Skip to main content

Anhedonia in Mouse Models of Methamphetamine-Induced Drug Seeking Behavior

  • Chapter
  • First Online:
  • 1547 Accesses

Abstract

Mood enhancement induced by drugs of abuse, such as methamphetamine, is often followed by a period during which the mood state is depressed. This state is termed drug-induced withdrawal dysphoria. Desire to avoid this dysphoric state during withdrawal motivates drug seeking behavior to alleviate withdrawal symptoms, even in anticipation of those symptoms (e.g. negative reinforcement), and maintains drug seeking behavior in addicted individuals. The state associated with methamphetamine (METH) withdrawal has been characterized as a depressive-like syndrome characterized by dysphoria, anhedonia, anxiety, akinesia, self-injurious behavior, social inhibition and suicidal ideation. A core manifestation of the depressive symptoms of this state is anhedonia, defined as a diminished interest in or pleasure from rewarding stimuli. In human drug abusers it is difficult to dissociate pre-existing depressive symptoms from drug withdrawal-induced symptoms or exacerbation of existing symptoms. This may be particularly true for anhedonia, which may lead individuals to seek out stimuli that more strongly activate reward systems. Medication for the treatment of dysphoric and anhedonic states will be important for addiction treatment in METH abusers. There are currently no effective treatments for METH abuse, or for METH-induced withdrawal dysphoria or anhedonia. We have recently developed a mouse model of anhedonia in which social isolation reduces responses to a reinforcing stimulus (e.g. anhedonia), a state that is reversed by a type of environmental enrichment (i.e. a running wheel). These observations suggest that alleviation of METH-induced withdrawal dysphoria in mice may be effectively achieved by altering environmental conditions. This chapter considers this model and compares it to other models of anhedonia and considers the role that anhedonia may play in the maintenance of drug-seeking behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACTH:

Adrenocorticotropic hormone

AMPH:

Amphetamine

BDNF:

Brain-derived neurotrophic factor

CB1 receptor:

Cannabinoid receptor 1

CCI:

Chronic constriction injury

CMS:

Chronic mild stress

DAT:

Dopamine transporter

DISC1:

Disrupted-in-Schizophrenia-1

EAAT2:

Excitatory amino acid transporter 2

FH:

Fawn-Hooded

FSL:

Flinders sensitive line

GABA:

γ-aminobutyric acid

GLT-1:

Glial glutamate transporter 1

GluN1:

Glutamate receptor, ionotropic, N-methyl-d-aspartate ζ1 subunit

Grin1:

Same as GluN1

HPA:

Hypothalamic-pituitary-adrenal

ICSS:

Intracranial self-stimulation

LH:

Learned helplessness

METH:

Methamphetamine

NAc:

Nucleus accumbens

NET:

Norepinephrine transporter

NMDA:

N-methyl-d-aspartate

NR1:

Same as GluN1

SD:

Sprague-Dawley

SERT:

Serotonin transporter

VGLUT1:

Vesicular glutamate transporter 1

WKY:

Wistar-Kyoto

References

  1. Murray JB. Psychophysiological aspects of amphetamine-methamphetamine abuse. J Psychol. 1998;132:227–37.

    CAS  PubMed  Google Scholar 

  2. Panenka WJ, Procyshyn RM, Lecomte T, et al. Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend. 2012. doi:10.1016/j.drugalcdep.2012.11.016.

    PubMed  Google Scholar 

  3. Barr AM, Panenka WJ, MacEwan GW, et al. The need for speed: an update on methamphetamine addiction. J Psychiatry Neurosci. 2006;31:301–13.

    PubMed Central  PubMed  Google Scholar 

  4. Randrup A, Munkvad I. Stereotyped activities produced by amphetamine in several animal species and man. Psychopharmacologia. 1967;11:300–10.

    CAS  PubMed  Google Scholar 

  5. National Institute on Drug Abuse. NIDA InfoFacts: methamphetamine. 2004. http://www.drugabuse.gov/publications/drugfacts/methamphetamine

  6. Kramer JC, Fischman VS, Littlefield DC. Amphetamine abuse. Pattern and effects of high doses taken intravenously. JAMA. 1967;201:305–9.

    CAS  PubMed  Google Scholar 

  7. Ujike H, Sato M. Clinical features of sensitization to methamphetamine observed in patients with methamphetamine dependence and psychosis. Ann N Y Acad Sci. 2004;1025:279–87.

    CAS  PubMed  Google Scholar 

  8. Lago JA, Kosten TR. Stimulant withdrawal. Addiction. 1994;89:1477–81.

    CAS  PubMed  Google Scholar 

  9. Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278:52–8.

    CAS  PubMed  Google Scholar 

  10. Gawin FH, Ellinwood Jr EH. Cocaine and other stimulants. Actions, abuse, and treatment. N Engl J Med. 1988;318:1173–82.

