Skip to main content

Mechanisms of Olfaction

  • Chapter
  • First Online:

Abstract

Molecular mechanisms of olfaction have been intensively studied in the last quarter century. Receptors by which olfactory stimuli are detected are vastly different between different animal species and even between different olfactory organs of the same species. This chapter includes a description of the anatomy of the mammalian olfactory system and an overview of the receptors. The signaling mechanism and expression pattern of these receptors is discussed along with how the brain decodes olfactory information gathered from the environment and then translates these signals into behaviors. This chapter also contains brief comparison of the fish, insect and nematode olfactory receptors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Keene AC, Waddell S (2007) Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci 8(5):341–354

    CAS  PubMed  Google Scholar 

  2. Herz R (2007) The scent of desire: discovering our enigmatic sense of smell. HarperCollins

    Google Scholar 

  3. Kobayakawa K et al (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450(7169):503–508

    CAS  PubMed  Google Scholar 

  4. Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74(3):515–527

    CAS  PubMed  Google Scholar 

  5. Leypold BG et al (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci 99(9):6376–6381

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Munger SD et al (2010) An olfactory subsystem that detects carbon disulfide and mediates food-related social learning. Curr Biol 20(16):1438–1444

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Romero PR, Beltramino CA, Carrer HF (1990) Participation of the olfactory system in the control of approach behavior of the female rat to the male. Physiol Behav 47(4):685–690

    CAS  PubMed  Google Scholar 

  8. Saito TR et al (1990) Nursing behavior in lactating rats-the role of the vomeronasal organ, Jikken dobutsu. Exp Anim 39(1):109–111

    CAS  Google Scholar 

  9. Troemel ER, Kimmel BE, Bargmann CI (1997) Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91(2):161–169

    CAS  PubMed  Google Scholar 

  10. Bernstein H, Moyer K (1970) Aggressive behavior in the rat: effects of isolation, and olfactory bulb lesions. Brain Res 20(1):75–84

    CAS  PubMed  Google Scholar 

  11. Fleming AS, Rosenblatt JS (1974) Olfactory regulation of maternal behavior in rats: I. Effects of olfactory bulb removal in experienced and inexperienced lactating and cycling females. J Comp Physiol Psychol 86(2):221

    CAS  PubMed  Google Scholar 

  12. Heimer L, Larsson K (1967) Mating behavior of male rats after olfactory bulb lesions. Physiol Behav 2(2):207–209

    Google Scholar 

  13. Ansari K, Johnson A (1975) Olfactory function in patients with Parkinson’s disease. J Chronic Dis 28(9):493–497

    CAS  PubMed  Google Scholar 

  14. Mesholam RI et al (1998) Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Arch Neurol 55(1):84

    CAS  PubMed  Google Scholar 

  15. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187

    CAS  PubMed  Google Scholar 

  16. Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83(2):195–206

    CAS  PubMed  Google Scholar 

  17. Bean NJ (1982) Modulation of agonistic behavior by the dual olfactory system in male mice. Physiol Behav 29(3):433–437

    CAS  PubMed  Google Scholar 

  18. Papes F, Logan DW, Stowers L (2010) The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141(4):692–703

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Fleischer J et al (2006) A novel population of neuronal cells expressing the olfactory marker protein (OMP) in the anterior/dorsal region of the nasal cavity. Histochem Cell Biol 125(4):337–349

    CAS  PubMed  Google Scholar 

  20. Fleischer J et al (2006) Olfactory receptors and signalling elements in the Grueneberg ganglion. J Neurochem 98(2):543–554

    CAS  PubMed  Google Scholar 

  21. Brechbühl J, Klaey M, Broillet M-C (2008) Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 321(5892):1092–1095

    PubMed  Google Scholar 

  22. Tian H, Ma M (2004) Molecular organization of the olfactory septal organ. J Neurosci 24(38):8383–8390

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Storan MJ, Key B (2006) Septal organ of Grüneberg is part of the olfactory system. J Comp Neurol 494(5):834–844

    PubMed  Google Scholar 

  24. Buck LB (1996) Information coding in the vertebrate olfactory system. Annu Rev Neurosci 19(1):517–544

    CAS  PubMed  Google Scholar 

  25. Shipley M, Ennis M, Puche A (2003) The olfactory system. In: Conn PM (ed) Neuroscience in medicine. Humana Press, p 579–593

    Google Scholar 

  26. Lancet D (1986) Vertebrate olfactory reception. Annu Rev Neurosci 9(1):329–355

    CAS  PubMed  Google Scholar 

  27. Doty RL (2001) Olfaction. Annu Rev Psychol 52(1):423–452

    CAS  PubMed  Google Scholar 

  28. Laissue P et al (1999) Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 405(4):543–552

    CAS  PubMed  Google Scholar 

  29. Margolis FL (1972) A brain protein unique to the olfactory bulb. Proc Natl Acad Sci 69(5):1221–1224

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Mombaerts P et al (1996) Visualizing an olfactory sensory map. Cell 87(4):675–686

    CAS  PubMed  Google Scholar 

  31. Mombaerts P (2006) Axonal wiring in the mouse olfactory system. Annu Rev Cell Dev Biol 22(1):713–737

    CAS  PubMed  Google Scholar 

  32. Ressler KJ, Sullivan SL, Buck LB (1994) A molecular dissection of spatial patterning in the olfactory system. Curr Opin Neurobiol 4(4):588–596

    CAS  PubMed  Google Scholar 

  33. Lancet D, Ben-Arie N (1993) Olfactory receptors. Curr Biol 3(10):668

    CAS  PubMed  Google Scholar 

  34. Ben-Arie N et al (1994) Olfactory receptor gene cluster on human chromosome 17: possible duplication of an ancestral receptor repertoire. Hum Mol Genet 3(2):229–235

    CAS  PubMed  Google Scholar 

  35. Kobilka B (1992) Adrenergic receptors as models for G protein-coupled receptors. Annu Rev Neurosci 15(1):87–114

    CAS  PubMed  Google Scholar 

  36. Belluscio L et al (1998) Mice deficient in Golf are anosmic. Neuron 20(1):69–81

    CAS  PubMed  Google Scholar 

  37. Wong ST et al (2000) Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27(3):487–497

    CAS  PubMed  Google Scholar 

  38. Imai T, Sakano H (2008) Odorant receptor-mediated signaling in the mouse. Curr Opin Neurobiol 18(3):251–260

    CAS  PubMed  Google Scholar 

  39. Pace U et al (1985) Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature 316(6025):255–258

    CAS  PubMed  Google Scholar 

  40. Sklar P, Anholt R, Snyder S (1986) The odorant-sensitive adenylate cyclase of olfactory receptor cells. Differential stimulation by distinct classes of odorants. J Biol Chem 261(33):15538–15543

    CAS  PubMed  Google Scholar 

  41. Brunet LJ, Gold GH, Ngai J (1996) General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide gated cation channel. Neuron 17(4):681–693

    CAS  PubMed  Google Scholar 

  42. Firestein S, Werblin F (1989) Odor-induced membrane currents in vertebrate-olfactory receptor neurons. Science 244(4900):79–82

    CAS  PubMed  Google Scholar 

  43. Reisert J et al (2005) Mechanism of the excitatory Cl response in mouse olfactory receptor neurons. Neuron 45(4):553–561

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Noé J et al (1997) Sodium/calcium exchanger in rat olfactory neurons. Neurochem Int 30(6):523–531

    PubMed  Google Scholar 

  45. Stephan AB et al (2011) The Na + /Ca2 + exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response. Nat Neurosci 15(1):131–137

    PubMed Central  PubMed  Google Scholar 

  46. Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325(6103):442–444

    CAS  PubMed  Google Scholar 

  47. Rasche S et al (2010) Tmem16b is specifically expressed in the cilia of olfactory sensory neurons. Chem Senses 35(3):239–245

    CAS  PubMed  Google Scholar 

  48. Kleene S, Gesteland R (1991) Calcium-activated chloride conductance in frog olfactory cilia. J Neurosci 11(11):3624–3629

    CAS  PubMed  Google Scholar 

  49. Kleene SJ (1993) Origin of the chloride current in olfactory transduction. Neuron 11(1):123–132

    CAS  PubMed  Google Scholar 

  50. Brunet LJ, Gold GH, Ngai J (1996) General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17(4):681–693

    CAS  PubMed  Google Scholar 

  51. Kurahashi T, Yau K-W (1993) Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363(6424):71–74

    CAS  PubMed  Google Scholar 

  52. Lowe G, Gold GH (1993) Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366(6452):283–286

    CAS  PubMed  Google Scholar 

  53. Reuter D et al (1998) A depolarizing chloride current contributes to chemoelectrical transduction in olfactory sensory neurons in situ. J Neurosci 18(17):6623–6630

    CAS  PubMed  Google Scholar 

  54. Breer H, Boekhoff I (1991) Odorants of the same odor class activate different second messenger pathways. Chem Senses 16(1):19–29

    CAS  Google Scholar 

  55. Ronnett G et al (1993) Odorants differentially enhance phosphoinositide turnover and adenylyl cyclase in olfactory receptor neuronal cultures. J Neurosci 13(4):1751–1758

    CAS  PubMed  Google Scholar 

  56. Ronnett GV, Moon C (2002) G proteins and olfactory signal transduction. Annu Rev Physiol 64(1):189–222

    CAS  PubMed  Google Scholar 

  57. Munger SD et al (2001) Central role of the CNGA4 channel subunit in Ca2 + -calmodulin-dependent odor adaptation. Science 294(5549):2172–2175

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Yan C et al (1995) Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons. Proc Natl Acad Sci 92(21):9677–9681

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Wayman GA, Impey S, Storm DR (1995) Ca2 + inhibition of type III adenylyl cyclase in vivo. J Biol Chem 270(37):21480–21486

    CAS  PubMed  Google Scholar 

  60. Dawson T et al (1993) Beta-adrenergic receptor kinase-2 and beta-arrestin-2 as mediators of odorant-induced desensitization. Science 259(5096):825–829

    CAS  PubMed  Google Scholar 

  61. Mashukova A et al (2006) β-arrestin2-mediated internalization of mammalian odorant receptors. J Neurosci 26(39):9902–9912

    CAS  PubMed  Google Scholar 

  62. Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53(1):1–24

    CAS  PubMed  Google Scholar 

  63. Willets JM, Challiss R, Nahorski SR (2003) Non-visual GRKs: are we seeing the whole picture? Trends Pharmacol Sci 24(12):626–633

    CAS  PubMed  Google Scholar 

  64. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67(1):653–692

    CAS  PubMed  Google Scholar 

  65. Gimelbrant AA et al (1999) Truncation releases olfactory receptors from the endoplasmic reticulum of heterologous cells. J Neurochem 72(6):2301–2311

    CAS  PubMed  Google Scholar 

  66. McClintock TS et al (1997) Functional expression of olfactory-adrenergic receptor chimeras and intracellular retention of heterologously expressed olfactory receptors. Mol Brain Res 48(2):270–278

    CAS  PubMed  Google Scholar 

  67. Saito H et al (2004) RTP family members induce functional expression of mammalian odorant receptors. Cell 119(5):679–691

    CAS  PubMed  Google Scholar 

  68. Zhuang H, Matsunami H (2008) Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protocols 3(9):1402–1413

    CAS  Google Scholar 

  69. Chess A et al (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78(5):823–834

    CAS  PubMed  Google Scholar 

  70. Vassar R et al (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79(6):981–991

    CAS  PubMed  Google Scholar 

  71. Serizawa S et al (2000) Mutually exclusive expression of odorant receptor transgenes. Nat Neurosci 3(7):687–693

    CAS  PubMed  Google Scholar 

  72. Clowney EJ et al (2012) Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151(4):724–737

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Clowney EJ et al (2011) High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation. Genome Res 21(8):1249–1259

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Lewcock JW, Reed RR (2004) A feedback mechanism regulates monoallelic odorant receptor expression. Proc Natl Acad Sci U S A 101(4):1069–1074

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Lomvardas S et al (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126(2):403–413

    CAS  PubMed  Google Scholar 

  76. Lyons DB et al (2013) An epigenetic trap stabilizes singular olfactory receptor expression. Cell 154(2):325–336

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Magklara A et al (2011) An epigenetic signature for monoallelic olfactory receptor expression. Cell 145(4):555–570

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Michaloski JS, Galante PA, Malnic B (2006) Identification of potential regulatory motifs in odorant receptor genes by analysis of promoter sequences. Genome Res 16(9):1091–1098

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Nguyen MQ et al (2007) Prominent roles for odorant receptor coding sequences in allelic exclusion. Cell 131(5):1009–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Shykind BM et al (2004) Gene switching and the stability of odorant receptor gene choice. Cell 117(6):801–815

