Skip to main content

Neural Correlates of Anhedonia as a Trait Marker for Depression

  • Chapter
  • First Online:
Anhedonia: A Comprehensive Handbook Volume II

Abstract

The classification of depression is well established in major diagnostic systems with the symptom of anhedonia defined as the loss of interest and pleasure in normally rewarding experiences. Anhedonia suggests abnormalities in neural reward mechanisms. Consistent with this, functional imaging studies of depressed patients have shown abnormalities in the neural circuitry that supports reward, which also correlates with measures on anhedonia questionnaires. Also it has been suggested that the neurobiological mechanisms underlying anhedonia could represent an endophenotype of depression which may manifest in behavioural and neural outcome changes outside acute depressive episodes. While anhedonic symptoms usually remit as depression improves it is possible that abnormalities in the neural processes underpinning reward could persist and represent vulnerability factors for future episodes of illness. It is intriguing to consider that understanding the neurobiology of reward might allow us to detect differences in reward processing in other “at risk” groups, those before the onset of a depressive episode. Taken together studies such as these might then be useful in teasing apart state from trait markers at the neural level. Early identification of risk markers for depression could then guide both early intervention and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

Anterior cingulate cortex

AMPT:

Amphetamine

DA:

Dopamine

DSM:

Diagnostic Statistical Manual

FH (+):

Family History Positive

ICD:

International Statistical Classification of Diseases

MDD:

Major Depressive Disorder

NAcc:

Nucleus Accumbens

rACC:

Rostral anterior cingulate cortex

RC:

Retrosplenial cortex

rMDD:

Remitted Major Depressive Disorder

SNRI:

Serotonin-norepinephrine reuptake inhibitor

SSRI:

Selective Serotonin reuptake inhibitor

SVC:

Small volume Correction

vmPFC:

Ventromedial prefrontal cortex

VS:

Ventral striatum

WHO:

World Health Organisation

References

  1. Murray CJL, Lopez AD. The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries and risk factors in 1990 and Projected to 2020, Global burden of disease and injury series. Cambridge: Harvard University Press; 1996.

    Google Scholar 

  2. Covinsky KE, et al. Dysphoria and anhedonia as risk factors for disability or death in older persons: implications for the assessment of geriatric depression. Am J Geriatr Psychiatry. 2013 Apr 18. pii: S1064–7481(12)00097-8. doi: 10.1016/j.jagp.2012.12.001. [Epub ahead of print]

  3. Nutt D, et al. The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J Psychopharmacol. 2007;21(5):461–71.

    Article  CAS  PubMed  Google Scholar 

  4. Nestler EJ, Carlezon Jr WA. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59(12):1151–9.

    Article  CAS  PubMed  Google Scholar 

  5. Hasler G, et al. Discovering endophenotypes for major depression. Neuropsychopharmacology. 2004;29(10):1765–81.

    Article  CAS  PubMed  Google Scholar 

  6. Lemoult J, Joormann J. Attention and memory biases in social anxiety disorder: the role of comorbid depression. Cogn Ther Res. 2012;36(1):47–57.

    Article  Google Scholar 

  7. Dryman A, Eaton WW. Affective symptoms associated with the onset of major depression in the community: findings from the US National Institute of Mental Health Epidemiologic Catchment Area Program. Acta Psychiatr Scand. 1991;84(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  8. Loas G, Pierson A. Anhedonia in psychiatry: a review. Ann Med Psychol. 1989;147(7):705–17.

    CAS  Google Scholar 

  9. Loas G. Vulnerability to depression: a model centered on anhedonia. J Affect Disord. 1996;41(1):39–53.

    Article  CAS  PubMed  Google Scholar 

  10. Schrader GD. Does anhedonia correlate with depression severity in chronic depression? Compr Psychiatry. 1997;38(5):260–3.

    Article  CAS  PubMed  Google Scholar 

  11. Liu WH, et al. Deficits in sustaining reward responses in subsyndromal and syndromal major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(4):1045–52.

    Article  PubMed  Google Scholar 

  12. Treadway MT, et al. Worth the ‘EEfRT’? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS One. 2009;4(8):e6598.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Henriques JB, Glowacki JM, Davidson RJ. Reward fails to alter response bias in depression. J Abnorm Psychol. 1994;103(3):460–6.

