Skip to main content

Climate Change and Early Warning Systems for Wildland Fire

  • Chapter
  • First Online:

Abstract

Wildland fires burn several hundred million hectares of vegetation around the world every year. A proportion of these wildland fires cause disastrous social, economic, and/or environmental impacts. Disaster fires occur in every global region and vegetated biome. Recent research suggests a general increase in area burned and fire occurrence during the last few decades, but there is much global variability. Wildland fire regimes are primarily driven by climate/weather, fuels, ignition agents, and people. All of these factors are dynamic and their variable interactions create a mosaic of fire regimes around the world. Climate change will have a substantial impact on future fire regimes. Under a warmer and drier future climate, fire management agencies will be challenged by fire weather conditions that could push current suppression capacity beyond a tipping point, resulting in a substantial increase in large fires, and a corresponding increase in disaster fires. To mitigate or prevent wildfire disaster, land and forest fire managers require early warning of extreme fire danger conditions. This allows time to implement fire prevention, detection, and presuppression action plans before disaster fires occur. Fire danger rating is the cornerstone of fire management decision-making and is commonly used to provide early warning of potential wildfires. Currently, less than half of the world has a national fire danger rating system in place. The Global Early Warning System for Wildland Fire is based on extended fire danger forecasts and aims to contribute to the Global Multi-Hazard Early Warning System evolving under the auspices of the United Nations International Strategy for Disaster Reduction, and contribute to implementation of the Hyogo Framework for Action. By using longer-term forecast data from advanced numerical weather models, and early warning products that are further enhanced with satellite data, the global system provides extra time to coordinate suppression resource-sharing and mobilization within and between countries in advance of disaster conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Fire danger is a measure of the potential for a fire to start, spread, and do damage.

  2. 2.

    More information is available at http://afis.co.za.

  3. 3.

    Documented on the GFMC Early Warning Portal (www.fire.uni-freiburg.de/fwf/EWS.htm).

  4. 4.

    http://gofc-fire.umd.edu/index.php.

  5. 5.

    http://www.fire.uni-freiburg.de/gwfews/forecast_ews.html.

  6. 6.

    http://forest.jrc.ec.europa.eu/effis/.

  7. 7.

    http://www.cefa.dri.edu/CFS/fwi.php.

  8. 8.

    http://cwfis.cfs.nrcan.gc.ca.

  9. 9.

    For further information, see Global Forecast System details at http://www.emc.ncep.noaa.gov.

  10. 10.

    http://www.ecmwf.int/.

  11. 11.

    http://www.fire.uni-freiburg.de/GlobalNetworks/globalNet.html.

  12. 12.

    http://gofc-fire.umd.edu/RegNtwks/index.php.

  13. 13.

    http://forest.jrc.ec.europa.eu/effis/.

  14. 14.

    http://haze.asean.org/.

  15. 15.

    http://wamis.meraka.org.za/products/fire-danger.

  16. 16.

    http://www.fire.uni-freiburg.de/fwf/eurasia1.htm.

  17. 17.

    http://www.inpe.br/queimadas/abasFogo.php.

References

  • Asian Development Bank (ADB), National Development Planning Agency (BAPPENAS) (1999) Causes, extent, impact and costs of 1997/98 fires and drought. Final report, Annex 1 and 2. Planning for Fire Prevention and Drought Management Project. Asian Development Bank TA 2999-INO Fortech. Pusat Pengembangan Agribisnis

    Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytologist 165:525–538

    Article  Google Scholar 

  • Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the Earth system. Science 324:481–484

    Article  Google Scholar 

  • Ceccato P, Leblon B, Chuvieco E, Flasse S, Carlson J (2003) Estimation of live fuel moisture content. In: Chuvieco E (ed) Wildlife fire danger estimation and mapping. World Scientific Publishing Co, Singapore, pp 63–90

