Skip to main content

Production of Olfactory Receptors and Nanovesicles Using Heterologous Cell Systems for Bioelectronic Nose

  • Chapter
  • First Online:
  • 1204 Accesses

Abstract

Olfactory receptors, belonging to a family of G protein-coupled receptors (GPCRs), which are involved in various important physiological processes, are integral membrane proteins composed of seven transmembrane helices. It is difficult to produce GPCRs including olfactory receptors (ORs) using heterologous cell systems, because of their strong hydrophobicity, and complicated structure. The production of ORs should be a critical process for the development of an olfactory receptor-based bioelectronic nose. Significant efforts have been made for the production of ORs for the utilization as recognition elements of bioelectronic noses, and also for other applications. In addition, the construction method of mammalian cell-derived nanovesicles containing ORs has been demonstrated and applied for an bioelectronic nose, due to their unique properties, and suitable size for integration with a nanosensor platform. In this chapter, advances in the production of ORs and nanovesicles using various heterologous cell systems for the development of a bioelectronic nose are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187

    CAS  PubMed  Google Scholar 

  2. Reed RR, Bakalyar HA, Cunningham AM, Levy NS (1992) The molecular basis of signal transduction in olfactory sensory neurons. Soc Gen Physiol Ser 47:53–63

    CAS  PubMed  Google Scholar 

  3. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413(6852):211–218

    CAS  PubMed  Google Scholar 

  4. Lancet D, Chen Z, Ciobotariu A, Eckstein F, Khen M, Heldman J, Ophir D, Shafir I, Pace U (1987) Toward a comprehensive molecular analysis of olfactory transduction. Ann N Y Acad Sci 510(1):27–32

    CAS  PubMed  Google Scholar 

  5. Goldsmith BR, Mitala Jr JJ, Josue J, Castro A, Lerner MB, Bayburt TH, Khamis SM, Jones RA, Brand JG, Sligar SG (2011) Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5(7):5408–5416

    CAS  PubMed  Google Scholar 

  6. Kim TH, Lee SH, Lee J, Song HS, Oh EH, Park TH, Hong S (2009) Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv Mater 21(1):91–94

    CAS  Google Scholar 

  7. Lee SH, Jin HJ, Song HS, Hong S, Park TH (2012) Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. J Biotech 157(4):467–472

    CAS  Google Scholar 

  8. Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH (2012) Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 33:1722–1729

    CAS  PubMed  Google Scholar 

  9. Lee SH, Park TH (2010) Recent advances in the development of bioelectronic nose. Biotechnol Bioproc Eng 15(1):22–29

    CAS  Google Scholar 

  10. Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J (2012) Ultrasensitive flexible graphene based FET-type bioelectronic nose. Nano Lett 12:5082–5090

    CAS  PubMed  Google Scholar 

  11. Vidic J, Pla-Roca M, Grosclaude J, Persuy M-A, Monnerie R, Caballero D, Errachid A, Hou Y, Jaffrezic-Renault N, Salesse R (2007) Gold surface functionalization and patterning for specific immobilization of olfactory receptors carried by nanosomes. Anal Chem 79(9):3280–3290

    CAS  PubMed  Google Scholar 

  12. Vidic JM, Grosclaude J, Persuy M-A, Aioun J, Salesse R, Pajot-Augy E (2006) Quantitative assessment of olfactory receptors activity in immobilized nanosomes: a novel concept for bioelectronic nose. Lab Chip 6(8):1026–1032

    CAS  PubMed  Google Scholar 

  13. Yoon H, Lee SH, Kwon OS, Song HS, Oh EH, Park TH, Jang J (2009) Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses. Angew Chem Int Edit 48(15):2755–2758

    CAS  Google Scholar 

  14. Sarramegna V, Muller I, Milon A, Talmont F (2006) Recombinant G protein-coupled receptors from expression to renaturation: a challenge towards structure. Cell Mol Life Sci 63(10):1149–1164

    CAS  Google Scholar 

  15. Sarramegna V, Talmont F, Demange P, Milon A (2003) Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell Mol Life Sci 60(8):1529–1546

    CAS  PubMed  Google Scholar 

  16. Rouquier S, Taviaux S, Trask BJ, Brand-Arpon V, van den Engh G, Demaille J, Giorgi D (1998) Distribution of olfactory receptor genes in the human genome. Nat Gen 18(3):243–250

    CAS  Google Scholar 

  17. Malnic B, Godfrey PA, Buck LB (2004) The human olfactory receptor gene family. Proc Nat Acad Sci 101(8):2584–2589

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Glusman G, Yanai I, Rubin I, Lancet D (2001) The complete human olfactory subgenome. Genome Res 11(5):685–702

    CAS  PubMed  Google Scholar 

  19. Zozulya S, Echeverri F, Nguyen T (2001) The human olfactory receptor repertoire. Gen Biol 2(6):research0018

    CAS  Google Scholar 

  20. Gat U, Nekrasova E, Lancet D, Natochin M (2005) Olfactory receptor proteins. Eur J Biochem 225(3):1157–1168

    Google Scholar 

  21. Hall SE, Floriano WB, Vaidehi N, Goddard WA (2004) Predicted 3-D structures for mouse I7 and rat I7 olfactory receptors and comparison of predicted odor recognition profiles with experiment. Chem Sens 29(7):595–616

    CAS  Google Scholar 

  22. Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25(7):1806–1815

    CAS  PubMed  Google Scholar 

  23. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745

    CAS  PubMed  Google Scholar 

  24. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi H-J, Kuhn P, Weis WI, Kobilka BK (2007) High-resolution crystal structure of an engineered human 2-adrenergic G protein coupled receptor. Science 318(5854):1258–1265

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Rasmussen SG, Choi H-J, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387

    CAS  PubMed  Google Scholar 

  26. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta 1-adrenergic G-protein-coupled receptor. Nature 454(7203):486–491

    CAS  PubMed Central  PubMed  Google Scholar 

  27. McCusker EC, Bane SE, O’Malley MA, Robinson AS (2008) Heterologous GPCR expression: a bottleneck to obtaining crystal structures. Biotech Prog 23(3):540–547

    Google Scholar 

  28. Song HS, Lee SH, Oh EH, Park TH (2009) Expression, solubilization and purification of a human olfactory receptor from Escherichia coli. Curr Microbiol 59(3):309–314

    CAS  PubMed  Google Scholar 

  29. Kiefer H, Krieger J, Olszewski JD, von Heijne G, Prestwich GD, Breer H (1996) Expression of an olfactory receptor in Escherichia coli: purification, reconstitution, and ligand binding. BioChemistry 35(50):16077–16084

    CAS  PubMed  Google Scholar 

  30. Grisshammer R, Tateu CG (1995) Overexpression of integral membrane proteins for structural studies. Q Rev Biophys 28(03):315–422

    CAS  PubMed  Google Scholar 

  31. Bane SE, Velasquez JE, Robinson AS (2007) Expression and purification of milligram levels of inactive G-protein coupled receptors in E. coli. Protein Expr Purif 52(2):348–355

    CAS  PubMed  Google Scholar 

  32. Grisshammer R, White JF, Trinh LB, Shiloach J (2005) Large-scale expression and purification of a G-protein-coupled receptor for structure determination–an overview. J Struct Funct Genom 6(2):159–163

    CAS  Google Scholar 

  33. Carrio M, Villaverde A (2002) Construction and deconstruction of bacterial inclusion bodies. J Biotechnol 96(1):3–12

    CAS  PubMed  Google Scholar 

  34. Thomsen W, Frazer J, Unett D (2005) Functional assays for screening GPCR targets. Curr Opin Biotechnol 16(6):655–665

    CAS  PubMed  Google Scholar 

  35. Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5(4):263–278

    CAS  PubMed  Google Scholar 

  36. McClintock TS, Sammeta N (2003) Trafficking prerogatives of olfactory receptors. Neuroreport 14(12):1547–1552

    CAS  PubMed  Google Scholar 

  37. Lu M, Echeverri F, Moyer BD (2003) Endoplasmic reticulum retention, degradation, and aggregation of olfactory G‐protein coupled receptors. Traffic 4(6):416–433

    CAS  PubMed  Google Scholar 

  38. Gimelbrant AA, Haley SL, McClintock TS (2001) Olfactory receptor trafficking involves conserved regulatory steps. J Biol Chem 276(10):7285–7290

    CAS  PubMed  Google Scholar 

  39. Saito H, Kubota M, Roberts RW, Chi Q, Matsunami H (2004) RTP family members induce functional expression of mammalian odorant receptors. Cell 119(5):679–691

    CAS  PubMed  Google Scholar 

  40. Hatt H, Gisselmann G, Wetzel C (1999) Cloning, functional expression and characterization of a human olfactory receptor. Cell Mol Biol 45(3):285

    CAS  PubMed  Google Scholar 

  41. Brady AE, Limbird LE (2002) G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 14(4):297–309

    CAS  PubMed  Google Scholar 

  42. Michalke K, Gravière M, Huyghe C, Vincentelli R, Wagner R, Pattus F, Schroeder K, Oschmann J, Rudolph R, Cambillau C (2009) Mammalian G-protein-coupled receptor expression in Escherichia coli: I. High-throughput large-scale production as inclusion bodies. Anal Biochem 386(2):147–155

    CAS  PubMed  Google Scholar 

  43. Grisshammer R, Tate C (1995) Overexpression of integral membrane proteins for structural studies. Q Rev Biophys 28(3):315–422

    CAS  PubMed  Google Scholar 

  44. Bouvier M, Ménard L, Dennis M, Marullo S (1998) Expression and recovery of functional G-protein-coupled receptors using baculovirus expression systems. Curr Opin Biotechnol 9(5):523–527

    Google Scholar 

  45. Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH (2012) Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 33(6):1722–1729

    CAS  PubMed  Google Scholar 

  46. Davis D, Liu X, Segaloff DL (1995) Identification of the sites of N-linked glycosylation on the follicle-stimulating hormone (FSH) receptor and assessment of their role in FSH receptor function. Mol Endocrinol 9(2):159–170

    CAS  PubMed  Google Scholar 

  47. Dong C, Filipeanu CM, Duvernay MT, Wu G (2007) Regulation of G protein-coupled receptor export trafficking. Biochim Biophys Acta 1768(4):853–870

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Jayadev S, Smith RD, Jagadeesh G, Baukal AJ, Hunyady L, Catt KJ (1999) N-linked glycosylation is required for optimal AT1a angiotensin receptor expression in COS-7 cells. Endocrinology 140(5):2010–2017

    CAS  PubMed  Google Scholar 

  49. Kaushal S, Ridge KD, Khorana HG (1994) Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Nat Acad Sci 91(9):4024–4028

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Rands E, Candelore M, Cheung A, Hill WS, Strader C, Dixon R (1990) Mutational analysis of beta-adrenergic receptor glycosylation. J Biol Chem 265(18):10759–10764

    CAS  PubMed  Google Scholar 

  51. Rens-Domiano S, Reisine T (1991) Structural analysis and functional role of the carbohydrate component of somatostatin receptors. J Biol Chem 266(30):20094–20102

    CAS  PubMed  Google Scholar 

  52. Bertin B, Freissmuth M, Breyer R, Schütz W, Strosberg A, Marullo S (1992) Functional expression of the human serotonin 5-HT1A receptor in Escherichia coli. Ligand binding properties and interaction with recombinant G protein alpha-subunits. J Biol Chem 267(12):8200–8206

    CAS  PubMed  Google Scholar 

  53. Furukawa H, Haga T (2000) Expression of functional M2 muscarinic acetylcholine receptor in Escherichia coli. J Biochem 127(1):151–161

    CAS  PubMed  Google Scholar 

  54. Hampe W, Voss R-H, Haase W, Boege F, Michel H, Reiländer H (2000) Engineering of a proteolytically stable human β2-adrenergic receptor/maltose-binding protein fusion and production of the chimeric protein in Escherichia coli and baculovirus-infected insect cells. J Biotechnol 77(2):219–234

    CAS  PubMed  Google Scholar 

  55. Weiß HM, Grisshammer R (2002) Purification and characterization of the human adenosine A2a receptor functionally expressed in Escherichia coli. Eur J Biochem 269(1):82–92

    PubMed  Google Scholar 

  56. Yeliseev AA, Wong KK, Soubias O, Gawrisch K (2005) Expression of human peripheral cannabinoid receptor for structural studies. Protein Sci 14(10):2638–2653

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Freissmuth M, Selzer E, Marullo S, Schütz W, Strosberg AD (1991) Expression of two human beta-adrenergic receptors in Escherichia coli: functional interaction with two forms of the stimulatory G protein. Proc Nat Acad Sci 88(19):8548–8552

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Hill RA, Sillence MN (1997) Improved membrane isolation in the purification of β2-adrenoceptors from transgenic Escherichia coli. Protein Expr Purif 10(1):162–167

    CAS  PubMed  Google Scholar 

  59. Lacatena RM, Cellini A, Scavizzi F, Tocchini-Valentini GP (1994) Topological analysis of the human beta 2-adrenergic receptor expressed in Escherichia coli. Proc Nat Acad Sci 91(22):10521–10525

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Kiefer H, Maier K, Vogel R (1999) Refolding of G-protein-coupled receptors from inclusion bodies produced in Escherichia coli. Biochem Soc Trans 27(6):908–912

    CAS  PubMed  Google Scholar 

  61. LaVallie ER, McCoy JM (1995) Gene fusion expression systems in Escherichia coli. Curr Opin Biotechnol 6(5):501–506

    CAS  PubMed  Google Scholar 

  62. Lundstrom K, Wagner R, Reinhart C, Desmyter A, Cherouati N, Magnin T, Zeder-Lutz G, Courtot M, Prual C, André N (2006) Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J Struct Funct Gen 7(2):77–91

    CAS  Google Scholar 

  63. Bernaudat F, Frelet-Barrand A, Pochon N, Dementin S, Hivin P, Boutigny S, Rioux J-B, Salvi D, Seigneurin-Berny D, Richaud P (2011) Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 6(12):e29191

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260(3):289–298

    CAS  PubMed  Google Scholar 

  65. Michalke K, Huyghe C, Lichière J, Gravière M-E, Siponen M, Sciara G, Lepaul I, Wagner R, Magg C, Rudolph R (2010) Mammalian G protein-coupled receptor expression in Escherichia coli: II. Refolding and biophysical characterization of mouse cannabinoid receptor 1 and human parathyroid hormone receptor 1. Anal Biochem 401(1):74–80

    CAS  PubMed  Google Scholar 

  66. Nilsson I, von Heijne G (1990) Fine-tuning the topology of a polytopic membrane protein: role of positively and negatively charged amino acids. Cell 62(6):1135–1141

    CAS  PubMed  Google Scholar 

  67. Gafvelin G, von Heijne G (1994) Topological “frustration” in multispanning E. coli inner membrane proteins. Cell 77(3):401–412

    CAS  PubMed  Google Scholar 

  68. Hulme E (1992) Receptor biochemistry: a practical approach. IRL Press, Oxford

    Google Scholar 

  69. Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130(4):421–426

    CAS  PubMed  Google Scholar 

  70. Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L (2004) Nanotechnology and biosensors. Biotechnol Adv 22(7):505–518

    PubMed  Google Scholar 

  71. Jacobs CB, Peairs MJ, Venton BJ (2010) Review: carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662(2):105–127

    CAS  PubMed  Google Scholar 

  72. Song HS, Park TH (2011) Integration of biomolecules and nanomaterials: towards highly selective and sensitive biosensors. Biotechnol J 6(11):1310–1316

    PubMed  Google Scholar 

  73. Oh EH, Song HS, Park TH (2011) Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb Technol 48(6):427–437

    CAS  PubMed  Google Scholar 

  74. Neuhaus EM, Mashukova A, Zhang W, Barbour J, Hatt H (2006) A specific heat shock protein enhances the expression of mammalian olfactory receptor proteins. Chem Senses 31(5):445–452

    CAS  PubMed  Google Scholar 

  75. Gelis L, Wolf S, Hatt H, Neuhaus EM, Gerwert K (2012) Prediction of a ligand-binding niche within a human olfactory receptor by combining site-directed mutagenesis with dynamic homology modeling. Angew Chem Int Ed Engl 51(5):1274–1278

    Google Scholar 

  76. Mashukova A, Spehr M, Hatt H, Neuhaus EM (2006) β-arrestin2-mediated internalization of mammalian odorant receptors. J Neurosci 26(39):9902–9912

    CAS  PubMed  Google Scholar 

  77. Kwon OS, Lee SH, Park SJ, An JH, Song HS, Kim T, Oh JH, Bae J, Yoon H, Park TH (2013) Large‐ scale graphene micropattern nano‐ biohybrids: high‐ performance transducers for FET‐ type flexible fluidic HIV immunoassays. Adv Mater 25(30):4177–4185

    CAS  PubMed  Google Scholar 

  78. Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J (2012) Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett 12(10):5082–5090

    CAS  PubMed  Google Scholar 

  79. Kim TH, Song HS, Jin HJ, Lee SH, Namgung S, Kim U-k, Park TH, Hong S (2011) “Bioelectronic super-taster” device based on taste receptor-carbon nanotube hybrid structures. Lab Chip 11(13):2262–2267

    CAS  PubMed  Google Scholar 

  80. Kwon OS, Ahn SR, Park SJ, Song HS, Lee SH, Lee JS, Hong J-Y, Lee JS, You SA, Yoon H, Park TH, Jang J (2012) Ultrasensitive and selective recognition of peptide hormone using close-packed arrays of hPTHR-conjugated polymer nanoparticles. ACS Nano 6(6):5549–5558

    CAS  PubMed  Google Scholar 

  81. Song HS, Kwon OS, Lee SH, Park SJ, Kim U-K, Jang J, Park TH (2013) Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett 13(1):172–178

    CAS  PubMed  Google Scholar 

  82. Kim U-k, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D (2003) Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299(5610):1221–1225

    CAS  PubMed  Google Scholar 

  83. Bufe B, Breslin PA, Kuhn C, Reed DR, Tharp CD, Slack JP, Kim U-K, Drayna D, Meyerhof W (2005) The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr Biol 15(4):322–327

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Kim B, Song HS, Jin HJ, Park EJ, Lee SH, Lee BY, Park TH, Hong S (2013) Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors. Nanotechnology 24(28):285501

    PubMed  Google Scholar 

  85. Schwartz TW (1994) Locating ligand-binding sites in 7TM receptors by protein engineering. Curr Opin Biotechnol 5(4):434–444

    CAS  PubMed  Google Scholar 

  86. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459(7245):356–363

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413(6852):211–218

    CAS  PubMed  Google Scholar 

  88. Krautwurst D, Yau K-W, Reed RR (1998) Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95(7):917–926

    CAS  PubMed  Google Scholar 

  89. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96(5):713–723

    CAS  PubMed  Google Scholar 

  90. Lee SH, Jun SB, Ko HJ, Kim SJ, Park TH (2009) Cell-based olfactory biosensor using microfabricated planar electrode. Biosens Bioelectron 24(8):2659–2664

    CAS  PubMed  Google Scholar 

  91. Lee JY, Ko HJ, Lee SH, Park TH (2006) Cell-based measurement of odorant molecules using surface plasmon resonance. Enzyme Microb Technol 39(3):375–380

    CAS  Google Scholar 

  92. Lee SH, Ko HJ, Park TH (2009) Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance. Biosens Bioelectron 25(1):55–60

    CAS  PubMed  Google Scholar 

  93. Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2(60):ra9

    Google Scholar 

  94. Zhao H, Ivic L, Otaki JM, Hashimoto M, Mikoshiba K, Firestein S (1998) Functional expression of a mammalian odorant receptor. Science 279(5348):237–242

    CAS  PubMed  Google Scholar 

  95. Hatt H, Gisselmann G, Wetzel C (1999) Cloning, functional expression and characterization of a human olfactory receptor. Cell Mol Biol 45(3):285–291

    CAS  PubMed  Google Scholar 

  96. Touhara K, Sengoku S, Inaki K, Tsuboi A, Hirono J, Sato T, Sakano H, Haga T (1999) Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc Nat Acad Sci 96(7):4040–4045

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Bozza T, Feinstein P, Zheng C, Mombaerts P (2002) Odorant receptor expression defines functional units in the mouse olfactory system. J Neurosci 22(8):3033–3043

    CAS  PubMed  Google Scholar 

  98. Gaillard I, Rouquier S, Pin JP, Mollard P, Richard S, Barnabe C, Demaille J, Giorgi D (2002) A single olfactory receptor specifically binds a set of odorant molecules. Eur J Neurosci 15(3):409–418

    PubMed  Google Scholar 

  99. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299(5615):2054–2058

    CAS  PubMed  Google Scholar 

  100. Kajiya K, Inaki K, Tanaka M, Haga T, Kataoka H, Touhara K (2001) Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J Neurosci 21(16):6018–6025

    CAS  PubMed  Google Scholar 

  101. Lu M, Staszewski L, Echeverri F, Xu H, Moyer BD (2004) Endoplasmic reticulum degradation impedes olfactory G-protein coupled receptor functional expression. BMC Cell Biol 5(1):34

    PubMed Central  PubMed  Google Scholar 

  102. Brady AE, Limbird LE (2002) G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 14(4):297–309

    CAS  PubMed  Google Scholar 

  103. Sung C-H, Schneider BG, Agarwal N, Papermaster DS, Nathans J (1991) Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Nat Acad Sci 88(19):8840–8844

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Oka Y, Omura M, Kataoka H, Touhara K (2003) Olfactory receptor antagonism between odorants. EMBO J 23(1):120–126

    PubMed Central  PubMed  Google Scholar 

  105. Katada S, Nakagawa T, Kataoka H, Touhara K (2003) Odorant response assays for a heterologously expressed olfactory receptor. Biochem Biophys Res Commun 305(4):964–969

    CAS  PubMed  Google Scholar 

  106. Wetzel CH, Oles M, Wellerdieck C, Kuczkowiak M, Gisselmann G, Hatt H (1999) Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus Laevis Oocytes. J Neurosci 19(17):7426–7433

    CAS  PubMed  Google Scholar 

  107. Abaffy T, Matsunami H, Luetje CW (2006) Functional analysis of a mammalian odorant receptor subfamily. J Neurochem 97(5):1506–1518

    CAS  PubMed  Google Scholar 

  108. Cooray SN, Chan L, Webb TR, Metherell L, Clark AJ (2009) Accessory proteins are vital for the functional expression of certain G protein-coupled receptors. Mol Cell Endocrinol 300(1):17–24

    CAS  PubMed  Google Scholar 

  109. Kohno M, Fukushima N, Yoshida A, Ueda H (2000) Gi1 and GoA differentially determine kinetic efficacies of agonists for κ-opioid receptor. FEBS Lett 473(1):101–105

    CAS  PubMed  Google Scholar 

  110. Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272

    CAS  PubMed  Google Scholar 

  111. Chelikani P, Reeves PJ, Rajbhandary UL, Khorana HG (2006) The synthesis and high‐level expression of a β2‐adrenergic receptor gene in a tetracycline‐inducible stable mammalian cell line. Protein Sci 15(6):1433–1440

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Nat Acad Sci 99(21):13419–13424

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Reeves PJ, Kim J-M, Khorana HG (2002) Structure and function in rhodopsin: a tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants. Proc Nat Acad Sci 99(21):13413–13418

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Hassaine G, Wagner R, Kempf J, Cherouati N, Hassaine N, Prual C, André N, Reinhart C, Pattus F, Lundstrom K (2006) Semliki Forest virus vectors for overexpression of 101 G protein-coupled receptors in mammalian host cells. Protein Expr Purif 45(2):343–351

    CAS  PubMed  Google Scholar 

  115. Krieger J, Breer H (1999) Olfactory reception in invertebrates. Science 286(5440):720–723

    CAS  PubMed  Google Scholar 

  116. Zufall F, Firestein S, Shepherd G (1994) Cyclic nucleotide-gated ion channels and sensory transduction in olfactory receptor neurons. Annu Rev Biophy Biomol Struct 23(1):577–607

    CAS  Google Scholar 

  117. Ache BW, Zhainazarov A (1995) Dual second-messenger pathways in olfactory transduction. Curr Opin Neurobiol 5(4):461–466

    CAS  PubMed  Google Scholar 

  118. Ko HJ, Park TH (2006) Dual signal transduction mediated by a single type of olfactory receptor expressed in a heterologous system. Biol Chem 387(1):59–68

    CAS  PubMed  Google Scholar 

  119. Liu Q, Cai H, Xu Y, Li Y, Li R, Wang P (2006) Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens Bioelectron 22(2):318–322

    CAS  PubMed  Google Scholar 

  120. Wang P, Xu G, Qin L, Xu Y, Li Y, Li R (2005) Cell-based biosensors and its application in biomedicine. Sens Actuators B 108(1):576–584

    CAS  Google Scholar 

  121. Jin HJ, Lee SH, Kim TH, Park J, Song HS, Park TH, Hong S (2012) Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. Biosens Bioelectron 35(1):355–341

    Google Scholar 

  122. Park J, Lim JH, Jin HJ, Namgung S, Lee SH, Park TH, Hong S (2012) A bioelectronic sensor based on canine olfactory nanovesicle–carbon nanotube hybrid structures for the fast assessment of food quality. Analyst 137(14):3249–3254

    CAS  PubMed  Google Scholar 

  123. Pick H, Schmid EL, Tairi A-P, Ilegems E, Hovius R, Vogel H (2005) Investigating cellular signaling reactions in single attoliter vesicles. J Am Chem Soc 127(9):2908–2912

    CAS  PubMed  Google Scholar 

  124. Massotte D (2003) G protein-coupled receptor overexpression with the baculovirus–insect cell system: a tool for structural and functional studies. Biochim Biophys Acta 1610(1):77–89

    CAS  PubMed  Google Scholar 

  125. Ailor E, Betenbaugh MJ (1999) Modifying secretion and post-translational processing in insect cells. Curr Opin Biotechnol 10(2):142–145

    CAS  PubMed  Google Scholar 

  126. Kleymann G, Boege F, Hahn M, Hampe W, Vasudeva S, Reiländer H (1993) Human β2‐adrenergic receptor produced in stably transformed insect cells is functionally coupled via endogenous GTP‐ binding protein to adenylyl cyclase. Eur J Biochem 213(2):797–804

    CAS  PubMed  Google Scholar 

  127. Kühn B, Gudermann T (1999) The luteinizing hormone receptor activates phospholipase C via preferential coupling to Gi2. Biochemistry 38(38):12490–12498

    PubMed  Google Scholar 

  128. Mulheron JG, Casanas SJ, Arthur JM, Garnovskaya MN, Gettys TW, Raymond JR (1994) Human 5-HT1A receptor expressed in insect cells activates endogenous G (o)-like G protein (s). J Biol Chem 269(17):12954–12962

    CAS  PubMed  Google Scholar 

  129. Hiroaki Y, Arimoto I, Fujiyoshi Y, Okamoto T, Satoh M, Furuichi Y (1997) Characterization of human endothelin B receptor and mutant receptors expressed in insect cells. Eur J Biochem 248(1):139–148

    PubMed  Google Scholar 

  130. Robeva AS, Woodard R, Luthin DR, Taylor HE, Linden J (1996) Double tagging recombinant A1and A2A-adenosine receptors with hexahistidine and the FLAG epitope: development of an efficient generic protein purification procedure. Biochem Pharmacol 51(4):545–555

    CAS  PubMed  Google Scholar 

  131. Glass M, Northup JK (1999) Agonist selective regulation of G proteins by cannabinoid CB1 and CB2 receptors. Mol Pharmacol 56(6):1362–1369

    CAS  PubMed  Google Scholar 

  132. Hartman JL, Northup JK (1996) Functional reconstitution in situ of 5-hydroxytryptamine2c (5HT2c) receptors with αq and inverse agonism of 5HT2c receptor antagonists. J Biol Chem 271(37):22591–22597

    CAS  PubMed  Google Scholar 

  133. Parker EM, Kameyama K, Higashijima T, Ross EM (1991) Reconstitutively active G protein-coupled receptors purified from baculovirus-infected insect cells. J Biol Chem 266(1):519–527

    CAS  PubMed  Google Scholar 

  134. Mroczkowski BS, Huvar A, Lernhardt W, Misono K, Nielson K, Scott B (1994) Secretion of thermostable DNA polymerase using a novel baculovirus vector. J Biol Chem 269(18):13522–13528

    CAS  PubMed  Google Scholar 

  135. Murphy CI, McIntire J, Davis Dv, Hodgdon H, Seals J, Young E (1993) Enhanced expression, secretion, and large-scale purification of recombinant HIV-1 gp120 in insect cells using the baculovirus egt and p67 signal peptides. Protein Expr Purif 4(5):349–357

    CAS  PubMed  Google Scholar 

  136. Allet B, Bernard AR, Hochmann A, Rohrbach E, Graber P, Magnenat E, Mazzei GJ, Bernasconi L (1997) A bacterial signal peptide directs efficient secretion of eukaryotic proteins in the baculovirus expression system. Protein Expr Purif 9(1):61–68

    CAS  PubMed  Google Scholar 

  137. Raming K, Krieger J, Strotmann J, Boekhoff I, Kubick S, Baumstark C, Breer H (1993) Cloning and expression of odorant receptors. Nature 361(6410):353–356

    CAS  PubMed  Google Scholar 

  138. Nekrasova E, Sosinskaya A, Natochin M, Lancet D, Gat U (1996) Overexpression, solubization and purification of rat and human olfactory receptors. Eur J Biochem 238(1):28–37

    CAS  PubMed  Google Scholar 

  139. Matarazzo V, Clot-Faybesse O, Marcet B, Guiraudie-Capraz G, Atanasova B, Devauchelle G, Cerutti M, Etiévant P, Ronin C (2005) Functional characterization of two human olfactory receptors expressed in the baculovirus Sf9 insect cell system. Chem Sens 30(3):195–207

    CAS  Google Scholar 

  140. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2(8):853–856

    CAS  Google Scholar 

  141. Denisov I, Grinkova Y, Lazarides A, Sligar S (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126(11):3477–3487

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (No. 2013003890, No. 2013055375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Hyun Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Song, H., Park, T. (2014). Production of Olfactory Receptors and Nanovesicles Using Heterologous Cell Systems for Bioelectronic Nose. In: Park, T. (eds) Bioelectronic Nose. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8613-3_9

Download citation

Publish with us

Policies and ethics