Climate Change and Early Warning Systems for Wildland Fire

  • William J. de Groot
  • Michael D. Flannigan


Wildland fires burn several hundred million hectares of vegetation around the world every year. A proportion of these wildland fires cause disastrous social, economic, and/or environmental impacts. Disaster fires occur in every global region and vegetated biome. Recent research suggests a general increase in area burned and fire occurrence during the last few decades, but there is much global variability. Wildland fire regimes are primarily driven by climate/weather, fuels, ignition agents, and people. All of these factors are dynamic and their variable interactions create a mosaic of fire regimes around the world. Climate change will have a substantial impact on future fire regimes. Under a warmer and drier future climate, fire management agencies will be challenged by fire weather conditions that could push current suppression capacity beyond a tipping point, resulting in a substantial increase in large fires, and a corresponding increase in disaster fires. To mitigate or prevent wildfire disaster, land and forest fire managers require early warning of extreme fire danger conditions. This allows time to implement fire prevention, detection, and presuppression action plans before disaster fires occur. Fire danger rating is the cornerstone of fire management decision-making and is commonly used to provide early warning of potential wildfires. Currently, less than half of the world has a national fire danger rating system in place. The Global Early Warning System for Wildland Fire is based on extended fire danger forecasts and aims to contribute to the Global Multi-Hazard Early Warning System evolving under the auspices of the United Nations International Strategy for Disaster Reduction, and contribute to implementation of the Hyogo Framework for Action. By using longer-term forecast data from advanced numerical weather models, and early warning products that are further enhanced with satellite data, the global system provides extra time to coordinate suppression resource-sharing and mobilization within and between countries in advance of disaster conditions.


Changing fire regimes Fire danger rating Fire weather Forecasting Presuppression preparedness Wildfire disaster 



Alan Cantin designed the Global EWS-Fire website. Natasha Jurko prepared the demonstration material for Central and South America. Alan Cantin and Chelene Krezek-Hanes prepared the pilot study demonstration material for sub-Saharan Africa. Johann Goldammer, Chris Justice, Tim Lynham, Ivan Csiszar, Jesús San-Miguel-Ayanz, Kevin O’Loughlin, Tom Keenan, and Graham Mills collaborated in Global EWS-Fire development. Johann Goldammer, Brian Stocks, and Mike Wotton provided helpful review comments.


  1. Asian Development Bank (ADB), National Development Planning Agency (BAPPENAS) (1999) Causes, extent, impact and costs of 1997/98 fires and drought. Final report, Annex 1 and 2. Planning for Fire Prevention and Drought Management Project. Asian Development Bank TA 2999-INO Fortech. Pusat Pengembangan AgribisnisGoogle Scholar
  2. Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytologist 165:525–538CrossRefGoogle Scholar
  3. Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the Earth system. Science 324:481–484CrossRefGoogle Scholar
  4. Ceccato P, Leblon B, Chuvieco E, Flasse S, Carlson J (2003) Estimation of live fuel moisture content. In: Chuvieco E (ed) Wildlife fire danger estimation and mapping. World Scientific Publishing Co, Singapore, pp 63–90CrossRefGoogle Scholar
  5. Cochrane MA (2003) Fire science for rainforests. Nature 421:913–919CrossRefGoogle Scholar
  6. de Groot WJ, Wardati, Wang Y (2005) Calibrating the Fine Fuel Moisture Code for grass ignition potential in Sumatra, Indonesia. Int J Wildland Fire 14:161–168CrossRefGoogle Scholar
  7. de Groot WJ, Goldammer JG, Keenan T, Lynham TJ, Brady MA, Justice CO, Csiszar IA, O’Loughlin K (2006) Developing a global early warning system for wildland fire. In: Viegas DX (ed) Proceedings of the IV international conference on forest fire research (Coimbra, Portugal), CD-ROM. Elsevier BV, AmsterdamGoogle Scholar
  8. DeBell LJ, Talbot RW, Dibb JE, Munger JW, Fischer EV, Frolking SE (2004) A major regional air pollution event in the northeastern United States caused by extensive forest fires in Quebec, Canada. J Geophys Res 109. doi: 10.1029/2004JD004840
  9. Deeming JE et al (1972) National fire-danger rating system. US For Serv Res Paper RM-84:165Google Scholar
  10. Deeming JE, Burgan RE, Cohen JD (1977) The National Fire Danger Rating System – 1978, USDA For. Serv., Intermt. For. Range Exp. Stn., Ogden, Utah, Gen. Tech. Rep. INT-39Google Scholar
  11. FAO (2006) Fire management review: international cooperation. Fire Management Working Paper 18. Food and Agriculture Organization, United Nations, RomeGoogle Scholar
  12. FAO (2007) Fire management – global assessment 2006. Forestry paper 151. Food and Agriculture Organization, United Nations, RomeGoogle Scholar
  13. FAO (2011) Community-based fire management. Forestry Paper 166. Food and Agriculture Organization, United Nations, RomeGoogle Scholar
  14. Flannigan M, Logan K, Amiro B, Skinner W, Stocks B (2005) Future area burned in Canada. Clim Change 72:1–16CrossRefGoogle Scholar
  15. Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009a) Implications of changing climate for global wildland fire. Int J Wildland Fire 18:483–507CrossRefGoogle Scholar
  16. Flannigan MD, Stocks BJ, Turetsky MR, Wotton BM (2009b) Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biol 15:549–560CrossRefGoogle Scholar
  17. Flannigan MD, Cantin AS, de Groot WJ, Wotton BM, Newbery A, Gowman LM (2013) Global wildland fire season severity in the 21st century. Forest Ecol Manag 294:54–61Google Scholar
  18. Forestry Canada Fire Danger Group (1992) Development and structure of the Canadian Forest Fire Behavior Prediction System. Forestry Canada, Ottawa. Inf Rep ST-X-3Google Scholar
  19. Fosberg MA (1978) Weather in wildland fire management: the fire weather index. In: Proceedings of the Conference on Sierra Nevada Meteorology, 19–21 June, Lake Tahoe. Bull Am Meteor Soc Boston 1–4Google Scholar
  20. Giglio L, Randerson JT, Van der Werf GR, Kasibhatla PS, Collatz GJ, Morton DC, DeFries RS (2010) Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 7:1171–1186CrossRefGoogle Scholar
  21. Gillett NP, Weaver AJ, Zwiers FW, Flannigan MD (2004) Detecting the effect of climate change on Canadian forest fires. Geophys Res Lett 31:L18211.18211–L18211.18214Google Scholar
  22. Global Fire Monitoring Center (GFMC). Global wildland fire fatalities and damages reports 2009-2012. IFFN/GFMC Global Wildland Fire Network Bulletins:
  23. Goldammer JG (2010) Preliminary assessment of the fire situation in Western Russia in 2010 by the Global Fire Monitoring Center, 15 August 2010. Presented at the State Duma, Moscow, 23 Sep 2010. IFFN 40:20–42Google Scholar
  24. Goldammer JG, Statheropoulos M, Andreae MO (2009) Impacts of vegetation fire emissions on the environment, human health, and security: a global perspective. In: Bytnerowicz A Arbaugh MJ, Riebau AR, Andersen C (eds) Wildland fires and air pollution, vol 8. Krupa SV (series ed) Developments in environmental science. Elsevier, Amsterdam, pp 1–36Google Scholar
  25. Goodrick SL (2002) Modification of the Fosberg fire weather index to include drought. Int J Wildland Fire 11:205–211CrossRefGoogle Scholar
  26. Haines DA (1988) A lower atmospheric severity index for wildland fire. Natl Weather Dig 13(2):23–27Google Scholar
  27. IPCC (2000) Emissions scenarios. Cambridge University Press, CambridgeGoogle Scholar
  28. IPCC (2007) Climate change 2007: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, p 104Google Scholar
  29. Kasischke ES, Turetsky MR (2006) Recent changes in the fire regime across the North American boreal region-Spatial and temporal patterns of burning across Canada and Alaska. Geophys Res Lett 33, L09703Google Scholar
  30. Keetch JJ, Byram GM (1968) A drought index for forest fire control. USDA Forest Service, Asheville. Res Paper SE-38. 32 pp. (Revised 1988)Google Scholar
  31. Luke RH, McArthur AG (1978) Bushfires in Australia. CSIRO Div. For. Res., Australian Gov. Publ. Serv., CanberraGoogle Scholar
  32. Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–702CrossRefGoogle Scholar
  33. McArthur AG (1966) Forest fire danger meter, Mk4. For. and Timber Bur., For. Res. Dist., CanberraGoogle Scholar
  34. McArthur AG (1976) Fire danger rating systems. FAO Consultation on Fires in the Mediterranean Region, Rome. FO:FFM/77/3-01, FranceGoogle Scholar
  35. Meikle S, Heine J (1987) A Fire Danger Index system for the Transvaal Lowveld and adjoining escarpment area. S Afr For J 55–56Google Scholar
  36. Mouillot F, Field CB (2005) Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Global Change Biol 11:398–420CrossRefGoogle Scholar
  37. Nesterov VG (1949) Combustibility of the forest and methods for its determination. USSR State Industry Press, Moscow, 76 p. (In Russian)Google Scholar
  38. Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci U S A 107:19167–19170CrossRefGoogle Scholar
  39. Podur J, Wotton BM (2010) Will climate change overwhelm fire management capacity? Ecol Model 221:1301–1309CrossRefGoogle Scholar
  40. Power M, Marlon J, Ortiz N, Bartlein P, Harrison S, Mayle F, Ballouche A, Bradshaw R, Carcaillet C, Cordova C, Mooney S, Moreno P, Prentice I, Thonicke K, Tinner W, Whitlock C, Zhang Y, Zhao Y, Ali A, Anderson R, Beer R, Behling H, Briles C, Brown K, Brunelle A, Bush M, Camill P, Chu G, Clark J, Colombaroli D, Connor S, Daniau AL, Daniels M, Dodson J, Doughty E, Edwards M, Finsinger W, Foster D, Frechette J, Gaillard MJ, Gavin D, Gobet E, Haberle S, Hallett D, Higuera P, Hope G, Horn S, Inoue J, Kaltenrieder P, Kennedy L, Kong Z, Larsen C, Long C, Lynch J, Lynch E, McGlone M, Meeks S, Mensing S, Meyer G, Minckley T, Mohr J, Nelson D, New J, Newnham R, Noti R, Oswald W, Pierce J, Richard P, Rowe C, Sanchez Goni M, Shuman B, Takahara H, Toney J, Turney C, Urrego-Sanchez D, Umbanhowar C, Vandergoes M, Vanniere B, Vescovi E, Walsh M, Wang X, Williams N, Wilmshurst J, Zhang J (2008) Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dyn 30:887–907CrossRefGoogle Scholar
  41. Pyne SJ (2001) Fire: a brief history. University of Washington Press, SeattleGoogle Scholar
  42. Rittmaster R, Adamowicz WL, Amiro B, Pelletier RT (2006) Economic analysis of health effects from forest fires. Can J For Res 36:868–877CrossRefGoogle Scholar
  43. Sastry N (2002) Forest fires, air pollution, and mortality in Southeast Asia. Demography 39:1–23CrossRefGoogle Scholar
  44. Scott AC, Glasspool IJ (2006) The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc Natl Acad Sci U S A 103:10861–10865CrossRefGoogle Scholar
  45. Setzer AW, Sismanoglu RA (2012) Risco de Fogo: Metodologia do Cálculo – Descrição sucinta da Versão 9. Accessed 24 July 2013
  46. Sharples JJ, McRae RHD, Weber RO, Gill AM (2009a) A simple index for assessing fire danger rating. Environ Model Software 24:764–774CrossRefGoogle Scholar
  47. Sharples JJ, McRae RHD, Weber RO, Gill AM (2009b) A simple index for assessing fuel moisture content. Environ Model Software 24(5):637–646CrossRefGoogle Scholar
  48. Stocks BJ (1993) Global warming and forest fires in Canada. For Chron 69(3):290–293CrossRefGoogle Scholar
  49. Stocks BJ, Lawson BD, Alexander ME, Van Wagner CE, McAlpine RS, Lynham TJ, Dube DE (1989) Canadian Forest Fire Danger Rating System: an overview. For Chron 65:258–265CrossRefGoogle Scholar
  50. Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, Flannigan MD, Hirsch KG, Logan KA, Martell DL, Skinner WR (2003) Large forest fires in Canada, 1959–1997. J Geophys Res 108:8149CrossRefGoogle Scholar
  51. Stocks BJ, Alexander ME, Lanoville RA (2004) Overview of the international crown fire modeling experiment (ICFME). Can J For Res 34:1543–1547CrossRefGoogle Scholar
  52. Van Wagner CE (1970) Conversion of Williams severity rating for use with the fire weather index. Can. Dep. Fisheries and For., Petawawa Forest Expt. Stn., PetawawaGoogle Scholar
  53. Van Wagner CE (1987) Development and structure of the Canadian forest fire weather index system. Canadian Forest Service, OttawaGoogle Scholar
  54. Vonsky SM, Zhdanko VA, Korbut VI, Semenov MM, Tetjusheva LV, Zavgorodhaja LS (1975) Compiling and using the local scales of fire danger in the forest (in Russian). LenNIILH, Leningrad Google Scholar
  55. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313:940–943CrossRefGoogle Scholar
  56. Wooster MJ (2002) Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophys Res Lett 29(21):2027. doi: 10.1029/2002GL015487 CrossRefGoogle Scholar
  57. Wooster MJ, Zhukov B, Oertel D (2003) Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing Environ 86:83–107CrossRefGoogle Scholar
  58. Wotton B (2009) Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environ Ecol Stat 16:107–131CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Natural Resources Canada, Canadian Forest ServiceSault Ste. MarieCanada
  2. 2.Department of Renewable ResourcesUniversity of AlbertaEdmontonCanada

Personalised recommendations