Skip to main content

Carbon Nanotube-Based Sensor Platform for Bioelectronic Nose

  • Chapter
  • First Online:
Bioelectronic Nose

Abstract

Since carbon nanotubes (CNTs) have an extremely large surface-to-volume ratio, the electrical properties of CNTs can be easily changed by the adsorption of small molecules. Due to this attribute, CNT-based sensors can detect small molecules with a high sensitivity. Recently, bioelectronic noses based on CNTs have been developed by immobilizing olfactory receptors or nanovesicles on the surface of CNTs. By taking advantages of CNT structures, these bioelectronic nose devices allowed one to detect target odorants with a high sensitivity. Furthermore, they exhibited highly selective responses to target odorants with a single-carbon-atomic resolution just like human olfactory systems. These bioelectronic nose devices based on CNTs can be utilized for various practical applications such as food screening, medical diagnostics, and the fabrication of artificial noses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes: basic concepts and physical properties. Wiley-VCH Weinheim, Cambridge

    Google Scholar 

  2. Deheer WA, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270(5239):1179–1180

    Article  CAS  Google Scholar 

  3. Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Carbon nanotube single-electron transistors at room temperature. Science 293(5527):76–79

    Article  CAS  PubMed  Google Scholar 

  4. Kim JR, So HM, Kim JJ, Kim J (2002) Spin-dependent transport properties in a single-walled carbon nanotube with mesoscopic Co contacts. Phys Rev B 66(23):233–401

    Google Scholar 

  5. Lee M, Im J, Lee BY, Myung S, Kang J, Huang L, Kwon YK, Hong S (2006) Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires. Nat Nanotechnol 1(1):66–71

    Article  CAS  PubMed  Google Scholar 

  6. Dai HJ, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147–150

    Article  CAS  Google Scholar 

  7. Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386(6624):474–477

    Article  CAS  Google Scholar 

  8. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294(5545):1317–1320

    Article  CAS  PubMed  Google Scholar 

  9. Yu WJ, Chae SH, Lee SY, Duong DL, Lee YH (2011) Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv Mater 23(16):1889–1893

    Article  CAS  PubMed  Google Scholar 

  10. Lee NS, Chung DS, Han IT, Kang JH, Choi YS, Kim HY, Park SH, Jin YW, Yi WK, Yun MJ, Jung JE, Lee CJ, You JH, Jo SH, Lee CG, Kim JM (2001) Application of carbon nanotubes to field emission displays. Diam Relat Mater 10(2):265–270

    Article  CAS  Google Scholar 

  11. Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276

    Article  CAS  PubMed  Google Scholar 

  12. Baughman RH, Cui CX, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284(5418):1340–1344

    Article  CAS  PubMed  Google Scholar 

  13. Zhang DH, Ryu K, Liu XL, Polikarpov E, Ly J, Tompson ME, Zhou CW (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6(9):1880–1886

    Article  CAS  PubMed  Google Scholar 

  14. Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19(11):1439–1451

    Article  CAS  Google Scholar 

  15. Li J, Lu YJ, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 3(7):929–933

    Article  CAS  Google Scholar 

  16. Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705):878–881

    Article  CAS  Google Scholar 

  17. Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633

    Article  CAS  PubMed  Google Scholar 

  18. Li XL, Zhang L, Wang XR, Shimoyama I, Sun XM, Seo WS, Dai HJ (2007) Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J Am Chem Soc 129(16):4890–4891

    Article  CAS  PubMed  Google Scholar 

  19. Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668):276–278

    Article  CAS  PubMed  Google Scholar 

  20. Yu GH, Cao AY, Lieber CM (2007) Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat Nanotechnol 2(6):372–377

    Article  CAS  PubMed  Google Scholar 

  21. Wang YH, Maspoch D, Zou SL, Schatz GC, Smalley RE, Mirkin CA (2006) Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc Natl Acad Sci U S A 103(7):2026–2031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Martin CA, Sandler JKW, Windle AH, Schwarz MK, Bauhofer W, Schulte K, Shaffer MSP (2005) Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46(3):877–886

    Article  CAS  Google Scholar 

  23. Xia YN, Mrksich M, Kim E, Whitesides GM (1995) Microcontact printing of octadecylsiloxane on the surface of silicon dioxide and its application in microfabrication. J Am Chem Soc 117(37):9576–9577

    Article  CAS  Google Scholar 

  24. Hong S, Kim TH, Lee J, Byun KE, Koh J, Kim T, Myung S (2007) “Surface-programmed assembly” of nanotube/nanowire-based integrated devices. Nano 2(6):333–350

    Article  CAS  Google Scholar 

  25. Im J, Huang L, Kang J, Lee M, Lee DJ, Rao SG, Lee NK, Hong S (2006) “Sliding kinetics” of single-walled carbon nanotubes on self-assembled monolayer patterns: beyond random adsorption. J Chem Phys 124(22):224707

    Article  PubMed  Google Scholar 

  26. Lee BY, Sung MG, Lee J, Baik KY, Kwon YK, Lee MS, Hong S (2011) Universal parameters for carbon nanotube network-based sensors: can nanotube sensors be reproducible? ACS Nano 5(6):4373–4379

    Article  CAS  PubMed  Google Scholar 

  27. Maeng S, Moon S, Kim S, Lee HY, Park SJ, Kwak JH, Park KH, Park J, Choi Y, Udrea F, Milne WI, Lee BY, Lee M, Hong S (2008) Highly sensitive NO(2) sensor array based on undecorated single-walled carbon nanotube monolayer junctions. Appl Phys Lett 93(11):113111

    Article  Google Scholar 

  28. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625

    Article  CAS  PubMed  Google Scholar 

  29. Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730

    Article  CAS  Google Scholar 

  30. Kim TH, Lee J, Hong S (2009) Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. J Phys Chem C 113(45):19393–19396

    Article  CAS  Google Scholar 

  31. Kim B, Lim D, Jin HJ, Lee HY, Namgung S, Ko Y, Park SB, Hong S (2012) Family-selective detection of antibiotics using antibody-functionalized carbon nanotube sensors. Sens Actuators B-Chem 166–167:193–199

    Article  Google Scholar 

  32. Lee J, Jo M, Kim TH, Ahn JY, Lee DK, Kim S, Hong S (2011) Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species. Lab Chip 11(1):52–56

    Article  CAS  PubMed  Google Scholar 

  33. Kim TH, Lee SH, Lee J, Song HS, Oh EH, Park TH, Hong S (2009) Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv Mater 21(1):91–94

    Article  CAS  Google Scholar 

  34. Rubenstein LA, Lanzara RG (1998) Activation of G protein-coupled receptors entails cysteine modulation of agonist binding. J Mol Struc (Theochem) 430:57–71

    Article  CAS  Google Scholar 

  35. Rubenstein LA, Zauhar RJ, Lanzara RG (2006) Molecular dynamics of a biophysical model for beta(2)-adrenergic and G protein-coupled receptor activation. J Mol Graph Model 25(4):396–409

    Article  CAS  PubMed  Google Scholar 

  36. Jin HJ, Lee SH, Kim TH, Park J, Song HS, Park TH, Hong S (2012) Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. Biosens Bioelectron 35(1):335–341

    Article  CAS  PubMed  Google Scholar 

  37. Park J, Lim JH, Jin HJ, Namgung S, Lee SH, Park TH, Hong S (2012) A bioelectronic sensor based on canine olfactory nanovesicle-carbon nanotube hybrid structures for the fast assessment of food quality. Analyst 137(14):3249–3254

    Article  CAS  PubMed  Google Scholar 

  38. Kim TH, Song HS, Jin HJ, Lee SH, Namgung S, Kim UK, Park TH, Hong S (2011) “Bioelectronic super-taster” device based on taste receptor-carbon nanotube hybrid structures. Lab Chip 11(13):2262–2267

    Article  CAS  PubMed  Google Scholar 

  39. Jin HJ, Ahn JM, Park J, Moon SJ, Hong S (2013) “Chemical-pain sensor” based on nanovesicle-carbon nanotube hybrid structures. Biosens Bioelectron 49(15):86–91

    Article  CAS  PubMed  Google Scholar 

  40. Chou MZ, Mtui T, Gao YD, Kohler M, Middleton RE (2004) Resiniferatoxin binds to the capsaicin receptor (TRPV1) near the extracellular side of the S4 transmembrane domain. Biochemistry 43(9):2501–2511

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunghun Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Park, J., Jin, H., Lee, H., Shekhar, S., Kim, D., Hong, S. (2014). Carbon Nanotube-Based Sensor Platform for Bioelectronic Nose. In: Park, T. (eds) Bioelectronic Nose. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8613-3_12

Download citation

Publish with us

Policies and ethics