    CAS  PubMed  Google Scholar 

  11. Koob GF, Le Moal M. Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc B Biol Sci. 2008;363:3113–23.

    Google Scholar 

  12. Rothman RB, Partilla JS, Dersch CM, et al. Methamphetamine dependence: medication development efforts based on the dual deficit model of stimulant addiction. Ann N Y Acad Sci. 2000;914:71–81.

    CAS  PubMed  Google Scholar 

  13. Gorwood P. Neurobiological mechanisms of anhedonia. Dialogues Clin Neurosci. 2008;10:291–9.

    PubMed Central  PubMed  Google Scholar 

  14. Snaith P. Anhedonia: a neglected symptom of psychopathology. Psychol Med. 1993;23:957–66.

    CAS  PubMed  Google Scholar 

  15. Hamilton M. Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol. 1967;6:278–96.

    CAS  PubMed  Google Scholar 

  16. Kalechstein AD, Newton TF, Longshore D, et al. Psychiatric comorbidity of methamphetamine dependence in a forensic sample. J Neuropsychiatry Clin Neurosci. 2000;12:480–4.

    CAS  PubMed  Google Scholar 

  17. Cox D, Bowers R, McBride A. Reboxetine may be helpful in the treatment of amphetamine withdrawal. Br J Clin Pharmacol. 2004;58:100–1.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Kongsakon R, Papadopoulos KI, Saguansiritham R. Mirtazapine in amphetamine detoxification: a placebo-controlled pilot study. Int Clin Psychopharmacol. 2005;20:253–6.

    PubMed  Google Scholar 

  19. Srisurapanont M, Jarusuraisin N, Kittirattanapaiboon P. Treatment for amphetamine dependence and abuse. Cochrane Database Syst Rev, Wiley. 2001. doi:10.1002/14651858.CD003022.

  20. Shoptaw Steven J, Kao U, Heinzerling K, et al. Treatment for amphetamine withdrawal. Cochrane Database Syst Rev, Wiley. 2009. doi:10.1002/14651858.CD003021.pub2.

  21. Karila L, Weinstein A, Aubin HJ, et al. Pharmacological approaches to methamphetamine dependence: a focused review. Br J Clin Pharmacol. 2010;69:578–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. D’Souza MS, Markou A. Neural substrates of psychostimulant withdrawal-induced anhedonia. Curr Top Behav Neurosci. 2010;3:119–78.

    PubMed  Google Scholar 

  23. Hatzigiakoumis DS, Martinotti G, Giannantonio MD, et al. Anhedonia and substance dependence: clinical correlates and treatment options. Front Psychiatry. 2011;2:10.

    PubMed Central  PubMed  Google Scholar 

  24. Catches JS, Xu J, Contractor A. Genetic ablation of the GluK4 kainate receptor subunit causes anxiolytic and antidepressant-like behavior in mice. Behav Brain Res. 2012;228:406–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Warren BL, Iniguez SD, Alcantara LF, et al. Juvenile administration of concomitant methylphenidate and fluoxetine alters behavioral reactivity to reward- and mood-related stimuli and disrupts ventral tegmental area gene expression in adulthood. J Neurosci. 2011;31:10347–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Reus GZ, Abelaira HM, Stringari RB, et al. Memantine treatment reverses anhedonia, normalizes corticosterone levels and increases BDNF levels in the prefrontal cortex induced by chronic mild stress in rats. Metab Brain Dis. 2012;27:175–82.

    CAS  PubMed  Google Scholar 

  27. Harden MT, Smith SE, Niehoff JA, et al. Antidepressive effects of the κ-opioid receptor agonist salvinorin A in a rat model of anhedonia. Behav Pharmacol. 2012;23:710–5.

    CAS  PubMed  Google Scholar 

  28. Papp M. Models of affective illness: chronic mild stress in the rat. Curr Protoc Pharmacol. 2012; Chapter 5:Unit 5.9.

    Google Scholar 

  29. Kitanaka N, Kitanaka J, Hall FS, et al. Attenuation of methamphetamine-induced conditioned place preference in mice after a drug-free period and facilitation of this effect by exposure to a running wheel. J Exp Neurosci. 2012;6:11–9.

    Google Scholar 

  30. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl). 1997;134:319–29.

    CAS  Google Scholar 

  31. Overstreet DH. Modeling depression in animal models. Methods Mol Biol. 2012;829:125–44.

    CAS  PubMed  Google Scholar 

  32. Henningsen K, Andreasen JT, Bouzinova EV, et al. Cognitive deficits in the rat chronic mild stress model for depression: relation to anhedonic-like responses. Behav Brain Res. 2009;198:136–41.

