Skip to main content

Adipose-derived Stromal/Stem Cells and Their Differentiation Potential into the Endothelial Lineage

  • Chapter
  • First Online:
Book cover Adult and Pluripotent Stem Cells

Abstract

Subcutaneous adipose tissue is ubiquitous and easily accessible in large quantities with a minimal invasive procedure by liposuction aspiration, qualifying it as a good source for stem cell isolation. Adipose-derived mesenchymal stromal/stem cells (ASCs) can easily be isolated by a relatively simple method, yielding a high amount of stem cells, which is essential for stem cell-based therapies and tissue engineering. Several studies have provided evidence that ASCs in situ reside in the wall surrounding the vasculature, and that blood vessels in virtually all organs and tissues harbour ubiquitous (mesenchymal) stem cells in their perivascular niche. Nevertheless, the exact localization of ASCs in native adipose tissue is still under debate. ASCs are isolated by their capacity to adhere to cell culture plastic and are maintained in culture for up to 10–15 passages. Cultured cells are characterized by their expression of a panel of characteristic markers and their capacity to differentiate into cells from meso-, ecto- and endodermal lineages. ASCs possess a high plasticity and differentiate into various cell types, including endothelial cells in vitro and in vivo. This review summarizes and discusses the current knowledge about ASCs and their differentiation potential into endothelial cells in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashjian PH, Elbarbary AS, Edmonds B, DeUgarte D, Zhu M, Zuk PA, Lorenz HP, Benhaim P, Hedrick MH (2003) In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plastic Reconstr Surg 111(6):1922–1931. doi:10.1097/01.PRS.0000055043.62589.05

    Google Scholar 

  • Astori G, Vignati F, Bardelli S, Tubio M, Gola M, Albertini V, Bambi F, Scali G, Castelli D, Rasini V, Soldati G, Moccetti T (2007) In vitro and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J Transl Mede 5:55. doi:10.1186/1479–5876-5–55

    Google Scholar 

  • Aurich H, Sgodda M, Kaltwasser P, Vetter M, Weise A, Liehr T, Brulport M, Hengstler JG, Dollinger MM, Fleig WE, Christ B (2009) Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58(4):570–581. doi:10.1136/gut.2008.154880

    PubMed  CAS  Google Scholar 

  • Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, Sen A, Willingmyre GD, Gimble JM (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6(1):7–14. doi:10.1080/14653240310004539

    PubMed  CAS  Google Scholar 

  • Baer PC (2011) Adipose-derived stem cells and their potential to differentiate into the epithelial lineage. Stem Cells Dev 20(10):1805–1816. doi:10.1089/scd.2011.0086

    PubMed  CAS  Google Scholar 

  • Baer PC, Bereiter-Hahn J, Missler C, Brzoska M, Schubert R, Gauer S, Geiger H (2009) Conditioned medium from renal tubular epithelial cells initiates differentiation of human mesenchymal stem cells. Cell Prolif 42(1):29–37. doi:10.1111/j.1365–2184.2008.00572.x

    PubMed  CAS  Google Scholar 

  • Baer PC, Griesche N, Luttmann W, Schubert R, Luttmann A, Geiger H (2010) Human adipose-derived mesenchymal stem cells in vitro: evaluation of an optimal expansion medium preserving stemness. Cytotherapy 12(1):96–106. doi:10.3109/14653240903377045

    PubMed  CAS  Google Scholar 

  • Baer PC, Brzoska M, Geiger H (2011) Epithelial differentiation of human adipose-derived stem cells. Methods Mol Biol 702:289–298. doi:10.1007/978–1-61737–960-4_21

    PubMed  CAS  Google Scholar 

  • Baer PC, Doring C, Hansmann ML, Schubert R, Geiger H (2013) New insights into epithelial differentiation of human adipose-derived stem cells. J Tissue Eng Regen Med 7(4):271–278. doi:10.1002/term.518

    PubMed  CAS  Google Scholar 

  • Bai X, Yan Y, Song YH, Seidensticker M, Rabinovich B, Metzele R, Bankson JA, Vykoukal D, Alt E (2010) Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J 31(4):489–501. doi:10.1093/eurheartj/ehp568

    PubMed  CAS  Google Scholar 

  • Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, Okochi H, Ochiya T (2007) Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46(1):219–228. doi:10.1002/hep.21704