    Article  CAS  PubMed  Google Scholar 

  14. McFarland BR, Klein DN. Emotional reactivity in depression: diminished responsiveness to anticipated reward but not to anticipated punishment or to nonreward or avoidance. Depress Anxiety. 2009;26(2):117–22.

    Article  PubMed  Google Scholar 

  15. Pizzagalli DA, et al. Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. J Psychiatr Res. 2008;43(1):76–87.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hoebel BG, Avena NM, Rada P. Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol. 2007;7(6):617–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ikemoto S, Panksepp J. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev. 1999;31(1):6–41.

    Article  CAS  PubMed  Google Scholar 

  18. Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol. 2009;9(1):65–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. O’Doherty J, et al. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci. 2001;4(1):95–102.

    Article  PubMed  Google Scholar 

  20. Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci U S A. 2001;98(20):11818–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lane RD, et al. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia. 1997;35(11):1437–44.

    Article  CAS  PubMed  Google Scholar 

  22. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28(3):309–69.

    Article  CAS  PubMed  Google Scholar 

  23. Robbins TW, Everitt BJ. Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol. 1996;6(2):228–36.

    Article  CAS  PubMed  Google Scholar 

  24. Cardinal RN, et al. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev. 2002;26(3):321–52.

    Article  PubMed  Google Scholar 

  25. Berridge KC, Kringelbach ML. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (Berl). 2008;199(3):457–80.

    Article  CAS  Google Scholar 

  26. Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010;35(1):192–216.

    Article  PubMed  Google Scholar 

  27. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14(9):609–25.

    Article  CAS  PubMed  Google Scholar 

  28. Harvey PO, et al. Individual differences in trait anhedonia: a structural and functional magnetic resonance imaging study in non-clinical subjects. Mol Psychiatry. 2007;12(8):703, 767–775.

    Google Scholar 

  29. Wacker J, Dillon DG, Pizzagalli DA. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. Neuroimage. 2009;46(1):327–37.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Mitterschiffthaler MT, et al. Neural response to pleasant stimuli in anhedonia: an fMRI study. Neuroreport. 2003;14(2):177–82.

    Article  PubMed  Google Scholar 

  31. Schaefer HS, et al. Event-related functional magnetic resonance imaging measures of neural activity to positive social stimuli in pre- and post-treatment depression. Biol Psychiatry. 2006;60(9):974–86.

    Article  PubMed  Google Scholar 

  32. Epstein J, et al. Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. Am J Psychiatry. 2006;163(10):1784–90.

    Article  PubMed  Google Scholar 

  33. Keedwell PA, et al. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry. 2005;58(11):843–53.

    Article  PubMed  Google Scholar 

  34. Knutson B, et al. Neural responses to monetary incentives in major depression. Biol Psychiatry. 2008;63(7):686–92.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Pizzagalli DA, et al. Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatry. 2009;166(6):702–10.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Steele JD, Kumar P, Ebmeier KP. Blunted response to feedback information in depressive illness. Brain. 2007;130(Pt 9):2367–74.

    Article  CAS  PubMed  Google Scholar 

  37. Robinson OJ, et al. Ventral striatum response during reward and punishment reversal learning in unmedicated major depressive disorder. Am J Psychiatry. 2012;169(2):152–9.

    Article  PubMed  Google Scholar 

  38. Kumar P, et al. Abnormal temporal difference reward-learning signals in major depression. Brain. 2008;131(Pt 8):2084–93.

    Article  CAS  PubMed  Google Scholar 

  39. Gradin VB, et al. Expected value and prediction error abnormalities in depression and schizophrenia. Brain. 2011;134(Pt 6):1751–64.

    Article  PubMed  Google Scholar 

  40. Smoski MJ, Rittenberg A, Dichter GS. Major depressive disorder is characterized by greater reward network activation to monetary than pleasant image rewards. Psychiatry Res. 2011;194(3):263–70.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Peterson BS, Weissman MM. A brain-based endophenotype for major depressive disorder. Annu Rev Med. 2011;62:461–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kerestes R, et al. Abnormal prefrontal activity subserving attentional control of emotion in remitted depressed patients during a working memory task with emotional distracters. Psychol Med. 2012;42(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  43. McCabe C, Mishor Z. Antidepressant medications reduce subcortical-cortical resting-state functional connectivity in healthy volunteers. Neuroimage. 2011;57(4):1317–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. McCabe C, et al. Diminished neural processing of aversive and rewarding stimuli during selective serotonin reuptake inhibitor treatment. Biol Psychiatry. 2010;67(5):439–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. McCabe C, et al. SSRI administration reduces resting state functional connectivity in dorso-medial prefrontal cortex. Mol Psychiatry. 2011;16(6):592–4.

    Article  CAS  PubMed  Google Scholar 

  46. McCabe C, Cowen PJ, Harmer CJ. Neural representation of reward in recovered depressed patients. Psychopharmacology (Berl). 2009;205(4):667–77.

    Article  CAS  Google Scholar 

  47. Rolls ET, McCabe C. Enhanced affective brain representations of chocolate in cravers vs. non-cravers. Eur J Neurosci. 2007;26(4):1067–76.

    Article  PubMed  Google Scholar 

  48. McCabe C, Rolls ET. Umami: a delicious flavor formed by convergence of taste and olfactory pathways in the human brain. Eur J Neurosci. 2007;25(6):1855–64.

    Article  PubMed  Google Scholar 

  49. O’Doherty J, et al. Representation of pleasant and aversive taste in the human brain. J Neurophysiol. 2001;85(3):1315–21.

    PubMed  Google Scholar 

  50. Rolls ET, Kringelbach ML, de Araujo IE. Different representations of pleasant and unpleasant odours in the human brain. Eur J Neurosci. 2003;18(3):695–703.

    Article  PubMed  Google Scholar 

  51. Bradley BP, Mogg K, Lee SC. Attentional biases for negative information in induced and naturally occurring dysphoria. Behav Res Ther. 1997;35(10):911–27.

    Article  CAS  PubMed  Google Scholar 

  52. Murphy FC, et al. Emotional bias and inhibitory control processes in mania and depression. Psychol Med. 1999;29(6):1307–21.

    Article  CAS  PubMed  Google Scholar 

  53. Surguladze SA, et al. Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression. Neuropsychology. 2004;18(2):212–8.

    Article  PubMed  Google Scholar 

  54. Fitzgerald DA, et al. Neural correlates of internally-generated disgust via autobiographical recall: a functional magnetic resonance imaging investigation. Neurosci Lett. 2004;370(2–3):91–6.

    Article  CAS  PubMed  Google Scholar 

  55. Zald DH, Hagen MC, Pardo JV. Neural correlates of tasting concentrated quinine and sugar solutions. J Neurophysiol. 2002;87(2):1068–75.

    PubMed  Google Scholar 

  56. Zald DH, Pardo JV. The neural correlates of aversive auditory stimulation. Neuroimage. 2002;16(3 Pt 1):746–53.

    Article  PubMed  Google Scholar 

  57. Shapira NA, et al. Brain activation by disgust-inducing pictures in obsessive-compulsive disorder. Biol Psychiatry. 2003;54(7):751–6.

    Article  PubMed  Google Scholar 

  58. Phillips ML, et al. Neural responses to facial and vocal expressions of fear and disgust. Proc Biol Sci. 1998;265(1408):1809–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Lemoult J, Yoon KL, Joormann J. Affective priming in major depressive disorder. Front Integr Neurosci. 2012;6:76.

    Article  PubMed  Google Scholar 

  60. Hasler G, et al. Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects. Arch Gen Psychiatry. 2008;65(5):521–31.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Linke J, Sonnekes C, Wessa M. Sensitivity to positive and negative feedback in euthymic patients with bipolar I disorder: the last episode makes the difference. Bipolar Disord. 2011;13(7–8):638–50.

    Article  PubMed  Google Scholar 

  62. Hankin BL. Future directions in vulnerability to depression among youth: integrating risk factors and processes across multiple levels of analysis. J Clin Child Adolesc Psychol. 2012;41(5):695–718.

    Article  PubMed  Google Scholar 

  63. Di Nicola M, et al. Reduced hedonic capacity in euthymic bipolar subjects: a trait-like feature? J Affect Disord. 2013;147(1–3):446–50.

    Article  PubMed  Google Scholar 

  64. Dichter GS, et al. Remitted major depression is characterized by reward network hyperactivation during reward anticipation and hypoactivation during reward outcomes. J Affect Disord. 2012;136(3):1126–34.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Schiller CE, et al. Remitted major depression is characterized by reduced prefrontal cortex reactivity to reward loss. J Affect Disord. 2013;151(2):756–62.

    Article  PubMed  Google Scholar 

  66. Beardslee WR, Versage EM, Gladstone TR. Children of affectively ill parents: a review of the past 10 years. J Am Acad Child Adolesc Psychiatry. 1998;37(11):1134–41.

    Article  CAS  PubMed  Google Scholar 

  67. McCabe C, et al. Neural processing of reward and punishment in young people at increased familial risk of depression. Biol Psychiatry. 2012;72(7):588–94.

    Article  PubMed  Google Scholar 

  68. Gotlib IH, et al. Neural processing of reward and loss in girls at risk for major depression. Arch Gen Psychiatry. 2011;67(4):380–7.

    Article  Google Scholar 

  69. Preuschoff K, Quartz SR, Bossaerts P. Human insula activation reflects risk prediction errors as well as risk. J Neurosci. 2008;28(11):2745–52.

    Article  CAS  PubMed  Google Scholar 

  70. Monk CS, et al. Amygdala and nucleus accumbens activation to emotional facial expressions in children and adolescents at risk for major depression. Am J Psychiatry. 2008;165(1):90–8.

    Article  PubMed  Google Scholar 

  71. Macoveanu J, et al. Altered reward processing in the orbitofrontal cortex and hippocampus in healthy first-degree relatives of patients with depression. Psychol Med. 2013;1–13. doi: http://dx.doi.org/10.1017/S0033291713001815.

  72. Kendler KS, Thornton LM, Gardner CO. Stressful life events and previous episodes in the etiology of major depression in women: an evaluation of the “kindling” hypothesis. Am J Psychiatry. 2000;157(8):1243–51.

    Article  CAS  PubMed  Google Scholar 

  73. Kendler KS, Karkowski-Shuman L. Stressful life events and genetic liability to major depression: genetic control of exposure to the environment? Psychol Med. 1997;27(3):539–47.

    Article  CAS  PubMed  Google Scholar 

  74. Behrens TE, et al. Associative learning of social value. Nature. 2008;456(7219):245–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Argyropoulos SV, Nutt DJ. Anhedonia revisited: is there a role for dopamine-targeting drugs for depression? J Psychopharmacol. 2013;27(10):869–77.

    Article  PubMed  Google Scholar 

  76. Del-Ben CM, et al. The effect of citalopram pretreatment on neuronal responses to neuropsychological tasks in normal volunteers: an FMRI study. Neuropsychopharmacology. 2005;30(9):1724–34.

    Article  CAS  PubMed  Google Scholar 

  77. Vollm B, et al. Serotonergic modulation of neuronal responses to behavioural inhibition and reinforcing stimuli: an fMRI study in healthy volunteers. Eur J Neurosci. 2006;23(2):552–60.

    Article  PubMed  Google Scholar 

  78. Harmer CJ, Goodwin GM, Cowen PJ. Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. Br J Psychiatry. 2009;195(2):102–8.

    Article  PubMed  Google Scholar 

  79. Marutani T, et al. Functional magnetic resonance imaging study on the effects of acute single administration of paroxetine on motivation-related brain activity. Psychiatry Clin Neurosci. 2011;65(2):191–8.

    Article  PubMed  Google Scholar 

  80. Ossewaarde L, et al. Two-week administration of the combined serotonin-noradrenaline reuptake inhibitor duloxetine augments functioning of mesolimbic incentive processing circuits. Biol Psychiatry. 2011;70(6):568–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciara McCabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McCabe, C. (2014). Neural Correlates of Anhedonia as a Trait Marker for Depression. In: Ritsner, M. (eds) Anhedonia: A Comprehensive Handbook Volume II. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8610-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8610-2_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8609-6

  • Online ISBN: 978-94-017-8610-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics