessed 5 Dec 2012

    Google Scholar 

  • LoneStar Heart, Inc. (2009b) Safety and feasibility of Algisyl-LVRâ„¢ as a method of left ventricular restoration in patients with DCM undergoing open-heart surgery. Study NCT00847964, 2009. http://www.ClinicalTrials.gov. Accessed 5 Dec 2012

    Google Scholar 

  • Lu H, Xu X, Zhang M, Cao R, Brakenhielm E, Li C, Lin H, Yao G, Sun H, Qi L, Tang M, Dai H, Zhang Y, Su R, Bi Y, Cao Y (2007) Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proc Natl Acad Sci U S A 104(29):12140–12145. doi:0704966104 [pii]. (10.1073/pnas.0704966104)

    PubMed Central  PubMed  CAS  Google Scholar 

  • Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL, Hauch KD, Laflamme MA, Murry CE, Ratner BD (2010) Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci U S A 107(34):15211–15216. doi:1006442107 [pii]. (10.1073/pnas.1006442107)

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maidhof R, Marsano A, Lee EJ, Vunjak-Novakovic G (2010) Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnol Prog 26(2):565–572. doi:10.1002/btpr.337

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maltais S, Tremblay JP, Perrault LP, Ly HQ (2010) The paracrine effect: pivotal mechanism in cell-based cardiac repair. J Cardiovasc Transl Res 3(6):652–662. doi:10.1007/s12265-010-9198-2

    PubMed  Google Scholar 

  • Masuda S, Shimizu T, Yamato M, Okano T (2008) Cell sheet engineering for heart tissue repair. Adv Drug Deliv Rev 60(2):277–285. doi:S0169-409X(07)00249-9 [pii]. (10.1016/j.addr.2007.08.031)

    PubMed  CAS  Google Scholar 

  • Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50(2):280–289

    PubMed Central  PubMed  CAS  Google Scholar 

  • Miyagi Y, Chiu LL, Cimini M, Weisel RD, Radisic M, Li RK (2011) Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials 32(5):1280–1290. doi:S0142-9612(10)01295-0 [pii]. (10.1016/j.biomaterials.2010.10.007)

    PubMed  CAS  Google Scholar 

  • Mukherjee R, Zavadzkas JA, Saunders SM, McLean JE, Jeffords LB, Beck C, Stroud RE, Leone AM, Koval CN, Rivers WT, Basu S, Sheehy A, Michal G, Spinale FG (2008) Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. Ann Thorac Surg 86(4):1268–1276. doi:S0003-4975(08)00955-7 [pii]. (10.1016/j.athoracsur.2008.04.107)

    PubMed Central  PubMed  Google Scholar 

  • Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H (2000) Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 106(12):1511–1519. doi:10.1172/JCI10226

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nakamura T, Matsumoto K, Mizuno S, Sawa Y, Matsuda H (2005) Hepatocyte growth factor prevents tissue fibrosis, remodeling, and dysfunction in cardiomyopathic hamster hearts. Am J Physiol Heart Circ Physiol 288(5):H2131–H2139. doi:288/5/H2131 [pii]. (10.1152/ajpheart.01239.2003)

    PubMed  CAS  Google Scholar 

  • Nelson WD, Zenovich AG, Ott HC, Stolen C, Caron GJ, Panoskaltsis-Mortari A, Barnes SA III, Xin X, Taylor DA (2007) Sex-Dependent Attenuation of Plaque Growth After Treatment With Bone Marrow Mononuclear Cells. Circ Res 101(12):1319–1327. doi:10.1161/circresaha.107.155564

    PubMed  CAS  Google Scholar 

  • Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221. doi:nm1684 [pii]. (10.1038/nm1684)

    PubMed  CAS  Google Scholar 

  • Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65(4):489–497. doi:10.1002/jbm.a.10542

    PubMed  Google Scholar 

  • Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G (2004a) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 101(52):18129–18134. doi:0407817101 [pii]. (10.1073/pnas.0407817101)

    CAS  Google Scholar 

  • Radisic M, Yang L, Boublik J, Cohen RJ, Langer R, Freed LE, Vunjak-Novakovic G (2004b) Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart Circ Physiol 286(2):H507–516. doi:10.1152/ajpheart.00171.2003 00171.2003 [pii]

    Google Scholar 

  • Radisic M, Park H, Gerecht S, Cannizzaro C, Langer R, Vunjak-Novakovic G (2007) Biomimetic approach to cardiac tissue engineering. Philos Trans R Soc Lond B Biol Sci 362(1484):1357–1368. doi:P083H57187563677 [pii]. (10.1098/rstb.2007.2121)

    PubMed Central  PubMed  CAS  Google Scholar 

  • Radisic M, Marsano A, Maidhof R, Wang Y, Vunjak-Novakovic G (2008) Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 3(4):719–738. doi:nprot.2008.40 [pii]. (10.1038/nprot.2008.40)

    PubMed Central  PubMed  CAS  Google Scholar 

  • Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029–1034. doi:10.1038/nbt1101-1029 nbt1101-1029 [pii]

    PubMed  CAS  Google Scholar 

  • Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell-ECM interactions to tissue engineering. J Cell Physiol 199(2):174–180. doi:10.1002/jcp.10471

    PubMed  CAS  Google Scholar 

  • Ruvinov E, Dvir T, Leor J, Cohen S (2008) Myocardial repair: from salvage to tissue reconstruction. Expert Rev Cardiovasc Ther 6(5):669–686. doi:10.1586/14779072.6.5.669

    PubMed  CAS  Google Scholar 

  • Ruvinov E, Leor J, Cohen S (2010) The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31(16):4573–4582. doi:S0142-9612(10)00255-3 [pii]. (10.1016/j.biomaterials.2010.02.026)

    PubMed  CAS  Google Scholar 

  • Ruvinov E, Harel-Adar T, Cohen S (2011a) Bioengineering the infarcted heart by applying bio-inspired materials. J Cardiovasc Transl Res 4(5):559–574. doi:10.1007/s12265-011-9288-9

    Google Scholar 

  • Ruvinov E, Leor J, Cohen S (2011b) The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 32(2):565–578. doi:10.1016/j.biomaterials.2010.08.097

    CAS  Google Scholar 

  • Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL (2011) Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta Biomater 7(1):133–143. doi:S1742-7061(10)00388-0 [pii]. (10.1016/j.actbio.2010.08.018)

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sapir Y, Kryukov O, Cohen S (2011) Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32(7):1838–1847. doi:S0142-9612(10)01430-4 [pii]. (10.1016/j.biomaterials.2010.11.008)

    PubMed  CAS  Google Scholar 

  • Schaaf S, Shibamiya A, Mewe M, Eder A, Stohr A, Hirt MN, Rau T, Zimmermann WH, Conradi L, Eschenhagen T, Hansen A (2011) Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 6(10):e26397. doi:10.1371/journal.pone.0026397 PONE-D-11-08333 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  • Segers VF, Lee RT (2007) Local delivery of proteins and the use of self-assembling peptides. Drug Discov Today 12(13–14):561–568

    PubMed  CAS  Google Scholar 

  • Segers VF, Tokunou T, Higgins LJ, MacGillivray C, Gannon J, Lee RT (2007) Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation 116(15):1683–1692

    PubMed  CAS  Google Scholar 

  • Sekine H, Shimizu T, Kosaka S, Kobayashi E, Okano T (2006) Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells. J Heart Lung Transplant 25(3):324–332. doi:S1053-2498(05)00744-8 [pii]. (10.1016/j.healun.2005.09.017)

    PubMed  Google Scholar 

  • Sekine H, Shimizu T, Dobashi I, Matsuura K, Hagiwara N, Takahashi M, Kobayashi E, Yamato M, Okano T (2011) Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection. Tissue Eng Part A. 17(23–24): 2973–2980. doi:10.1089/ten.tea.2010.0659

    PubMed  CAS  Google Scholar 

  • Shachar M, Cohen S (2003) Cardiac tissue engineering, ex-vivo: Design principles in biomaterials and bioreactors. Heart Fail Rev 8:271–276

    PubMed  CAS  Google Scholar 

  • Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S (2011) The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 7(1):152–162. doi:S1742-7061(10)00354-5 [pii]. (10.1016/j.actbio.2010.07.034)

    PubMed  CAS  Google Scholar 

  • Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18(8):583–590. doi:S0142961296001810 [pii]

    PubMed  CAS  Google Scholar 

  • Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90(3):e40

    PubMed  CAS  Google Scholar 

  • Shimizu T, Yamato M, Kikuchi A, Okano T (2003) Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24(13):2309–2316. doi:S0142961203001108 [pii]

    PubMed  CAS  Google Scholar 

  • Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364. doi:S0142961203003399 [pii]

    PubMed  CAS  Google Scholar 

  • Shriver Z, Liu D, Sasisekharan R (2002) Emerging views of heparan sulfate glycosaminoglycan structure/activity relationships modulating dynamic biological functions. Trends Cardiovasc Med 12(2):71–77. doi:S1050173801001505 [pii]

    PubMed  CAS  Google Scholar 

  • Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87(4):1285–1342. doi:87/4/1285 [pii]. (10.1152/physrev.00012.2007)

    PubMed  CAS  Google Scholar 

  • Suleiman MS, Singh RJ, Stewart CE (2007) Apoptosis and the cardiac action of insulin-like growth factor I. Pharmacol Ther 114(3):278–294. doi:S0163-7258(07)00049-6 [pii]. (10.1016/j.pharmthera.2007.03.001)

    PubMed  CAS  Google Scholar 

  • Suzuki R, Hattori F, Itabashi Y, Yoshioka M, Yuasa S, Manabe-Kawaguchi H, Murata M, Makino S, Kokaji K, Yozu R, Fukuda K (2009) Omentopexy enhances graft function in myocardial cell sheet transplantation. Biochem Biophys Res Commun 387(2):353–359. doi:S0006-291X(09)01358-8 [pii]. (10.1016/j.bbrc.2009.07.024)

    PubMed  CAS  Google Scholar 

  • Tandon N, Cannizzaro C, Chao PH, Maidhof R, Marsano A, Au HT, Radisic M, Vunjak-Novakovic G (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4(2):155–173. doi:nprot.2008.183 [pii]. (10.1038/nprot.2008.183)

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tomita N, Morishita R, Taniyama Y, Koike H, Aoki M, Shimizu H, Matsumoto K, Nakamura T, Kaneda Y, Ogihara T (2003) Angiogenic property of hepatocyte growth factor is dependent on upregulation of essential transcription factor for angiogenesis, ets-1. Circulation 107(10):1411–1417

    PubMed  CAS  Google Scholar 

  • Tsur-Gang O, Ruvinov E, Landa N, Holbova R, Feinberg MS, Leor J, Cohen S (2009) The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 30(2):189–195. doi:S0142-9612(08)00687-X [pii]. (10.1016/j.biomaterials.2008.09.018)

    PubMed  CAS  Google Scholar 

  • Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47–59. doi:CIRCRESAHA.110.237206 [pii]. (10.1161/CIRCRESAHA.110.237206)

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vandervelde S, van Luyn MJ, Tio RA, Harmsen MC (2005) Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol 39(2):363–376

    PubMed  CAS  Google Scholar 

  • Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW, Badylak SF (2009) Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods 16(3):525–532. doi:10.1089/ten.TEC.2009.0392

    PubMed Central  Google Scholar 

  • Wang Y, Ahmad N, Wani MA, Ashraf M (2004) Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. J Mol Cell Cardiol 37(5):1041–1052. doi:S0022-2828(04)00275-5 [pii]. (10.1016/j.yjmcc.2004.09.004)

    PubMed  CAS  Google Scholar 

  • Wang T, Wu DQ, Jiang XJ, Zhang XZ, Li XY, Zhang JF, Zheng ZB, Zhuo R, Jiang H, Huang C (2009) Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. Eur J Heart Fail 11(1):14–19. doi:hfn009 [pii]. (10.1093/eurjhf/hfn009)

    PubMed  CAS  Google Scholar 

  • Webster KA (2007) Programmed death as a therapeutic target to reduce myocardial infarction. Trends Pharmacol Sci 28(9):492–499. doi:S0165-6147(07)00183-6 [pii]. (10.1016/j.tips.2007.07.004)

    PubMed  CAS  Google Scholar 

  • Ye KY, Black LD 3rd (2011) Strategies for tissue engineering cardiac constructs to affect functional repair following myocardial infarction. J Cardiovasc Transl Res 4(5): 575–591. doi:10.1007/s12265-011-9303-1

    PubMed Central  PubMed  Google Scholar 

  • Yu J, Christman KL, Chin E, Sievers RE, Saeed M, Lee RJ (2009) Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. J Thorac Cardiovasc Surg 137(1):180–187. doi:S0022-5223(08)01459-1 [pii]. (10.1016/j.jtcvs.2008.08.036)

    PubMed  Google Scholar 

  • Zhang QX, Magovern CJ, Mack CA, Budenbender KT, Ko W, Rosengart TK (1997) Vascular endothelial growth factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated angiogenesis. J Surg Res 67(2):147–154. doi:S0022-4804(96)94983-5 [pii]. (10.1006/jsre.1996.4983)

    PubMed  CAS  Google Scholar 

  • Zimmermann WH, Schneiderbanger K, Schubert P, Didie M, Munzel F, Heubach JF, Kostin S, Neuhuber WL, Eschenhagen T (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90(2):223–230

    PubMed  CAS  Google Scholar 

  • Zimmermann WH, Didie M, Doker S, Melnychenko I, Naito H, Rogge C, Tiburcy M, Eschenhagen T (2006a) Heart muscle engineering: an update on cardiac muscle replacement therapy. Cardiovasc Res 71(3):419–429. doi:S0008-6363(06)00151-9 [pii]. (10.1016/j.cardiores.2006.03.023)

    CAS  Google Scholar 

  • Zimmermann WH, Melnychenko I, Wasmeier G, Didie M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T (2006b) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat med 12(4):452–458. doi:10.1038/nm1394

    CAS  Google Scholar 

  • Zmora S, Glicklis R, Cohen S (2002) Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials 23(20):4087–4094

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research has been supported by a European Union grant (FP7 HEALTH-F2-2009-222995 INELPY), 3 grants from the Israel Science Foundation (52/99-1, 793/04 & 1368/08) and the Israel Ministry of Science, Culture and Sport. Prof. Cohen holds the Claire and Harold Oshry Professor Chair in Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smadar Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ruvinov, E., Cohen, S. (2014). Biomaterials for Cardiac Tissue Engineering and Regeneration. In: Hescheler, J., Hofer, E. (eds) Adult and Pluripotent Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8657-7_6

Download citation

Publish with us

Policies and ethics