    Chapter  Google Scholar 

  • Cochrane MA (2003) Fire science for rainforests. Nature 421:913–919

    Article  Google Scholar 

  • de Groot WJ, Wardati, Wang Y (2005) Calibrating the Fine Fuel Moisture Code for grass ignition potential in Sumatra, Indonesia. Int J Wildland Fire 14:161–168

    Article  Google Scholar 

  • de Groot WJ, Goldammer JG, Keenan T, Lynham TJ, Brady MA, Justice CO, Csiszar IA, O’Loughlin K (2006) Developing a global early warning system for wildland fire. In: Viegas DX (ed) Proceedings of the IV international conference on forest fire research (Coimbra, Portugal), CD-ROM. Elsevier BV, Amsterdam

    Google Scholar 

  • DeBell LJ, Talbot RW, Dibb JE, Munger JW, Fischer EV, Frolking SE (2004) A major regional air pollution event in the northeastern United States caused by extensive forest fires in Quebec, Canada. J Geophys Res 109. doi:10.1029/2004JD004840

  • Deeming JE et al (1972) National fire-danger rating system. US For Serv Res Paper RM-84:165

    Google Scholar 

  • Deeming JE, Burgan RE, Cohen JD (1977) The National Fire Danger Rating System – 1978, USDA For. Serv., Intermt. For. Range Exp. Stn., Ogden, Utah, Gen. Tech. Rep. INT-39

    Google Scholar 

  • FAO (2006) Fire management review: international cooperation. Fire Management Working Paper 18. Food and Agriculture Organization, United Nations, Rome

    Google Scholar 

  • FAO (2007) Fire management – global assessment 2006. Forestry paper 151. Food and Agriculture Organization, United Nations, Rome

    Google Scholar 

  • FAO (2011) Community-based fire management. Forestry Paper 166. Food and Agriculture Organization, United Nations, Rome

    Google Scholar 

  • Flannigan M, Logan K, Amiro B, Skinner W, Stocks B (2005) Future area burned in Canada. Clim Change 72:1–16

    Article  Google Scholar 

  • Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009a) Implications of changing climate for global wildland fire. Int J Wildland Fire 18:483–507

    Article  Google Scholar 

  • Flannigan MD, Stocks BJ, Turetsky MR, Wotton BM (2009b) Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biol 15:549–560

    Article  Google Scholar 

  • Flannigan MD, Cantin AS, de Groot WJ, Wotton BM, Newbery A, Gowman LM (2013) Global wildland fire season severity in the 21st century. Forest Ecol Manag 294:54–61

    Google Scholar 

  • Forestry Canada Fire Danger Group (1992) Development and structure of the Canadian Forest Fire Behavior Prediction System. Forestry Canada, Ottawa. Inf Rep ST-X-3

    Google Scholar 

  • Fosberg MA (1978) Weather in wildland fire management: the fire weather index. In: Proceedings of the Conference on Sierra Nevada Meteorology, 19–21 June, Lake Tahoe. Bull Am Meteor Soc Boston 1–4

    Google Scholar 

  • Giglio L, Randerson JT, Van der Werf GR, Kasibhatla PS, Collatz GJ, Morton DC, DeFries RS (2010) Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 7:1171–1186

    Article  Google Scholar 

  • Gillett NP, Weaver AJ, Zwiers FW, Flannigan MD (2004) Detecting the effect of climate change on Canadian forest fires. Geophys Res Lett 31:L18211.18211–L18211.18214

    Google Scholar 

  • Global Fire Monitoring Center (GFMC). Global wildland fire fatalities and damages reports 2009-2012. IFFN/GFMC Global Wildland Fire Network Bulletins: http://www.fire.uni-freiburg.de/media/bulletin_news.htm

  • Goldammer JG (2010) Preliminary assessment of the fire situation in Western Russia in 2010 by the Global Fire Monitoring Center, 15 August 2010. Presented at the State Duma, Moscow, 23 Sep 2010. IFFN 40:20–42

    Google Scholar 

  • Goldammer JG, Statheropoulos M, Andreae MO (2009) Impacts of vegetation fire emissions on the environment, human health, and security: a global perspective. In: Bytnerowicz A Arbaugh MJ, Riebau AR, Andersen C (eds) Wildland fires and air pollution, vol 8. Krupa SV (series ed) Developments in environmental science. Elsevier, Amsterdam, pp 1–36

    Google Scholar 

  • Goodrick SL (2002) Modification of the Fosberg fire weather index to include drought. Int J Wildland Fire 11:205–211

    Article  Google Scholar 

  • Haines DA (1988) A lower atmospheric severity index for wildland fire. Natl Weather Dig 13(2):23–27

    Google Scholar 

  • IPCC (2000) Emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, p 104

    Google Scholar 

  • Kasischke ES, Turetsky MR (2006) Recent changes in the fire regime across the North American boreal region-Spatial and temporal patterns of burning across Canada and Alaska. Geophys Res Lett 33, L09703

    Google Scholar 

  • Keetch JJ, Byram GM (1968) A drought index for forest fire control. USDA Forest Service, Asheville. Res Paper SE-38. 32 pp. (Revised 1988)

    Google Scholar 

  • Luke RH, McArthur AG (1978) Bushfires in Australia. CSIRO Div. For. Res., Australian Gov. Publ. Serv., Canberra

    Google Scholar 

  • Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–702

    Article  Google Scholar 

  • McArthur AG (1966) Forest fire danger meter, Mk4. For. and Timber Bur., For. Res. Dist., Canberra

    Google Scholar 

  • McArthur AG (1976) Fire danger rating systems. FAO Consultation on Fires in the Mediterranean Region, Rome. FO:FFM/77/3-01, France

    Google Scholar 

  • Meikle S, Heine J (1987) A Fire Danger Index system for the Transvaal Lowveld and adjoining escarpment area. S Afr For J 55–56

    Google Scholar 

  • Mouillot F, Field CB (2005) Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Global Change Biol 11:398–420

    Article  Google Scholar 

  • Nesterov VG (1949) Combustibility of the forest and methods for its determination. USSR State Industry Press, Moscow, 76 p. (In Russian)

    Google Scholar 

  • Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci U S A 107:19167–19170

    Article  Google Scholar 

  • Podur J, Wotton BM (2010) Will climate change overwhelm fire management capacity? Ecol Model 221:1301–1309

    Article  Google Scholar 

  • Power M, Marlon J, Ortiz N, Bartlein P, Harrison S, Mayle F, Ballouche A, Bradshaw R, Carcaillet C, Cordova C, Mooney S, Moreno P, Prentice I, Thonicke K, Tinner W, Whitlock C, Zhang Y, Zhao Y, Ali A, Anderson R, Beer R, Behling H, Briles C, Brown K, Brunelle A, Bush M, Camill P, Chu G, Clark J, Colombaroli D, Connor S, Daniau AL, Daniels M, Dodson J, Doughty E, Edwards M, Finsinger W, Foster D, Frechette J, Gaillard MJ, Gavin D, Gobet E, Haberle S, Hallett D, Higuera P, Hope G, Horn S, Inoue J, Kaltenrieder P, Kennedy L, Kong Z, Larsen C, Long C, Lynch J, Lynch E, McGlone M, Meeks S, Mensing S, Meyer G, Minckley T, Mohr J, Nelson D, New J, Newnham R, Noti R, Oswald W, Pierce J, Richard P, Rowe C, Sanchez Goni M, Shuman B, Takahara H, Toney J, Turney C, Urrego-Sanchez D, Umbanhowar C, Vandergoes M, Vanniere B, Vescovi E, Walsh M, Wang X, Williams N, Wilmshurst J, Zhang J (2008) Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dyn 30:887–907

    Article  Google Scholar 

  • Pyne SJ (2001) Fire: a brief history. University of Washington Press, Seattle

    Google Scholar 

  • Rittmaster R, Adamowicz WL, Amiro B, Pelletier RT (2006) Economic analysis of health effects from forest fires. Can J For Res 36:868–877

    Article  Google Scholar 

  • Sastry N (2002) Forest fires, air pollution, and mortality in Southeast Asia. Demography 39:1–23

    Article  Google Scholar 

  • Scott AC, Glasspool IJ (2006) The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc Natl Acad Sci U S A 103:10861–10865

    Article  Google Scholar 

  • Setzer AW, Sismanoglu RA (2012) Risco de Fogo: Metodologia do Cálculo – Descrição sucinta da Versão 9. http://queimadas.cptec.inpe.br/~rqueimadas/documentos/RiscoFogo_Sucinto.pdf. Accessed 24 July 2013

  • Sharples JJ, McRae RHD, Weber RO, Gill AM (2009a) A simple index for assessing fire danger rating. Environ Model Software 24:764–774

    Article  Google Scholar 

  • Sharples JJ, McRae RHD, Weber RO, Gill AM (2009b) A simple index for assessing fuel moisture content. Environ Model Software 24(5):637–646

    Article  Google Scholar 

  • Stocks BJ (1993) Global warming and forest fires in Canada. For Chron 69(3):290–293

    Article  Google Scholar 

  • Stocks BJ, Lawson BD, Alexander ME, Van Wagner CE, McAlpine RS, Lynham TJ, Dube DE (1989) Canadian Forest Fire Danger Rating System: an overview. For Chron 65:258–265

    Article  Google Scholar 

  • Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, Flannigan MD, Hirsch KG, Logan KA, Martell DL, Skinner WR (2003) Large forest fires in Canada, 1959–1997. J Geophys Res 108:8149

    Article  Google Scholar 

  • Stocks BJ, Alexander ME, Lanoville RA (2004) Overview of the international crown fire modeling experiment (ICFME). Can J For Res 34:1543–1547

    Article  Google Scholar 

  • Van Wagner CE (1970) Conversion of Williams severity rating for use with the fire weather index. Can. Dep. Fisheries and For., Petawawa Forest Expt. Stn., Petawawa

    Google Scholar 

  • Van Wagner CE (1987) Development and structure of the Canadian forest fire weather index system. Canadian Forest Service, Ottawa

    Google Scholar 

  • Vonsky SM, Zhdanko VA, Korbut VI, Semenov MM, Tetjusheva LV, Zavgorodhaja LS (1975) Compiling and using the local scales of fire danger in the forest (in Russian). LenNIILH, Leningrad

    Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313:940–943

    Article  Google Scholar 

  • Wooster MJ (2002) Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophys Res Lett 29(21):2027. doi:10.1029/2002GL015487

    Article  Google Scholar 

  • Wooster MJ, Zhukov B, Oertel D (2003) Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing Environ 86:83–107

    Article  Google Scholar 

  • Wotton B (2009) Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environ Ecol Stat 16:107–131

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Alan Cantin designed the Global EWS-Fire website. Natasha Jurko prepared the demonstration material for Central and South America. Alan Cantin and Chelene Krezek-Hanes prepared the pilot study demonstration material for sub-Saharan Africa. Johann Goldammer, Chris Justice, Tim Lynham, Ivan Csiszar, Jesús San-Miguel-Ayanz, Kevin O’Loughlin, Tom Keenan, and Graham Mills collaborated in Global EWS-Fire development. Johann Goldammer, Brian Stocks, and Mike Wotton provided helpful review comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. de Groot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Groot, W.J., Flannigan, M.D. (2014). Climate Change and Early Warning Systems for Wildland Fire. In: Singh, A., Zommers, Z. (eds) Reducing Disaster: Early Warning Systems For Climate Change. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8598-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8598-3_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8597-6

  • Online ISBN: 978-94-017-8598-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics