Skip to main content

Basics Explained in More Detail (with a Bit More Mathematics)

  • Chapter
  • First Online:
Analytical Transmission Electron Microscopy
  • 3351 Accesses

Abstract

Can the intensity fluctuations generated while a wave is impinging on an edge really be explained by Huygens’ principle? Do rotational-symmetric magnetic fields really possess lens properties for electrons? How can the equations for the calculation of distances and angles between diffraction reflections be deduced in the case of a non-cubic lattice? How can the efficiency of an energy dispersive X-ray detector be calculated? How does an electron prism work? We would like to answer these and similar questions in this chapter. In doing so, it is necessary that the mathematics plays a much more important role than in the chapters before. In some cases we have written little computer programs to get quantitative results using our simplified models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Augustin Jean Fresnel, French physicist, 1788–1827.

  2. 2.

    Pierre-Simon Laplace, French mathematician, 1749–1827.

  3. 3.

    Walter Glaser, Austrian physicist and electron optician, 1906–1960.

  4. 4.

    Paul Peter Ewald, German physicist, 1888–1985.

  5. 5.

    Peter Debye, Dutch physicist, 1884–1966, Nobel prize in chemistry in 1936.

  6. 6.

    Pierre Victor Auger, French physicist, 1899–1993.

References

  1. Glaser, W.: Grundlagen der Elektronenoptik, p. 113. Springer-Verlag, Wien (1952)

    Book  Google Scholar 

  2. Glaser, W.: ibidem, p. 297

    Google Scholar 

  3. Debye, P., Bueche, A.M.: Scattering by an inhomogenous solid. J. Appl. Phys. 20, 518–525 (1949)

    Article  Google Scholar 

  4. Reimer, L.: Transmission Electron Microscopy, Physics of Image Formation and Microanalysis, p. 71. Springer-Verlag, Berlin (1997). (et sqq)

    Book  Google Scholar 

  5. Williams, D.B., Carter, C.B.: Transmission Electron Microscopy, p. 498. Springer-Verlag, New York (2009)

    Book  Google Scholar 

  6. Rang, O: Der elektronenoptische Stigmator, ein Korrektiv für astigmatische Elektronenlinsen. Optik 5, 518–530 (1949)

    Google Scholar 

  7. Bauer, H.-D.: Elektronenoptische Eigenschaften einer elektrostatischen Objektivlinse mit Vierpolsymmetrie. Optik 23, 596–609 (1965/1966)

    Google Scholar 

  8. Reimer, L.: Transmission Electron Microscopy, Physics of Image Formation and Microanalysis, p. 160. Springer-Verlag, Berlin (1997)

    Book  Google Scholar 

  9. http://www.moxtek.com/x-ray-windows/ap3-ultra-thin-polymer-windows.html

  10. Theisen, R., Vollath, D.: Tabellen der Massenschwächungskoeffizienten von Röntgenstrahlen, p. 11. Verlag Stahleisen mbH, Düsseldorf (1967). (et seqq)

    Google Scholar 

  11. National Institute of Standards and Technology: NISTIR 5632: http://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z79.html. Accessed 20 March 2012

  12. Bethe, H.: Zur Theorie des Durchgangs schneller Korpuskularstrahlung durch Materie. Annalen der Physik 5, 325–400 (1930)

    Article  Google Scholar 

  13. Schreiber, T.P., Wims, A.M.: A quantitative X-ray microanalysis thin film method using K- L- and M-lines. Ultramicroscopy 6, 323–334 (1981)

    Article  Google Scholar 

  14. Powell, C.J.: Cross sections for ionization of inner shell electrons by electrons. Rev. Mod. Phys. 48, 33–47 (1976)

    Article  Google Scholar 

  15. Wentzel, G.: Über strahlungslose Quantensprünge. Zeitschrift für Physik, 43, 524–530 (1927)

    Article  Google Scholar 

  16. Klaar, H.J., Schwaab, P.: Röntgenmikroanalyse im Elektronenmikroskop, part 1: Grundlagen und Messtechnik. Prakt. Metallogr. 27, 319–331, part 2: Quantitative Analyse, 373–384, part 3: Vergleich mit anderen Verfahren, 429–438 (1990)

    Google Scholar 

  17. Burhop, E.H.S.: Le rendement de fluorescence. J. Phys. Radium 16, 625–629 (1955). (cited in [16])

    Article  Google Scholar 

  18. Scofield, J.H.: Radiative Transitions in: Atomic inner shell processes, vol. I, pp. 265–292 (Ed. B. Crasemann). Academic Press, New York (1975)

    Chapter  Google Scholar 

  19. Goldstein, J.I., Costley, J.L., Lorimer, G.W., Reed, S.J.B.: Quantitative X-ray analysis in the electron microscope. In: Johari, O. (ed.) Scanning Electron Microscopy, vol. 1, pp. 315–324. ITTRI, Chicago (1977), (cited in [16])

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Thomas .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thomas, J., Gemming, T. (2014). Basics Explained in More Detail (with a Bit More Mathematics). In: Analytical Transmission Electron Microscopy. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8601-0_10

Download citation

Publish with us

Policies and ethics