    CAS  PubMed  Google Scholar 

  81. Vassar R, Ngai J, Axel R (1993) Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74(2):309–318

    CAS  PubMed  Google Scholar 

  82. Yoshihara Y et al (1997) OCAM: a new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J Neurosci 17(15):5830–5842

    CAS  PubMed  Google Scholar 

  83. Miyamichi K et al (2005) Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral positioning of glomeruli in the olfactory bulb. J Neurosci 25(14):3586–3592

    CAS  PubMed  Google Scholar 

  84. Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5(2):124–133

    CAS  PubMed  Google Scholar 

  85. Zhang X et al (2004) High-throughput microarray detection of olfactory receptor gene expression in the mouse. Proc Natl Acad Sci U S A 101(39):14168–14173

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Kaneko-Goto T et al (2008) BIG-2 mediates olfactory axon convergence to target glomeruli. Neuron 57(6):834–846

    CAS  PubMed  Google Scholar 

  87. Bozza T et al (2002) Odorant receptor expression defines functional units in the mouse olfactory system. J Neurosci 22(8):3033–3043

    CAS  PubMed  Google Scholar 

  88. Imai T, Suzuki M, Sakano H (2006) Odorant receptor-derived cAMP signals direct axonal targeting. Science 314(5799):657–661

    CAS  PubMed  Google Scholar 

  89. Serizawa S et al (2006) A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell 127(5):1057–1069

    CAS  PubMed  Google Scholar 

  90. Feinstein P et al (2004) Axon guidance of mouse olfactory sensory neurons by odorant receptors and the β2 adrenergic receptor. Cell 117(6):833–846

    CAS  PubMed  Google Scholar 

  91. Feinstein P, Mombaerts P (2004) A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117(6):817–831

    CAS  PubMed  Google Scholar 

  92. Yu CR et al (2004) Spontaneous neural activity is required for the establishment and maintenance of the olfactory sensory map. Neuron 42(4):553–566

    CAS  PubMed  Google Scholar 

  93. Tadenev ALD et al (2011) Loss of Bardet-Biedl syndrome protein-8 (BBS8) perturbs olfactory function, protein localization, and axon targeting. Proc Natl Acad Sci 108(25):10320–10325

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Kosaka K et al (1998) How simple is the organization of the olfactory glomerulus?: the heterogeneity of so-called periglomerular cells. Neurosci Res 30(2):101–110

    CAS  PubMed  Google Scholar 

  95. Pinching AJ, Powell TPS (1971) The neuropil of the glomeruli of the olfactory bulb. J Cell Sci 9(2):347–377

    CAS  PubMed  Google Scholar 

  96. Adam Y, Mizrahi A (2010) Circuit formation and maintenance-perspectives from the mammalian olfactory bulb. Curr Opin Neurobiol 20(1):134–140

    CAS  PubMed  Google Scholar 

  97. Murthy VN (2011) Olfactory maps in the brain. Annu Rev Neurosci 34(1):233–258

    CAS  PubMed  Google Scholar 

  98. Hayar A et al (2004) External tufted cells: a major excitatory element that coordinates glomerular activity. J Neurosci 24(30):6676–6685

    CAS  PubMed  Google Scholar 

  99. Stockhorst U, Pietrowsky R (2004) Olfactory perception, communication, and the nose-to-brain pathway. Physiol Behav 83(1):3–11

    CAS  PubMed  Google Scholar 

  100. Miyamichi K et al (2011) Cortical representations of olfactory input by trans-synaptic tracing. Nature 472(7342):191–196

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Malnic B et al (1999) Combinatorial receptor codes for odors. Cell 96(5):713–723

    CAS  PubMed  Google Scholar 

  102. Saito H et al (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2(60):ra9

    PubMed Central  PubMed  Google Scholar 

  103. Sicard G, Holley A (1984) Receptor cell responses to odorants: similarities and differences among odorants. Brain Res 292(2):283–296

    CAS  PubMed  Google Scholar 

  104. Keller A et al (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449(7161):468–472

    CAS  PubMed  Google Scholar 

  105. Belluscio L, Katz LC (2001) Symmetry, stereotypy, and topography of odorant representations in mouse olfactory bulbs. J Neurosci 21(6):2113–2122

    CAS  PubMed  Google Scholar 

  106. Laurent G, Davidowitz H (1994) Encoding of olfactory information with oscillating neural assemblies. Science 265(5180):1872–1875

    CAS  PubMed  Google Scholar 

  107. Laurent G et al (2001) Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu Rev Neurosci 24(1):263–297

    CAS  PubMed  Google Scholar 

  108. Spors H, Grinvald A (2002) Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. Neuron 34(2):301–315

    CAS  PubMed  Google Scholar 

  109. Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442(7103):645–650

    CAS  PubMed  Google Scholar 

  110. Fleischer J, Schwarzenbacher K, Breer H (2007) Expression of trace amine-associated receptors in the Grueneberg ganglion. Chem Senses 32(6):623–631

    CAS  PubMed  Google Scholar 

  111. Hashiguchi Y, Nishida M (2007) Evolution of trace amine-associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium. Mol Biol Evol 24(9):p 2099–2107

    CAS  PubMed  Google Scholar 

  112. Dewan A et al (2013) Non-redundant coding of aversive odours in the main olfactory pathway. Nature 497(7450):486–489

    CAS  PubMed  Google Scholar 

  113. Ferrero DM et al (2011) Detection and avoidance of a carnivore odor by prey. Proc Natl Acad Sci 108(27):11235–11240

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Zhang J et al (2013) Ultrasensitive detection of amines by a trace amine-associated receptor. J Neurosci 33(7):3228–3239

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Meyer MR et al (2000) A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc Natl Acad Sci 97(19):10595–10600

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Juilfs DM et al (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci 94(7):3388–3395

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Fülle H-J et al (1995) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci 92(8):3571–3575

    PubMed Central  PubMed  Google Scholar 

  118. Hu J et al (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317(5840):953–957

    CAS  PubMed  Google Scholar 

  119. Leinders-Zufall T et al (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci 104(36):14507–14512

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Pelosi P (1996) Perireceptor events in olfaction. J Neurobiol 30(1):3–19

    CAS  PubMed  Google Scholar 

  121. Flower D (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Pelosi P (1994) Odorant-binding proteins. Crit Rev Biochem Mol Biol 29(3):199–228

    CAS  PubMed  Google Scholar 

  123. Kim M-S, Repp A, Smith DP (1998) LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150(2):711–721

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Lin W et al (2004) Odors detected by mice deficient in cyclic nucleotide-gated channel subunit A2 stimulate the main olfactory system. J Neurosci 24(14):3703–3710

    CAS  PubMed  Google Scholar 

  125. Jacobson L (1811) Description anatomique d’un organe observe dans les mammiferes. Ann Mus Hist Natl (Paris) 18:412–424

    Google Scholar 

  126. Keverne EB (1999) The vomeronasal organ. Science 286(5440):716–720

    CAS  PubMed  Google Scholar 

  127. Rodriguez I, Feinstein P, Mombaerts P (1999) Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97(2):199–208

    CAS  PubMed  Google Scholar 

  128. Segovia S, Guillamón A (1993) Sexual dimorphism in the vomeronasal pathway and sex differences in reproductive behaviors. Brain Res Rev 18(1):51–74

    CAS  PubMed  Google Scholar 

  129. Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90(4):763–773

    CAS  PubMed  Google Scholar 

  130. Martini S et al (2001) Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J Neurosci 21(3):843–848

    CAS  PubMed  Google Scholar 

  131. Matsunami H, Buck LB (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90(4):775–784

    CAS  PubMed  Google Scholar 

  132. Ryba NJP, Tirindelli R (1997) A new multigene family of putative pheromone receptors. Neuron 19(2):371–379

    CAS  PubMed  Google Scholar 

  133. Jia C, Halpern M (1996) Subclasses of vomeronasal receptor neurons: differential expression of G proteins (G iα2 and G) and segregated projections to the accessory olfactory bulb. Brain Res 719(1):117–128

    CAS  PubMed  Google Scholar 

  134. Tirindelli R, Mucignat-Caretta C, Ryba NJ (1998) Molecular aspects of pheromonal communication via the vomeronasal organ of mammals. Elsevier

    Google Scholar 

  135. Hofmann T et al (2000) Cloning, expression and subcellular localization of two novel splice variants of mouse transient receptor potential channel 2. Biochem J 351:115–122

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Liman ER, Corey DP, Dulac C (1999) TRP2: A candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci 96(10):5791–5796

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Scalia F, Winans SS (1975) The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. J Comp Neurol 161(1):31–55

    CAS  PubMed  Google Scholar 

  138. Halpern M (1987) The organization and function of the vomeronasal system. Annu Rev Neurosci 10(1):325–362

    CAS  PubMed  Google Scholar 

  139. Johns MA et al (1978) Urine-induced reflex ovulation in anovulatory rats may be a vomeronasal effect. Nature 272(5652):446–448

    CAS  PubMed  Google Scholar 

  140. Bellringer J, Pratt HP, Keverne E (1980) Involvement of the vomeronasal organ and prolactin in pheromonal induction of delayed implantation in mice. J Reprod Fertil 59(1):223–228

    CAS  PubMed  Google Scholar 

  141. Rajendren G, Dudley C, Moss R (1990) Role of the vomeronasal organ in the male-induced enhancement of sexual receptivity in female rats. Neuroendocrinology 52(4):368–372

    CAS  PubMed  Google Scholar 

  142. Lomas D, Keverne E (1982) Role of the vomeronasal organ and prolactin in the acceleration of puberty in female mice. J Reprod Fertil 66(1):101–107

    CAS  PubMed  Google Scholar 

  143. Stowers L et al (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295(5559):1493–1500

    CAS  PubMed  Google Scholar 

  144. Liberles SD et al (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci 106(24):9842–9847

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Riviere S et al (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459(7246):574–577

    CAS  PubMed  Google Scholar 

  146. Boehm N, Gasser B (1993) Sensory receptor-like cells in the human foetal vomeronasal organ. NeuroReport 4(7):867–870

    CAS  PubMed  Google Scholar 

  147. Takami SL, Getchell TV (1993) Vomeronasal epithelial cells in the adult human express neuron-specific substances. NeuroReport 4:375–378

    CAS  PubMed  Google Scholar 

  148. Zhu X et al (1996) Trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2 + entry. Cell 85(5):661–671

    CAS  PubMed  Google Scholar 

  149. Rodriguez I et al (2000) A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet 26(1):18–19

    CAS  PubMed  Google Scholar 

  150. Vannier B et al (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2 + entry channel. Proc Natl Acad Sci 96(5):2060–2064

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Giorgi D et al (2000) Characterization of nonfunctional V1R-like pheromone receptor sequences in human. Genome Res 10(12):1979–1985

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Hara T (1994) The diversity of chemical stimulation in fish olfaction and gustation. Rev Fish Biol Fisheries 4(1):1–35

    Google Scholar 

  153. Yoshihara Y (2009) Molecular genetic dissection of the zebrafish olfactory system, in chemosensory systems in mammals, fishes, and insects. Springer. p 1–19

    Google Scholar 

  154. Cao Y, Oh BC, Stryer L (1998) Cloning and localization of two multigene receptor families in goldfish olfactory epithelium. Proc Natl Acad Sci 95(20):11987–11992

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Hansen A, Anderson KT, Finger TE (2004) Differential distribution of olfactory receptor neurons in goldfish: structural and molecular correlates. J Comp Neurol 477(4):347–359

    CAS  PubMed  Google Scholar 

  156. Speca DJ et al (1999) Functional identification of a goldfish odorant receptor. Neuron 23(3):487–498

    CAS  PubMed  Google Scholar 

  157. Pfister P, Rodriguez I (2005) Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species. Proc Natl Acad Sci U S A 102(15):5489–5494

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Ngai J et al (1993) Coding of olfactory information: topography of odorant receptor expression in the catfish olfactory epithelium. Cell 72(5):667–680

    CAS  PubMed  Google Scholar 

  159. Weth F, Nadler W, Korsching S (1996) Nested expression domains for odorant receptors in zebrafish olfactory epithelium. Proc Natl Acad Sci 93(23):13321–13326

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Alioto T, Ngai J (2005) The odorant receptor repertoire of teleost fish. BMC Genomics 6(1):173

    PubMed Central  PubMed  Google Scholar 

  161. Niimura Y, Nei M (2005) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci 102(17):6039–6044

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Michel W et al (2003) Evidence of a novel transduction pathway mediating detection of polyamines by the zebrafish olfactory system. J Exp Biol 206(10):1697–1706

    CAS  PubMed  Google Scholar 

  163. Rolen SH et al (2003) Polyamines as olfactory stimuli in the goldfish Carassius auratus. J Exp Biol 206(10):1683–1696

    CAS  PubMed  Google Scholar 

  164. Sato Y, Miyasaka N, Yoshihara Y (2007) Hierarchical regulation of odorant receptor gene choice and subsequent axonal projection of olfactory sensory neurons in zebrafish. J Neurosci 27(7):1606–1615

    CAS  PubMed  Google Scholar 

  165. Sato Y, Miyasaka N, Yoshihara Y (2005) Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish. J Neurosci 25(20):4889–4897

    CAS  PubMed  Google Scholar 

  166. Hansen A et al (2003) Correlation between olfactory receptor cell type and function in the channel catfish. J Neurosci 23(28):9328–9339

    CAS  PubMed  Google Scholar 

  167. Morita Y, Finger TE (1998) Differential projections of ciliated and microvillous olfactory receptor cells in the catfish, Ictalurus punctatus. J Comp Neurol 398(4):539–550

    CAS  PubMed  Google Scholar 

  168. Sato K, Touhara K (2009) Insect olfaction: receptors, signal transduction, and behavior, in chemosensory systems in mammals, fishes, and insects. Springer, p 203–220

    Google Scholar 

  169. Stocker R et al (1990) Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262(1):9–34

    CAS  PubMed  Google Scholar 

  170. Datta SR et al (2008) The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452(7186):473–477

    CAS  PubMed  Google Scholar 

  171. Clyne PJ et al (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22(2):327–338

    CAS  PubMed  Google Scholar 

  172. Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60(1):31–39

    CAS  PubMed  Google Scholar 

  173. Hill CA et al (2002) G protein-coupled receptors in anopheles gambiae. Science 298(5591):176–178

    CAS  PubMed  Google Scholar 

  174. Bohbot J et al (2007) Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol Biol 16(5):525–537

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16(11):1395–1403

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Benton R et al (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4(2):e20

    PubMed Central  PubMed  Google Scholar 

  177. Lundin C et al (2007) Membrane topology of the Drosophila OR83b odorant receptor. Febs Letters 581(29):5601–5604

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Sato K et al (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452(7190):1002–1006

    CAS  PubMed  Google Scholar 

  179. Wicher D et al (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452(7190):1007–1011

    CAS  PubMed  Google Scholar 

  180. Kalidas S, Smith DP (2002) Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 33(2):177–184

    CAS  PubMed  Google Scholar 

  181. Riesgo-Escovar J, Raha D, Carlson JR (1995) Requirement for a phospholipase C in odor response: overlap between olfaction and vision in Drosophila. Proc Natl Acad Sci 92(7):2864–2868

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Vosshall LB et al (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96(5):725–736

    CAS  PubMed  Google Scholar 

  183. Larsson MC et al (2004)  Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43(5):703–714

    CAS  PubMed  Google Scholar 

  184. Dobritsa AA et al (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37(5):827–841

    CAS  PubMed  Google Scholar 

  185. Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125(1):143–160

    CAS  PubMed  Google Scholar 

  186. Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117(7):965–979

    CAS  PubMed  Google Scholar 

  187. Benton R et al (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136(1):149–162

    CAS  PubMed Central  PubMed  Google Scholar 

  188. White JG et al (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1–340

    CAS  PubMed  Google Scholar 

  189. Chen N et al (2005) Identification of a nematode chemosensory gene family. Proc Natl Acad Sci U S A 102(1):146–151

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Bargmann CI (2006) Comparative chemosensation from receptors to ecology. Nature 444(7117):295–301

    CAS  PubMed  Google Scholar 

  191. Troemel ER et al (1995) Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83(2):207–218

    CAS  PubMed  Google Scholar 

  192. Sengupta P, Chou JH, Bargmann CI (1996) odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84(6):899–909

    CAS  PubMed  Google Scholar 

  193. Robertson HM (2001) Updating the str and srj (stl) families of chemoreceptors in Caenorhabditis nematodes reveals frequent gene movement within and between chromosomes. Chem Senses 26(2):151–159

    CAS  PubMed  Google Scholar 

  194. McCarroll SA, Li H, Bargmann CI (2005) Identification of transcriptional regulatory elements in chemosensory receptor genes by probabilistic segmentation. Curr Biol 15(4):347–352

    CAS  PubMed  Google Scholar 

  195. Dalton RP, Lyons DB, Lomvardas S (2013) Co-opting the unfolded protein response to elicit olfactory receptor feedback. Cell 155(2):321–332

    Google Scholar 

Download references

Acknowledgments

We thank Helena You and Naihua Natalie Gong for editing. NIH supports the work of the Matsunami lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruchira Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sharma, R., Matsunami, H. (2014). Mechanisms of Olfaction. In: Park, T. (eds) Bioelectronic Nose. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8613-3_2

Download citation

Publish with us

Policies and ethics