Skip to main content

Biosensors Based on Odorant Binding Proteins

  • Chapter
  • First Online:
Bioelectronic Nose

Abstract

Both the sensillary lymph of insects and the nasal mucus of vertebrates contain large amounts of small soluble proteins, odorant-binding proteins that specifically and reversibly bind odors and pheromones. Proteins from different sources have affinities toward a wide range of compounds with different sizes and shapes. They can be easily expressed in heterologous systems, they show high thermal stability and it is possible to modify their binding sites by site-directed mutagenesis. We describe the development of an odor sensing biosensor array based on immobilization of odorant binding proteins on to suitable transducers. Using a quartz crystal microbalance platform as a transduction element, it is possible to detect and measure quantitatively concentrations of volatile analytes at parts per million concentrations in air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196

    Article  CAS  PubMed  Google Scholar 

  2. Arora P, Sindhu A, Kaur H, Dilbaghi N, Chaudhury A (2013) An overview of transducers as platform for the rapid detection of foodborne pathogens. Appl Microbiol Biotechnol 97(5):1829–1840

    Article  CAS  PubMed  Google Scholar 

  3. Buck LB (2004) Olfactory receptors and odor coding in mammals. Nutr Rev 62(11):S184–S188

    Article  PubMed  Google Scholar 

  4. Persaud KC (2012) Biomimetic olfactory sensors. Ieee Sens J 12(11):3108–3112

    Article  CAS  Google Scholar 

  5. Du L, Wu C, Liu Q, Huang L, Wang P (2013) Recent advances in olfactory receptor-based biosensors. Biosens Bioelectron 42:570–580

    Article  CAS  PubMed  Google Scholar 

  6. Pelosi P (2001) The role of perireceptor events in vertebrate olfaction. Cell Mol Life Sci 58(4):503–509

    Article  CAS  PubMed  Google Scholar 

  7. Persaud KC, Ng SM, Mucignat C, Pelosi P (2009) Odorant binding proteins and mouse urinary proteins: potential biomimetic sensing systems. Chem Senses 34(3):E36–E37

    Google Scholar 

  8. Lucarelli F, Tombelli S, Minunni M, Marrazza G, Mascini M (2008) Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Anal Chim Acta 609(2):139–159

    Article  CAS  PubMed  Google Scholar 

  9. Mascini M, Tombelli S (2008) Biosensors for biomarkers in medical diagnostics. Biomarkers 13(7–8):637–657

    Article  CAS  PubMed  Google Scholar 

  10. De Corcuera JIR, Cavalieri RP (2003) Biosensors. Encyclopedia of agricultural, food, and biological engineering. Ed. Dennis Heldman, Pub. Marcel-Dekker, New York (ISBN 0-8247-0938-1) pp 119–123

    Google Scholar 

  11. Erden PE, Kilic E (2013) A review of enzymatic uric acid biosensors based on amperometric detection. Talanta 107:312–323

    Article  CAS  PubMed  Google Scholar 

  12. Labuda J, Oliveira Brett AM, Evtugyn G, Fojta M, Mascini M, Ozsoz M et al (2010) Electrochemical nucleic acid-based biosensors: concepts, terms, and methodology (IUPAC technical report). Pure Appl Chem 82(5):1161–1187

    Article  CAS  Google Scholar 

  13. Liu Y, Du Y, Li CM (2013) Direct electrochemistry based biosensors and biofuel cells enabled with nanostructured materials. Electroanalysis 25(4):815–831

    Article  CAS  Google Scholar 

  14. Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19(12):1239–1257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wang XD, Wolfbeis OS (2013) Fiber-Optic chemical sensors and biosensors (2008–2012). Anal Chem 85(2):487–508

    Article  CAS  PubMed  Google Scholar 

  16. Manera M, Spadavecchia J, Leone A, Quaranta F, Rella R, Dell’atti D et al (2008) Surface plasmon resonance imaging technique for nucleic acid detection. Sens Actuators B-Chem 130(1):82–87

    Article  CAS  Google Scholar 

  17. Scarano S, Scuffi C, Mascini M, Minunni M (2011) Surface plasmon resonance imaging-based sensing for anti-bovine immunoglobulins detection in human milk and serum. Anal Chim Acta 707(1):178–183

    Article  CAS  PubMed  Google Scholar 

  18. Scarano S, Mascini M, Turner AP, Minunni M (2010) Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25(5):957–966

    Article  CAS  PubMed  Google Scholar 

  19. Glaser RW (2000) Surface plasmon resonance biosensors. In: Yang VCM, Ngo TT (eds) Biosensors and their applications. Kluwer Academic/Plenum Publishers, pp 195–212

    Google Scholar 

  20. Lec RM (2001) Piezoelectric biosensors: recent advances and applications. Proceedings of the 2001 Ieee International Frequency Control Symposium & Pda Exhibition, pp 419–429

    Google Scholar 

  21. Ferreira GN, da-Silva AC, Tome B (2009) Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance. Trends Biotechnol 27(12):689–697

    Article  CAS  PubMed  Google Scholar 

  22. Speight RE, Cooper MA (2012) A survey of the 2010 quartz crystal microbalance literature. J Mol Recognit 25(9):451–473

    Article  CAS  PubMed  Google Scholar 

  23. Sauerbrey G (1959) Verwendung Von Schwingquarzen Zur Wagung Dunner Schichten und Zur Mikrowagung. Zeitschrift fur Physik 155(2):206–222

    Article  CAS  Google Scholar 

  24. Putzbach W, Ronkainen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13(4):4811–4840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Senveli SU, Tigli O (2013) Biosensors in the small scale: methods and technology trends. Iet Nanobiotechnol 7(1):7–21

    Article  CAS  PubMed  Google Scholar 

  26. Wang R, Zhang Y, Lu D, Ge J, Liu Z, Zare RN (2013) Functional protein-organic/inorganic hybrid nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(4):320–328

    Article  CAS  PubMed  Google Scholar 

  27. Caruso F, Rinia HA, Furlong DN (1996) Gravimetric monitoring of nonionic surfactant adsorption from nonaqueous media onto quartz crystal microbalance electrodes and colloidal silica. Langmuir 12(9):2145–2152

    Article  Google Scholar 

  28. Lin JN, Drake B, Lea AS, Hansma PK, Andrade JD (1990) Direct observation of immunoglobulin adsorption dynamics using the atomic force microscope. Langmuir 6(2):509–511

    Article  CAS  Google Scholar 

  29. Giuseppone N (2012) Toward self-constructing materials: a systems chemistry approach. Acc Chem Res 45(12):2178–2188

    Article  CAS  PubMed  Google Scholar 

  30. Koepsel JT, Murphy WL (2012) Patterned self-assembled monolayers: efficient, chemically defined tools for cell biology. Chembiochem 13(12):1717–1724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Deshmukh PK, Ramani KP, Singh SS, Tekade AR, Chatap VK, Patil GB, et al (2013) Stimuli-sensitive layer-by-layer (LbL) self-assembly systems: targeting and biosensory applications. J Control Release 166(3):294–306

    Article  CAS  PubMed  Google Scholar 

  32. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96(4):1533–1554

    Article  CAS  PubMed  Google Scholar 

  33. Wink T, vanZuilen SJ, Bult A, vanBennekom WP (1997) Self-assembled monolayers for biosensors. Analyst 122(4):R43–R50

    Article  Google Scholar 

  34. Kajiya Y, Sugai H, Iwakura C, Yoneyama H (1991) Glucose sensitivity of polypyrrole films containing immobilized glucose-oxidase and hydroquinonesulfonate ions. Anal Chem 63(1):49–54

    Article  CAS  Google Scholar 

  35. Collings AF, Caruso F (1997) Biosensors: recent advances. Rep Prog Phys 60(11):1397–1445

    Article  CAS  Google Scholar 

  36. Miao Y, Chia LS, Goh NK, Tan SN (2001) Amperometric glucose biosensor based on immobilization of glucose oxidase in chitosan matrix cross-linked with glutaraldehyde. Electroanalysis 13(4):347–349

    Article  CAS  Google Scholar 

  37. Pelosi P, Baldaccini NE, Pisanelli AM (1982) Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine. Biochem J 201(1):245–248

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293(5828):161–163

    Article  CAS  PubMed  Google Scholar 

  39. Pelosi P, Calvello M, Ban LP (2005) Diversity of odorant-binding proteins and chemosensory proteins in insects. Chem Senses 30:i291–i292

    Article  Google Scholar 

  40. Pelosi P, Zhou J, Ban L, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63(14):1658–1676

    Article  CAS  PubMed  Google Scholar 

  41. Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  42. Cavaggioni A, Mucignat-Caretta C (2000) Major urinary proteins, alpha(2u)-globulins and aphrodisin. Biochim Biophys Acta-Protein Struct Mol Enzymol 1482(1–2):218–228

    Article  CAS  Google Scholar 

  43. Marchlewska-Koj A, Cavaggioni A, Mucignat-Caretta C, Olejniczak P (2000) Stimulation of estrus in female mice by male urinary proteins. J Chem Ecol 26(10):2355–2366

    Article  CAS  Google Scholar 

  44. Hurst JL, Payne CE, Nevison CM, Marie AD, Humphries RE, Robertson DHL, et al (2001) Individual recognition in mice mediated by major urinary proteins. Nature 414(6864):631–634

    Article  CAS  PubMed  Google Scholar 

  45. Cavaggioni A, Mucignat C, Tirindelli R (1999) Pheromone signalling in the mouse: role of urinary proteins and vomeronasal organ. Arch Ital Biol 137(2–3):193–200

    CAS  PubMed  Google Scholar 

  46. Mucignat-Caretta C, Cavaggioni A, Caretta A (2004) Male urinary chemosignals differentially affect aggressive behavior in male mice. J Chem Ecol 30(4):777–791

    Article  CAS  PubMed  Google Scholar 

  47. Marchese S, Pes D, Scaloni A, Carbone V, Pelosi P (1998) Lipocalins of boar salivary glands binding odours and pheromones. Eur J Biochem 252(3):563–568

    Article  CAS  PubMed  Google Scholar 

  48. Loebel D, Scaloni A, Paolini S, Fini C, Ferrara L, Breer H et al (2000) Cloning, post-translational modifications, heterologous expression and ligand-binding of boar salivary lipocalin. Biochem J 350:369–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Pevsner J, Hou V, Snowman AM, Snyder SH (1990) Odorant-binding protein—characterization of ligand-binding. J Biol Chem 265(11):6118–6125

    CAS  PubMed  Google Scholar 

  50. Pevsner J, Snyder SH (1990) Odorant-binding protein—odorant transport function in the vertebrate nasal epithelium. Chem Senses 15(2):217–222

    Article  Google Scholar 

  51. Vogt RG (1991) Pheromone and general-odorant binding-proteins in Lepidoptera. Am Zool 31(5):A16

    Google Scholar 

  52. Vogt RG (1992) Multiple classes of insect OBP provide a functional and developmental model for olfactory specificity. Chem Senses 17(5):712–713

    Google Scholar 

  53. Wang Q, Hasan G, Pikielny CW (1999) Preferential expression of biotransformation enzymes in the olfactory organs of Drosophila melanogaster, the antennae. J Biol Chem 274(15):10309–10315

    Article  CAS  PubMed  Google Scholar 

  54. Lobel D, Marchese S, Krieger J, Pelosi P, Breer H (1998) Subtypes of odorant-binding proteins—heterologous expression and ligand binding. Eur J Biochem 254(2):318–324

    Article  CAS  PubMed  Google Scholar 

  55. Lobel D, Jacob M, Volkner M, Breer H (2002) Odorants of different chemical classes interact with distinct odorant binding protein subtypes. Chem Senses 27(1):39–44

    Article  CAS  PubMed  Google Scholar 

  56. Kim MS, Repp A, Smith DP (1998) LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150(2):711–721

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Xu PX, Atkinson R, Jones DNM, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45(2):193–200

    Article  CAS  PubMed  Google Scholar 

  58. Xu PX (2005) Eppendorf 2005 winner—a Drosophila OBP required for pheromone signaling. Science 310(5749):798–799

    Article  CAS  PubMed  Google Scholar 

  59. Vogt RG, Kohne AC, Dubnau JT, Prestwich GD (1989) Expression of pheromone binding-proteins during antennal development in the gypsy-moth Lymantria dispar. J Neurosci 9(9):3332–3346

    CAS  PubMed  Google Scholar 

  60. Gyorgyi TK, Robyshemkovitz AJ, Lerner MR (1988) Characterization and cDNA cloning of the pheromone-binding protein from the tobacco hornworm, Manduca sexta—a tissue-specific developmentally regulated protein. Proc Natl Acad Sci U S A 85(24):9851–9855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Krieger J, von Nickisch-Rosenegk E, Mameli M, Pelosi P, Breer H (1996) Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol 26(3):297–307

    Article  CAS  PubMed  Google Scholar 

  62. Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA (2002) Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res 12(9):1357–1369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Riviere S, Lartigue A, Quennedey B, Campanacci V, Farine JP, Tegoni M et al (2003) A pheromone-binding protein from the cockroach Leucophaea maderae: cloning, expression and pheromone binding. Biochem J 371:573–579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Vieira FG, Sanchez-Gracia A, Rozas J (2007) Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution. Genome Biol 8(11):R235

    Article  PubMed Central  PubMed  Google Scholar 

  65. Xu PX, Zwiebel LJ, Smith DP (2003) Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 12(6):549–560

    Article  CAS  PubMed  Google Scholar 

  66. Zhou JJ, Zhang GA, Huang WS, Birkett MA, Field LM, Pickett JA et al (2004) Revisiting the odorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition and discrimination. Febs Lett 558(1–3):23–26

    Article  CAS  PubMed  Google Scholar 

  67. Zhou JJ, Huang WS, Zhang GA, Pickett JA, Field LM (2004) “Plus-C” odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 327(1):117–129

    Article  CAS  PubMed  Google Scholar 

  68. Vieira FG, Rozas J (2011) Comparative genomics of the odorant-binding and chemosensory protein gene families across the arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol 3:476–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Dalmonte M, Andreini I, Revoltella R, Pelosi P (1991) Purification and characterization of 2 odorant-binding proteins from nasal tissue of rabbit and pig. Comp Biochem Physiol B-Biochem Mol Biol 99(2):445–451

    Article  CAS  Google Scholar 

  70. Pes D, Dalmonte M, Ganni M, Pelosi P (1992) Isolation of 2 odorant-binding proteins from mouse nasal tissue. Comp Biochem Physiol B-Biochem Mol Biol 103(4):1011–1017

    Article  CAS  Google Scholar 

  71. Felicioli A, Ganni M, Garibotti M, Pelosi P (1993) Multiple types and forms of odorant-binding proteins in the old-world porcupine Hystrix cristata. Comp Biochem Physiol B-Biochem Mol Biol 105(3–4):775–784

    Article  CAS  Google Scholar 

  72. Lacazette E, Gachon AM, Pitiot G (2000) A novel human odorant-binding protein gene family resulting from genomic duplicons at 9q34: differential expression in the oral and genital spheres. Hum Mol Genet 9(2):289–301

    Article  CAS  PubMed  Google Scholar 

  73. Hwang PM, Pevsner J, Sklar PB, Venable JC, Snyder SH (1988) Localization of rat odorant-binding protein to the lateral nasal gland suggests an odorant transport function. Chem Senses 13(4):699

    Google Scholar 

  74. Pevsner J, Snyder SH (1990) Odorant-binding protein—odorant transport function in the vertebrate nasal epithelium. Chem Senses 15(2):217–222

    Article  Google Scholar 

  75. Utsumi M, Ohno K, Kawasaki Y, Tamura M, Kubo T, Tohyama M (1999) Expression of major urinary protein genes in the nasal glands associated with general olfaction. J Neurobiol 39(2):227–236

    Article  CAS  PubMed  Google Scholar 

  76. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Flower DR, North ACT, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta-Protein Struct Mol Enzymol 1482(1–2):9–24

    Article  CAS  Google Scholar 

  78. Napolitano E, Pelosi P (1992) Synthesis of thiazole and selenazole derivatives with affinity for the odorant-binding protein. Bioorg Med Chem Lett 2(12):1603–1606

    Article  CAS  Google Scholar 

  79. Pelosi P, Dal MM (1990) Purification and characterization of odorant binding proteins from nasal mucosa of pig and rabbit. Chem Senses 15(5):614

    Google Scholar 

  80. Dalmonte M, Centini M, Anselmi C, Pelosi P (1993) Binding of selected odorants to bovine and porcine odorant-binding proteins. Chem Senses 18(6):713–721

    Article  CAS  Google Scholar 

  81. Mecea VM (2005) From quartz crystal microbalance to fundamental principles of mass measurements. Anal Lett 38(5):753–767

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Elena Tuccori was supported via a Marie Curie Early Stage Researcher grant (FLEXSMELL GA-2009-238454).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna C. Persaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Persaud, K., Tuccori, E. (2014). Biosensors Based on Odorant Binding Proteins. In: Park, T. (eds) Bioelectronic Nose. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8613-3_10

Download citation

Publish with us

Policies and ethics