    PubMed  CAS  Google Scholar 

  • Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Osaki M, Kato T, Okochi H, Ochiya T (2009) Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J Gastroenterol Hepatol 24(1):70–77. doi:10.1111/j.1440–1746.2008.05496.x

    PubMed  CAS  Google Scholar 

  • Brzoska M, Geiger H, Gauer S, Baer P (2005) Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochem Biophys Res Commun 330(1):142–150. doi:10.1016/j.bbrc.2005.02.141

    PubMed  CAS  Google Scholar 

  • Cai X, Lin Y, Hauschka PV, Grottkau BE (2011) Adipose stem cells originate from perivascular cells. Biol Cell 103(9):435–447. doi:10.1042/BC20110033

    PubMed  Google Scholar 

  • Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC (2005) Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 332(2):370–379. doi:10.1016/j.bbrc.2005.04.135

    PubMed  CAS  Google Scholar 

  • Corre J, Barreau C, Cousin B, Chavoin JP, Caton D, Fournial G, Penicaud L, Casteilla L, Laharrague P (2006) Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors. J Cell Physiol 208(2):282–288. doi:10.1002/jcp.20655

    PubMed  CAS  Google Scholar 

  • Corselli M, Chen CW, Crisan M, Lazzari L, Peault B (2010) Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol 30(6):1104–1109. doi:10.1161/ATVBAHA.109.191643

    PubMed  CAS  Google Scholar 

  • Cousin B, Andre M, Arnaud E, Penicaud L, Casteilla L (2003) Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochem Biophys Res Commun 301(4):1016–1022

    PubMed  CAS  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313. doi:10.1016/j.stem.2008.07.003

    PubMed  CAS  Google Scholar 

  • Crisan M, Chen CW, Corselli M, Andriolo G, Lazzari L, Peault B (2009) Perivascular multipotent progenitor cells in human organs. Ann N Y Acad Sci 1176:118–123. doi:10.1111/j.1749–6632.2009.04967.x

    PubMed  CAS  Google Scholar 

  • da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(Pt 11):2204–2213. doi:10.1242/jcs.02932

    Google Scholar 

  • Davis LA, Zur Nieden NI (2008) Mesodermal fate decisions of a stem cell: the Wnt switch. Cell Mol Life Sci 65(17):2658–2674. doi:10.1007/s00018–008-8042–1

    PubMed Central  PubMed  CAS  Google Scholar 

  • De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–109. doi:71150

    PubMed  Google Scholar 

  • di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF (2010) Adipose-derived stem cells enhance peripheral nerve regeneration. J Plastic Reconstr Aesthet Surg 63(9):1544–1552. doi:10.1016/j.bjps.2009.09.012

    CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. doi:10.1080/14653240600855905

    PubMed  CAS  Google Scholar 

  • Dominici M, Paolucci P, Conte P, Horwitz EM (2009) Heterogeneity of multipotent mesenchymal stromal cells: from stromal cells to stem cells and vice versa. Transplantation 87(9 Suppl):S36–42. doi:10.1097/TP.0b013e3181a283ee

    Google Scholar 

  • Du Y, Roh DS, Funderburgh ML, Mann MM, Marra KG, Rubin JP, Li X, Funderburgh JL (2010) Adipose-derived stem cells differentiate to keratocytes in vitro. Mol Vis 16:2680–2689

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, Andre M, Cousin B, Gourmelon P, Benderitter M, Casteilla L, Tamarat R (2009) Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 29(4):503–510. doi:10.1161/ATVBAHA.108.178962

    PubMed  CAS  Google Scholar 

  • Fang B, Li Y, Song Y, Li N, Cao Y, Wei X, Lin Q, Zhao RC (2010) Human adipose tissue-derived adult stem cells can lead to multiorgan engraftment. Transplant Proc 42(5):1849–1856. doi:10.1016/j.transproceed.2010.01.058

    PubMed  CAS  Google Scholar 

  • Feng J, Mantesso A, Sharpe PT (2010) Perivascular cells as mesenchymal stem cells. Expert Opin Biol Ther 10(10):1441–1451. doi:10.1517/14712598.2010.517191

    PubMed  Google Scholar 

  • Fischer LJ, McIlhenny S, Tulenko T, Golesorkhi N, Zhang P, Larson R, Lombardi J, Shapiro I, DiMuzio PJ (2009) Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. J Surg Res 152(1):157–166. doi:10.1016/j.jss.2008.06.029

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fraser JK, Schreiber R, Strem B, Zhu M, Alfonso Z, Wulur I, Hedrick MH (2006) Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nat Clin Prac Cardiovasc Med 3(Suppl 1):S33–37. doi:10.1038/ncpcardio0444

    Google Scholar 

  • Fraser JK, Zhu M, Wulur I, Alfonso Z (2008) Adipose-derived stem cells. Methods Mol Biol 449:59–67. doi:10.1007/978–1-60327–169-1_4

    PubMed  Google Scholar 

  • Freyberg MA, Kaiser D, Graf R, Buttenbender J, Friedl P (2001a) Proatherogenic flow conditions initiate endothelial apoptosis via thrombospondin-1 and the integrin-associated protein. Biochem Biophys Res Commun 286(1):141–149. doi:10.1006/bbrc.2001.5314

    CAS  Google Scholar 

  • Freyberg MA, Kaiser D, Graf R, Friedl P (2001b) Vascular endothelial cells express a functional fas-receptor due to lack of hemodynamic forces. Apoptosis 6(5):339–343

    CAS  Google Scholar 

  • Gimble J, Guilak F (2003a) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5(5):362–369. doi:10.1080/14653240310003026

    Google Scholar 

  • Gimble JM, Guilak F (2003b) Differentiation potential of adipose derived adult stem (ADAS) cells. Curr Top Dev Biol 58:137–160

    Google Scholar 

  • Graf R, Apenberg S, Freyberg M, Friedl P (2003) A common mechanism for the mechanosensitive regulation of apoptosis in different cell types and for different mechanical stimuli. Apoptosis 8(5):531–538

    PubMed  CAS  Google Scholar 

  • Griesche N, Luttmann W, Luttmann A, Stammermann T, Geiger H, Baer PC (2010) A simple modification of the separation method reduces heterogeneity of adipose-derived stem cells. Cells Tissues Organs 192(2):106–115. doi:10.1159/000289586

    PubMed  Google Scholar 

  • Griesche N, Bereiter-Hahn J, Geiger H, Schubert R, Baer PC (2012) During epithelial differentiation of human adipose-derived stromal/stem cells, expression of zonula occludens protein-1 is induced by a combination of retinoic acid, activin-A and bone morphogenetic protein-7. Cytotherapy 14(1):61–69. doi:10.3109/14653249.2011.610502

    PubMed  CAS  Google Scholar 

  • Grimes BR, Steiner CM, Merfeld-Clauss S, Traktuev DO, Smith D, Reese A, Breman AM, Thurston VC, Vance GH, Johnstone BH, Slee RB, March KL (2009) Interphase FISH demonstrates that human adipose stromal cells maintain a high level of genomic stability in long-term culture. Stem Cells Dev 18(5):717–724. doi:10.1089/scd.2008.0255

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189(1):54–63. doi:10.1002/jcp.1138

    PubMed  CAS  Google Scholar 

  • Ho AD, Wagner W, Franke W (2008) Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy 10(4):320–330. doi:10.1080/14653240802217011

    PubMed  CAS  Google Scholar 

  • Hoogduijn MJ, Roemeling-van Rhijn M, Korevaar SS, Engela AU, Weimar W, Baan CC (2011) Immunological aspects of allogeneic and autologous mesenchymal stem cell therapies. Hum Gene Ther 22(12):1587–1591. doi:10.1089/hum.2011.039

    PubMed  CAS  Google Scholar 

  • James AW, Leucht P, Levi B, Carre AL, Xu Y, Helms JA, Longaker MT (2010) Sonic Hedgehog influences the balance of osteogenesis and adipogenesis in mouse adipose-derived stromal cells. Tissue Eng Part A 16(8):2605–2616. doi:10.1089/ten.TEA.2010.0048

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49. doi:10.1038/nature00870

    PubMed  CAS  Google Scholar 

  • Kaiser D, Freyberg MA, Friedl P (1997) Lack of hemodynamic forces triggers apoptosis in vascular endothelial cells. Biochem Biophys Res Commun 231(3):586–590. doi:10.1006/bbrc.1997.6146

    PubMed  CAS  Google Scholar 

  • Kajiyama H, Hamazaki TS, Tokuhara M, Masui S, Okabayashi K, Ohnuma K, Yabe S, Yasuda K, Ishiura S, Okochi H, Asashima M (2010) Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int J Dev Biol 54(4):699–705. doi:10.1387/ijdb.092953hk

    PubMed  CAS  Google Scholar 

  • Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M (2009) microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 390(2):247–251. doi:10.1016/j.bbrc.2009.09.098

    PubMed  CAS  Google Scholar 

  • Kassis I, Zangi L, Rivkin R, Levdansky L, Samuel S, Marx G, Gorodetsky R (2006) Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant 37(10):967–976. doi:10.1038/sj.bmt.1705358

    PubMed  CAS  Google Scholar 

  • Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, Ludlow JW, Stricker DM, Potiny S, Green P, Halvorsen YD, Cheatham B, Storms RW, Gimble JM (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol 212(3):702–709. doi:10.1002/jcp.21068

    PubMed  CAS  Google Scholar 

  • Kingham PJ, Mantovani C, Terenghi G (2009) Notch independent signalling mediates Schwann cell-like differentiation of adipose derived stem cells. Neurosci Lett 467(2):164–168. doi:10.1016/j.neulet.2009.10.030

    PubMed  CAS  Google Scholar 

  • Lange C, Bruns H, Kluth D, Zander AR, Fiegel HC (2006) Hepatocytic differentiation of mesenchymal stem cells in cocultures with fetal liver cells. World J Gastroenterol 12(15):2394–2397

    PubMed  CAS  Google Scholar 

  • Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, Eggert K, Gehling UM, Rudolph C, Schlegelberger B, Cornils K, Zustin J, Spiess AN, Zander AR (2011) Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PloS one 6(1):e14486. doi:10.1371/journal.pone.0014486

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee JH, Kemp DM (2006) Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem Biophys Res Commun 341(3):882–888. doi:10.1016/j.bbrc.2006.01.038

    PubMed  CAS  Google Scholar 

  • Li HX, Luo X, Liu RX, Yang YJ, Yang GS (2008) Roles of Wnt/beta-catenin signaling in adipogenic differentiation potential of adipose-derived mesenchymal stem cells. Mol Cell Endocrinol 291(1–2):116–124. doi:10.1016/j.mce.2008.05.005

    PubMed  CAS  Google Scholar 

  • Li K, Han Q, Yan X, Liao L, Zhao RC (2010) Not a process of simple vicariousness, the differentiation of human adipose-derived mesenchymal stem cells to renal tubular epithelial cells plays an important role in acute kidney injury repairing. Stem Cells Dev 19(8):1267–1275. doi:10.1089/scd.2009.0196

    PubMed  CAS  Google Scholar 

  • Lin G, Garcia M, Ning H, Banie L, Guo YL, Lue TF, Lin CS (2008) Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 17(6):1053–1063. doi:10.1089/scd.2008.0117

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lin CS, Xin ZC, Deng CH, Ning H, Lin G, Lue TF (2010) Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol 25(6):807–815

    PubMed  Google Scholar 

  • Liu TM, Martina M, Hutmacher DW, Hui JH, Lee EH, Lim B (2007) Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 25(3):750–760. doi:10.1634/stemcells.2006–0394

    PubMed  Google Scholar 

  • Locke M, Windsor J, Dunbar PR (2009) Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg 79(4):235–244. doi:10.1111/j.1445–2197.2009.04852.x

    PubMed  Google Scholar 

  • Long JL, Zuk P, Berke GS, Chhetri DK (2010) Epithelial differentiation of adipose-derived stem cells for laryngeal tissue engineering. Laryngoscope 120(1):125–131. doi:10.1002/lary.20719

    PubMed  CAS  Google Scholar 

  • McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, Kloster A, Di Halvorsen Y, Ting JP, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 24(5):1246–1253. doi:10.1634/stemcells.2005–0235

    PubMed  CAS  Google Scholar 

  • McIntosh KR (2011) Evaluation of cellular and humoral immune responses to allogeneic adipose-derived stem/stromal cells. Methods Mol Biol 702:133–150. doi:10.1007/978–1-61737–960-4_11

    PubMed  CAS  Google Scholar 

  • Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A (2004) Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110(3):349–355. doi:10.1161/01.CIR.0000135466.16823.D0

    PubMed  CAS  Google Scholar 

  • Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24(2):376–385. doi:10.1634/stemcells.2005–0234

    PubMed  Google Scholar 

  • Mizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH (2002) Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 109(1):199–209; discussion 210–191

    PubMed  Google Scholar 

  • Moon MH, Kim SY, Kim YJ, Kim SJ, Lee JB, Bae YC, Sung SM, Jung JS (2006) Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cellular Physiol Biochem 17(5–6):279–290. doi:10.1159/000094140

    CAS  Google Scholar 

  • Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, Kikuchi Y, Saito Y, Tamai K, Ogihara T, Kaneda Y (2005) Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol 25(12):2542–2547. doi:10.1161/01.ATV.0000190701.92007.6d

    PubMed  CAS  Google Scholar 

  • Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J (2011) Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant 20(2):205–216. doi:10.3727/096368910X520065

    PubMed  Google Scholar 

  • Ning H, Liu G, Lin G, Yang R, Lue TF, Lin CS (2009) Fibroblast growth factor 2 promotes endothelial differentiation of adipose tissue-derived stem cells. J Sex Med 6(4):967–979. doi:10.1111/j.1743–6109.2008.01172.x

    PubMed Central  PubMed  CAS  Google Scholar 

  • Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE, Ritt MJ, van Milligen FJ (2006) Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 8(2):166–177. doi:10.1080/14653240600621125

    PubMed  CAS  Google Scholar 

  • Peroni D, Scambi I, Pasini A, Lisi V, Bifari F, Krampera M, Rigotti G, Sbarbati A, Galie M (2008) Stem molecular signature of adipose-derived stromal cells. Exp Cell Res 314(3):603–615. doi:10.1016/j.yexcr.2007.10.007

    PubMed  CAS  Google Scholar 

  • Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109(5):656–663. doi:10.1161/01.CIR.0000114522.38265.61

    PubMed  Google Scholar 

  • Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298. doi:10.1161/01.CIR.0000121425.42966.F1

    PubMed  Google Scholar 

  • Risau W (1995) Differentiation of endothelium. FASEB J 9(10):926–933

    PubMed  CAS  Google Scholar 

  • Rodriguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ (2006) Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Nat Acad Sci U S A 103(32):12167–12172. doi:10.1073/pnas.0604850103

    CAS  Google Scholar 

  • Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, Rice HE (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294 (2):371–379. doi:10.1016/S0006–291X(02)00469–2

    PubMed  CAS  Google Scholar 

  • Santiago LY, Clavijo-Alvarez J, Brayfield C, Rubin JP, Marra KG (2009) Delivery of adipose-derived precursor cells for peripheral nerve repair. Cell Transplant 18(2):145–158

    PubMed  Google Scholar 

  • Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells–basic and clinical implications for novel cell-based therapies. Stem Cells 25(4):818–827. doi:10.1634/stemcells.2006–0589

    PubMed  Google Scholar 

  • Schellenberg A, Stiehl T, Horn P, Joussen S, Pallua N, Ho AD, Wagner W (2012) Population dynamics of mesenchymal stromal cells during culture expansion. Cytotherapy 14(4):401–411. doi:10.3109/14653249.2011.640669

    PubMed  CAS  Google Scholar 

  • Schenke-Layland K, Strem BM, Jordan MC, Deemedio MT, Hedrick MH, Roos KP, Fraser JK, Maclellan WR (2009) Adipose tissue-derived cells improve cardiac function following myocardial infarction. J Surg Res 153(2):217–223. doi:10.1016/j.jss.2008.03.019

    PubMed Central  PubMed  CAS  Google Scholar 

  • Seo MJ, Suh SY, Bae YC, Jung JS (2005) Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 328(1):258–264. doi:10.1016/j.bbrc.2004.12.158

    PubMed  CAS  Google Scholar 

  • Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH (2005) Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 54(3):132–141

    PubMed  CAS  Google Scholar 

  • Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Muller B, Zulewski H (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341(4):1135–1140. doi:10.1016/j.bbrc.2006.01.072

    PubMed  CAS  Google Scholar 

  • Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M, Johnstone BH, Ingram DA, March KL (2009) Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 104(12):1410–1420. doi:10.1161/CIRCRESAHA.108.190926

    PubMed  CAS  Google Scholar 

  • Uysal AC, Mizuno H (2011) Differentiation of adipose-derived stem cells for tendon repair. Methods Mol Biol 702:443–451. doi:10.1007/978–1-61737–960-4_32

    PubMed  CAS  Google Scholar 

  • Uysal AC, Mizuno H, Tobita M, Ogawa R, Hyakusoku H (2009) The effect of adipose-derived stem cells on ischemia-reperfusion injury: immunohistochemical and ultrastructural evaluation. Plast Reconstr Surg 124(3):804–815. doi:10.1097/PRS.0b013e3181b17bb4

    PubMed  CAS  Google Scholar 

  • Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, Le Jemtel TH, Alt E (2007) Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J 28(21):2667–2677. doi:10.1093/eurheartj/ehm426

    PubMed  Google Scholar 

  • Varma MJ, Breuls RG, Schouten TE, Jurgens WJ, Bontkes HJ, Schuurhuis GJ, van Ham SM, van Milligen FJ (2007) Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev 16(1):91–104. doi:10.1089/scd.2006.0026

    PubMed  Google Scholar 

  • Wagner W, Feldmann RE Jr, Seckinger A, Maurer MH, Wein F, Blake J, Krause U, Kalenka A, Burgers HF, Saffrich R, Wuchter P, Kuschinsky W, Ho AD (2006) The heterogeneity of human mesenchymal stem cell preparations–evidence from simultaneous analysis of proteomes and transcriptomes. Exp Hematol 34(4):536–548. doi:10.1016/j.exphem.2006.01.002

    PubMed  CAS  Google Scholar 

  • Wagner W, Ho AD (2007) Mesenchymal stem cell preparations–comparing apples and oranges. Stem Cell Rev 3(4):239–248. doi:10.1007/s12015–007-9001–1

    PubMed  Google Scholar 

  • Wang H, Riha GM, Yan S, Li M, Chai H, Yang H, Yao Q, Chen C (2005) Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arterioscler Thromb Vasc Biol 25(9):1817–1823. doi:10.1161/01.ATV.0000175840.90510.a8

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Takahashi T, Asahara T, Ohura N, Sokabe T, Kamiya A, Ando J (2003) Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol 95(5):2081–2088. doi:10.1152/japplphysiol.00232.2003

    PubMed  Google Scholar 

  • Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Obi S, Ohura N, Matsushita A, Kamiya A, Ando J (2005) Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol 288(4):H1915–1924. doi:10.1152/ajpheart.00956.2004

    Google Scholar 

  • Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, Sato K, Inoue K, Nagase T, Koshima I, Gonda K (2006) Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 208(1):64–76. doi:10.1002/jcp.20636

    PubMed  CAS  Google Scholar 

  • Zannettino AC, Paton S, Arthur A, Khor F, Itescu S, Gimble JM, Gronthos S (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214(2):413–421. doi:10.1002/jcp.21210

    PubMed  CAS  Google Scholar 

  • Zhang P, Moudgill N, Hager E, Tarola N, Dimatteo C, McIlhenny S, Tulenko T, DiMuzio PJ (2011) Endothelial differentiation of adipose-derived stem cells from elderly patients with cardiovascular disease. Stem Cells Dev 20(6):977–988. doi:10.1089/scd.2010.0152

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26(6):664–675. doi:10.1002/cbf.1488

    PubMed  CAS  Google Scholar 

  • Zimmerlin L, Donnenberg VS, Pfeifer ME, Meyer EM, Peault B, Rubin JP, Donnenberg AD (2010) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77(1):22–30. doi:10.1002/cyto.a.20813

    PubMed  Google Scholar 

  • Zou Z, Zhang Y, Hao L, Wang F, Liu D, Su Y, Sun H (2010) More insight into mesenchymal stem cells and their effects inside the body. Expert Opin Biol Ther 10(2):215–230. doi:10.1517/14712590903456011

    PubMed  CAS  Google Scholar 

  • Zuk PA (2010) The adipose-derived stem cell: looking back and looking ahead. Mol Bio Cell 21(11):1783–1787. doi:10.1091/mbc.E09–07-0589

    CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. doi:10.1089/107632701300062859

    PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Bio Cell 13(12):4279–4295. doi:10.1091/mbc.E02–02-0105

    CAS  Google Scholar 

Download references

Acknowledgement

Parts of this work were supported by the Adolf Messer Stiftung, Königstein, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Baer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baer, P., Luttmann, W. (2014). Adipose-derived Stromal/Stem Cells and Their Differentiation Potential into the Endothelial Lineage. In: Hescheler, J., Hofer, E. (eds) Adult and Pluripotent Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8657-7_4

Download citation

Publish with us

Policies and ethics