    PubMed  Google Scholar 

  33. Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev. 1992;16:525–34.

    CAS  PubMed  Google Scholar 

  34. Garcia LS, Comim CM, Valvassori SS, et al. Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:450–5.

    CAS  PubMed  Google Scholar 

  35. Herrera-Perez JJ, Martinez-Mota L, Fernandez-Guasti A. Aging impairs the antidepressant-like response to citalopram in male rats. Eur J Pharmacol. 2010;633:39–43.

    CAS  PubMed  Google Scholar 

  36. Larsen MH, Mikkelsen JD, Hay-Schmidt A, et al. Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment. J Psychiatr Res. 2010;44:808–16.

    PubMed  Google Scholar 

  37. Casarotto PC, Andreatini R. Repeated paroxetine treatment reverses anhedonia induced in rats by chronic mild stress or dexamethasone. Eur Neuropsychopharmacol. 2007;17:735–42.

    CAS  PubMed  Google Scholar 

  38. Toth E, Gersner R, Wilf-Yarkoni A, et al. Age-dependent effects of chronic stress on brain plasticity and depressive behavior. J Neurochem. 2008;107:522–32.

    CAS  PubMed  Google Scholar 

  39. Jayatissa MN, Henningsen K, West MJ, et al. Decreased cell proliferation in the dentate gyrus does not associate with development of anhedonic-like symptoms in rats. Brain Res. 2009;1290:133–41.

    CAS  PubMed  Google Scholar 

  40. Orsetti M, Di Brisco F, Canonico PL, et al. Gene regulation in the frontal cortex of rats exposed to the chronic mild stress paradigm, an animal model of human depression. Eur J Neurosci. 2008;27:2156–64.

    CAS  PubMed  Google Scholar 

  41. Papp M, Klimek V, Willner P. Effects of imipramine on serotonergic and beta-adrenergic receptor binding in a realistic animal model of depression. Psychopharmacology (Berl). 1994;114:309–14.

    CAS  Google Scholar 

  42. Grippo AJ, Beltz TG, Weiss RM, et al. The effects of chronic fluoxetine treatment on chronic mild stress-induced cardiovascular changes and anhedonia. Biol Psychiatry. 2006;59:309–16.

    CAS  PubMed  Google Scholar 

  43. Lin D, Bruijnzeel AW, Schmidt P, et al. Exposure to chronic mild stress alters thresholds for lateral hypothalamic stimulation reward and subsequent responsiveness to amphetamine. Neuroscience. 2002;114:925–33.

    CAS  PubMed  Google Scholar 

  44. Andreasen JT, Henningsen K, Bate S, et al. Nicotine reverses anhedonic-like response and cognitive impairment in the rat chronic mild stress model of depression: comparison with sertraline. J Psychopharmacol. 2011;25:1134–41.

    CAS  PubMed  Google Scholar 

  45. Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005;52:90–110.

    CAS  PubMed  Google Scholar 

  46. Jayatissa MN, Bisgaard C, Tingstrom A, et al. Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology. 2006;31:2395–404.

    CAS  PubMed  Google Scholar 

  47. Strekalova T, Steinbusch HW. Measuring behavior in mice with chronic stress depression paradigm. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:348–61.

    PubMed  Google Scholar 

  48. Ma XC, Jiang D, Jiang WH, et al. Social isolation-induced aggression potentiates anxiety and depressive-like behavior in male mice subjected to unpredictable chronic mild stress. PLoS One. 2011;6:e20955.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Koo JW, Duman RS. IL-1 beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A. 2008;105:751–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Schmidt HD, Duman RS. Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacology. 2010;35:2378–91.

    CAS  PubMed  Google Scholar 

  51. Harauma A, Moriguchi T. Dietary n-3 fatty acid deficiency in mice enhances anxiety induced by chronic mild stress. Lipids. 2011;46:409–16.

    CAS  PubMed  Google Scholar 

  52. Mutlu O, Gumuslu E, Ulak G, et al. Effects of fluoxetine, tianeptine and olanzapine on unpredictable chronic mild stress-induced depression-like behavior in mice. Life Sci. 2012;91:1252–62.

    CAS  PubMed  Google Scholar 

  53. Wu HH, Wang S. Strain differences in the chronic mild stress animal model of depression. Behav Brain Res. 2010;213:94–102.

    PubMed  Google Scholar 

  54. Rauhut AS, Zentner IJ, Mardekian SK, et al. Wistar Kyoto and Wistar rats differ in the affective and locomotor effects of nicotine. Physiol Behav. 2008;93:177–88.

    CAS  PubMed  Google Scholar 

  55. Nocjar C, Zhang J, Feng P, et al. The social defeat animal model of depression shows diminished levels of orexin in mesocortical regions of the dopamine system, and of dynorphin and orexin in the hypothalamus. Neuroscience. 2012;218:138–53.

    CAS  PubMed  Google Scholar 

  56. Berton O, McClung CA, DiLeone RJ, et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311:864–8.

    CAS  PubMed  Google Scholar 

  57. Yu T, Guo M, Garza J, et al. Cognitive and neural correlates of depression-like behaviour in socially defeated mice: an animal model of depression with cognitive dysfunction. Int J Neuropsychopharmacol. 2011;14:303–17.

    PubMed Central  PubMed  Google Scholar 

  58. Schloesser RJ, Lehmann M, Martinowich K, et al. Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol Psychiatry. 2010;15:1152–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Koolhaas JM, De Boer SF, De Rutter AJ, et al. Social stress in rats and mice. Acta Physiol Scand Suppl. 1997;640:69–72.

    CAS  PubMed  Google Scholar 

  60. Bowens N, Heydendael W, Bhatnagar S, et al. Lack of elevations in glucocorticoids correlates with dysphoria-like behavior after repeated social defeat. Physiol Behav. 2012;105:958–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Kitanaka N, Kitanaka J, Tatsuta T, et al. Withdrawal from fixed-dose injection of methamphetamine decreases cerebral levels of 3-methoxy-4-hydroxyphenylglycol and induces the expression of anxiety-related behavior in mice. Neurochem Res. 2010;35:749–60.

    CAS  PubMed  Google Scholar 

  62. Hollis F, Duclot F, Gunjan A, et al. Individual differences in the effect of social defeat on anhedonia and histone acetylation in the rat hippocampus. Horm Behav. 2011;59:331–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Miczek KA, Nikulina EM, Shimamoto A, et al. Escalated or suppressed cocaine reward, tegmental BDNF, and accumbal dopamine caused by episodic versus continuous social stress in rats. J Neurosci. 2011;31:9848–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Yan HC, Qu HD, Sun LR, et al. Fuzi polysaccharide-1 produces antidepressant-like effects in mice. Int J Neuropsychopharmacol. 2010;13:623–33.

    CAS  PubMed  Google Scholar 

  65. Hall FS, Perona MTG. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions? Physiol Behav. 2012;107:623–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Hall FS. Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Crit Rev Neurobiol. 1998;12:129–62.

    CAS  PubMed  Google Scholar 

  67. Hall FS, Perona MTG. The role of serotonin in the neurodevelopmental consequences of early social experience. In: Hall FS, editor. Serotonin: biosynthesis, regulation and health implications. New York: NOVA Science Publishers; 2013.

    Google Scholar 

  68. Haller J, Halasz J. Mild social stress abolishes the effects of isolation on anxiety and chlordiazepoxide reactivity. Psychopharmacology (Berl). 1999;144:311–5.

    CAS  Google Scholar 

  69. Adzic M, Djordjevic A, Demonacos C, et al. The role of phosphorylated glucocorticoid receptor in mitochondrial functions and apoptotic signalling in brain tissue of stressed Wistar rats. Int J Biochem Cell Biol. 2009;41:2181–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Adzic M, Djordievic J, Djordievic A, et al. Acute or chronic stress induce cell compartment-specific phosphorylation of glucocorticoid receptor and alter its transcriptional activity in Wistar rat brain. J Endocrinol. 2009;202:87–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Adzic M, Djordjevic A, Djordjevic J, et al. Effect of different types of stress on adrenal gland parameters and adrenal hormones in the blood serum of male Wistar rats. Arch Biol Sci. 2009;61:187–94.

    Google Scholar 

  72. Djordjevic A, Djordjevic J, Elakovic I, et al. Fluoxetine affects hippocampal plasticity, apoptosis and depressive-like behavior of chronically isolated rats. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36:92–100.

    CAS  PubMed  Google Scholar 

  73. Wallace DL, Han MH, Graham DL, et al. CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat Neurosci. 2009;12:200–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Evans J, Sun Y, McGregor A, et al. Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology. 2012;63:1315–26.

    CAS  PubMed  Google Scholar 

  75. Heritch AJ, Henderson K, Westfall TC. Effects of social isolation on brain catecholamines and forced swimming in rats: prevention by antidepressant treatment. J Psychiatr Res. 1990;24:251–8.

    CAS  PubMed  Google Scholar 

  76. Kokare DM, Dandekar MP, Singru PS, et al. Involvement of alpha-MSH in the social isolation induced anxiety- and depression-like behaviors in rat. Neuropharmacology. 2010;58:1009–18.

    CAS  PubMed  Google Scholar 

  77. Brenes JC, Fornaguera J. The effect of chronic fluoxetine on social isolation-induced changes on sucrose consumption, immobility behavior, and on serotonin and dopamine function in hippocampus and ventral striatum. Behav Brain Res. 2009;198:199–205.

    CAS  PubMed  Google Scholar 

  78. Brenes JC, Rodriguez O, Fornaguera J. Differential effect of environment enrichment and social isolation on depressive-like behavior, spontaneous activity and serotonin and norepinephrine concentration in prefrontal cortex and ventral striatum. Pharmacol Biochem Behav. 2008;89:85–93.

    CAS  PubMed  Google Scholar 

  79. Plaznik A, Palejko W, Stefanski R, et al. Open field behavior of rats reared in different social conditions: the effects of stress and imipramine. Pol J Pharmacol. 1993;45:243–52.

    CAS  PubMed  Google Scholar 

  80. Wright IK, Upton N, Marsden CA. Resocialization of isolation-reared rats does not alter their anxiogenic profile on the elevated X-maze model of anxiety. Physiol Behav. 1991;50:1129–32.

    CAS  PubMed  Google Scholar 

  81. Yates G, Panksepp J, Ikemoto S, et al. Social-isolation effects on the behavioral despair forced swimming test – effect of age and duration of testing. Physiol Behav. 1991;49:347–53.

    CAS  PubMed  Google Scholar 

  82. D’Andrea I, Gracci F, Alleva E, et al. Early social enrichment provided by communal nest increases resilience to depression-like behavior more in female than in male mice. Behav Brain Res. 2010;215:71–6.

    PubMed  Google Scholar 

  83. Takatsu-Coleman AL, Patti CL, Zanin KA, et al. Short-term social isolation induces depressive-like behaviour and reinstates the retrieval of an aversive task: mood-congruent memory in male mice? J Psychiatry Neurosci. 2013;38:259–68.

    PubMed Central  PubMed  Google Scholar 

  84. Bachli H, Steiner MA, Habersetzer U, et al. Increased water temperature renders single-housed C57BL/6J mice susceptible to antidepressant treatment in the forced swim test. Behav Brain Res. 2008;187:67–71.

    PubMed  Google Scholar 

  85. Martin AL, Brown RE. The lonely mouse: verification of a separation-induced model of depression in female mice. Behav Brain Res. 2010;207:196–207.

    CAS  PubMed  Google Scholar 

  86. Koike H, Ibi D, Mizoguchi H, et al. Behavioral abnormality and pharmacologic response in social isolation-reared mice. Behav Brain Res. 2009;202:114–21.

    CAS  PubMed  Google Scholar 

  87. Workman JL, Fonken LK, Gusfa J, et al. Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacol Biochem Behav. 2011;100:25–32.

    CAS  PubMed  Google Scholar 

  88. Silva CF, Duarte FS, De Lima TCM, et al. Effects of social isolation and enriched environment on behavior of adult Swiss mice do not require hippocampal neurogenesis. Behav Brain Res. 2011;225:85–90.

    PubMed  Google Scholar 

  89. Ibi D, Takuma K, Koike H, et al. Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J Neurochem. 2008;105:921–32.

    CAS  PubMed  Google Scholar 

  90. Maisonnette S, Morato S, Brandao ML. Role of resocialization and of 5-HT1A receptor activation on the anxiogenic effects induced by isolation in the elevated plus-maze test. Physiol Behav. 1993;54:753–8.

    CAS  PubMed  Google Scholar 

  91. Mitic M, Simic I, Djordjevic J, et al. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress. Russ J Phys Chem A. 2011;85:2422–5.

    CAS  Google Scholar 

  92. Jaffe EH, Defrias V, Ibarra C. Changes in basal and stimulated release of endogenous serotonin from different nuclei of rats subjected to 2 models of depression. Neurosci Lett. 1993;162:157–60.

    CAS  PubMed  Google Scholar 

  93. Bickerdike MJ, Wright IK, Marsden CA. Social-isolation attenuates rat forebrain 5-Ht release induced by Kcl stimulation and exposure to a novel environment. Behav Pharmacol. 1993;4:231–6.

    CAS  PubMed  Google Scholar 

  94. Dalley JW, Theobald DE, Pereira EAC, et al. Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology (Berl). 2002;164:329–40.

    CAS  Google Scholar 

  95. Hall FS, Wilkinson LS, Humby T, et al. Isolation rearing in rats: pre- and postsynaptic changes in striatal dopaminergic systems. Pharmacol Biochem Behav. 1998;59:859–72.

    CAS  PubMed  Google Scholar 

  96. Wilkinson LS, Killcross SS, Humby T, et al. Social-isolation in the rat produces developmentally specific deficits in prepulse inhibition of the acoustic startle response without disrupting latent inhibition. Neuropsychopharmacology. 1994;10:61–72.

    CAS  PubMed  Google Scholar 

  97. Hall FS, Humby T, Wilkinson LS, et al. The effects of isolation-rearing on sucrose consumption in rats. Physiol Behav. 1997;62:291–7.

    CAS  PubMed  Google Scholar 

  98. Herman ZS, Trzeciak H, Chrusciel TL, et al. The influence of prolonged amphetamine treatment and amphetamine withdrawal on brain biogenic amine content and behaviour in the rat. Psychopharmacologia. 1971;21:74–81.

    CAS  PubMed  Google Scholar 

  99. Robinson TE, Camp DM. Long-lasting effects of escalating doses of d-amphetamine on brain monoamines, amphetamine-induced stereotyped behavior and spontaneous nocturnal locomotion. Pharmacol Biochem Behav. 1987;26:821–7.

    CAS  PubMed  Google Scholar 

  100. Russig H, Murphy CA, Feldon J. Behavioural consequences of withdrawal from three different administration schedules of amphetamine. Behav Brain Res. 2005;165:26–35.

    CAS  PubMed  Google Scholar 

  101. White W, White IM. An activity indicator of acute withdrawal depends on amphetamine dose in rats. Physiol Behav. 2006;87:368–76.

    CAS  PubMed  Google Scholar 

  102. Der-Avakian A, Markou A. Withdrawal from chronic exposure to amphetamine, but not nicotine, leads to an immediate and enduring deficit in motivated behavior without affecting social interaction in rats. Behav Pharmacol. 2010;21:359–68.

    CAS  PubMed  Google Scholar 

  103. Lynch MA, Leonard BE. Effect of chronic amphetamine administration on the behaviour of rats in the open field apparatus: reversal of post-withdrawal depression by two antidepressants. J Pharm Pharmacol. 1978;30:798–9.

    CAS  PubMed  Google Scholar 

  104. Cryan JF, Hoyer D, Markou A. Withdrawal from chronic amphetamine induces depressive-like behavioral effects in rodents. Biol Psychiatry. 2003;54:49–58.

    CAS  PubMed  Google Scholar 

  105. Kokkinidis L, Zacharko RM, Anisman H. Amphetamine withdrawal: a behavioral evaluation. Life Sci. 1986;38:1617–23.

    CAS  PubMed  Google Scholar 

  106. Kitanaka J, Kitanaka N, Takemura M. Sequential expression of impaired psychomotor and sensorimotor activities in rodents during amphetamine withdrawal. In: Davies RS, editor. Handbook of neuropsychiatry research. New York: Nova Science Publishers; 2010. p. 97–112.

    Google Scholar 

  107. Bechtholt-Gompf AJ, Walther HV, Adams MA, et al. Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology. 2010;35:2049–59.

    CAS  PubMed  Google Scholar 

  108. John CS, Smith KL, Van’t Veer A, et al. Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacology. 2012;37:2467–75.

    CAS  PubMed  Google Scholar 

  109. Sigwalt AR, Budde H, Helmich I, et al. Molecular aspects involved in swimming exercise training reducing anhedonia in a rat model of depression. Neuroscience. 2011;192:661–74.

    CAS  PubMed  Google Scholar 

  110. Beyer CE, Dwyer JM, Piesla MJ, et al. Depression-like phenotype following chronic CB1 receptor antagonism. Neurobiol Dis. 2010;39:148–55.

    CAS  PubMed  Google Scholar 

  111. Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia. 2000;32:1–14.

    CAS  PubMed  Google Scholar 

  112. Arriza JL, Fairman WA, Wadiche JI, et al. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci. 1994;14:5559–69.

    CAS  PubMed  Google Scholar 

  113. Fallgren AB, Paulsen RE. A microdialysis study in rat brain of dihydrokainate, a glutamate uptake inhibitor. Neurochem Res. 1996;21:19–25.

    CAS  PubMed  Google Scholar 

  114. Palucha A, Pilc A. The involvement of glutamate in the pathophysiology of depression. Drug News Perspect. 2005;18:262–8.

    CAS  PubMed  Google Scholar 

  115. Paul IA, Skolnick P. Glutamate and depression: clinical and preclinical studies. Ann N Y Acad Sci. 2003;1003:250–72.

    CAS  PubMed  Google Scholar 

  116. Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    CAS  PubMed  Google Scholar 

  117. Zarate Jr CA, Singh JB, Carlson PJ, et al. A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.

    CAS  PubMed  Google Scholar 

  118. Pariante CM. Risk factors for development of depression and psychosis. Glucocorticoid receptors and pituitary implications for treatment with antidepressant and glucocorticoids. Ann N Y Acad Sci. 2009;1179:144–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Sher L. Combined dexamethasone suppression-corticotropin-releasing hormone stimulation test in studies of depression, alcoholism, and suicidal behavior. ScientificWorldJournal. 2006;6:1398–404.

    CAS  PubMed  Google Scholar 

  120. Burch J, McKenna C, Palmer S, et al. Rimonabant for the treatment of overweight and obese people. Health Technol Assess. 2009;13 Suppl 3:13–22.

    PubMed  Google Scholar 

  121. Le Foll B, Forget B, Aubin HJ, et al. Blocking cannabinoid CB1 receptors for the treatment of nicotine dependence: insights from pre-clinical and clinical studies. Addict Biol. 2008;13:239–52.

    PubMed Central  PubMed  Google Scholar 

  122. Le Foll B, Gorelick DA, Goldberg SR. The future of endocannabinoid-oriented clinical research after CB1 antagonists. Psychopharmacology (Berl). 2009;205:171–4.

    Google Scholar 

  123. Leite CE, Mocelin CA, Petersen GO, et al. Rimonabant: an antagonist drug of the endocannabinoid system for the treatment of obesity. Pharmacol Rep. 2009;61:217–24.

    CAS  PubMed  Google Scholar 

  124. Horder J, Harmer CJ, Cowen PJ, et al. Reduced neural response to reward following 7 days treatment with the cannabinoid CB1 antagonist rimonabant in healthy volunteers. Int J Neuropsychopharmacol. 2010;13:1103–13.

    CAS  PubMed  Google Scholar 

  125. Johansson K, Neovius K, DeSantis SM, et al. Discontinuation due to adverse events in randomized trials of orlistat, sibutramine and rimonabant: a meta-analysis. Obes Rev. 2009;10:564–75.

    CAS  PubMed  Google Scholar 

  126. Bras M, Dordevic V, Gregurek R, et al. Neurobiological and clinical relationship between psychiatric disorders and chronic pain. Psychiatr Danub. 2010;22:221–6.

    PubMed  Google Scholar 

  127. Hall FS, Schwarzbaum JM, Perona MTG, et al. A greater role for the norepinephrine transporter than the serotonin transporter in murine nociception. Neuroscience. 2011;175:315–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Perona MTG, Waters S, Hall FS, et al. Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions. Behav Pharmacol. 2008;19:566–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33:87–107.

    CAS  PubMed  Google Scholar 

  130. Andersen ML, Hoshino K, Tufik S. Increased susceptibility to development of anhedonia in rats with chronic peripheral nerve injury: involvement of sleep deprivation? Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:960–6.

    PubMed  Google Scholar 

  131. Jesse CR, Wilhelm EA, Nogueira CW. Depression-like behavior and mechanical allodynia are reduced by bis selenide treatment in mice with chronic constriction injury: a comparison with fluoxetine, amitriptyline, and bupropion. Psychopharmacology (Berl). 2010;212:513–22.

    CAS  Google Scholar 

  132. Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev. 2005;29:627–47.

    PubMed  Google Scholar 

  133. Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 2004;9:326–57.

    CAS  PubMed  Google Scholar 

  134. Romeas T, Morissette MC, Mnie-Filali O, et al. Simultaneous anhedonia and exaggerated locomotor activation in an animal model of depression. Psychopharmacology (Berl). 2009;205:293–303.

    CAS  Google Scholar 

  135. Frisch P, Bilkei-Gorzo A, Racz I, et al. Modulation of the CRH system by substance P/NKA in an animal model of depression. Behav Brain Res. 2010;213:103–8.

    CAS  PubMed  Google Scholar 

  136. Otmakhova NA, Gurevich EV, Katkov YA, et al. Dissociation of Multiple Behavioral-Effects between Olfactory Bulbectomized C57b1/6j and Dba/2j Mice. Physiol Behav. 1992;52:441–8.

    CAS  PubMed  Google Scholar 

  137. Lumia AR, Teicher MH, Salchli F, et al. Olfactory bulbectomy as a model for agitated hyposerotonergic depression. Brain Res. 1992;587:181–5.

    CAS  PubMed  Google Scholar 

  138. Wang DY, Noda Y, Tsunekawa H, et al. Behavioural and neurochemical features of olfactory bulbectomized rats resembling depression with comorbid anxiety. Behav Brain Res. 2007;178:262–73.

    CAS  PubMed  Google Scholar 

  139. Slattery DA, Markou A, Cryan JF. Evaluation of reward processes in an animal model of depression. Psychopharmacology (Berl). 2007;190:555–68.

    CAS  Google Scholar 

  140. McNish KA, Davis M. Olfactory bulbectomy enhances sensitization of the acoustic startle reflex produced by acute or repeated stress. Behav Neurosci. 1997;111:80–91.

    CAS  PubMed  Google Scholar 

  141. Marcilhac A, Maurel D, Anglade G, et al. Effects of bilateral olfactory bulbectomy on circadian rhythms of ACTH, corticosterone, motor activity and body temperature in male rats. Arch Physiol Biochem. 1997;105:552–9.

    CAS  PubMed  Google Scholar 

  142. Commons KG. Neuronal pathways linking substance P to drug addiction and stress. Brain Res. 2010;1314:175–82.

    CAS  PubMed  Google Scholar 

  143. Ebner K, Sartori SB, Singewald N. Tachykinin receptors as therapeutic targets in stress-related disorders. Curr Pharm Des. 2009;15:1647–74.

    CAS  PubMed  Google Scholar 

  144. Chaki S, Nakazato A, Kennis L, et al. Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450. Eur J Pharmacol. 2004;485:145–58.

    CAS  PubMed  Google Scholar 

  145. Chaki S, Oshida Y, Ogawa S, et al. MCL0042: a nonpeptidic MC4 receptor antagonist and serotonin reuptake inhibitor with anxiolytic- and antidepressant-like activity. Pharmacol Biochem Behav. 2005;82:621–6.

    CAS  PubMed  Google Scholar 

  146. Xu Y, Ku BS, Yao HY, et al. Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav. 2005;82:200–6.

    CAS  PubMed  Google Scholar 

  147. Pistovcakova J, Dostalek M, Sulcova A, et al. Tiagabine treatment is associated with neurochemical, immune and behavioural alterations in the olfactory bulbectomized rat model of depression. Pharmacopsychiatry. 2008;41:54–9.

    CAS  PubMed  Google Scholar 

  148. Vieyra-Reyes P, Mineur YS, Picciotto MR, et al. Antidepressant-like effects of nicotine and transcranial magnetic stimulation in the olfactory bulbectomy rat model of depression. Brain Res Bull. 2008;77:13–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Machado DG, Cunha MP, Neis VB, et al. Fluoxetine reverses depressive-like behaviors and increases hippocampal acetylcholinesterase activity induced by olfactory bulbectomy. Pharmacol Biochem Behav. 2012;103:220–9.

    CAS  PubMed  Google Scholar 

  150. Jaako-Movits K, Zharkovsky T, Pedersen M, et al. Decreased hippocampal neurogenesis following olfactory bulbectomy is reversed by repeated citalopram administration. Cell Mol Neurobiol. 2006;26:1559–70.

    CAS  PubMed  Google Scholar 

  151. Shen HW, Hagino Y, Kobayashi H, et al. Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology. 2004;29:1790–9.

    CAS  PubMed  Google Scholar 

  152. Xu F, Gainetdinov RR, Wetsel WC, et al. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci. 2000;3:465–71.

    CAS  PubMed  Google Scholar 

  153. Spielewoy C, Roubert C, Hamon M, et al. Behavioural disturbances associated with hyperdopaminergia in dopamine-transporter knockout mice. Behav Pharmacol. 2000;11:279–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Holmes A, Yang RJ, Murphy DL, et al. Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology. 2002;27:914–23.

    CAS  PubMed  Google Scholar 

  155. Kalueff AV, Gallagher PS, Murphy DL. Are serotonin transporter knockout mice ‘depressed’?: hypoactivity but no anhedonia. Neuroreport. 2006;17:1347–51.

    CAS  PubMed  Google Scholar 

  156. Bechtholt AJ, Smith K, Gaughan S, et al. Sucrose intake and fasting glucose levels in 5-HT1A and 5-HT1B receptor mutant mice. Physiol Behav. 2008;93:659–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Javitt DC. Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry. 2004;9:984–97, 979.

    CAS  PubMed  Google Scholar 

  158. Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology. 2012;62:63–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Tanaka K. Role of glutamate transporters in the pathophysiology of major mental illnesses. Nihon Shinkei Seishin Yakurigaku Zasshi. 2009;29:161–4 (in Japanese).

    CAS  PubMed  Google Scholar 

  160. Belforte JE, Zsiros V, Sklar ER, et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci. 2010;13:76–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Labrie V, Lipina T, Roder JC. Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology (Berl). 2008;200:217–30.

    CAS  Google Scholar 

  162. Garcia-Garcia AL, Elizalde N, Matrov D, et al. Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Biol Psychiatry. 2009;66:275–82.

    CAS  PubMed  Google Scholar 

  163. Ishizuka K, Paek M, Kamiya A, et al. A review of Disrupted-In-Schizophrenia-1 (DISC1): neurodevelopment, cognition, and mental conditions. Biol Psychiatry. 2006;59:1189–97.

    CAS  PubMed  Google Scholar 

  164. Hikida T, Jaaro-Peled H, Seshadri S, et al. Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci U S A. 2007;104:14501–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Havik B, Le Hellard S, Rietschel M, et al. The complement control-related genes CSMD1 and CSMD2 associate to schizophrenia. Biol Psychiatry. 2011;70:35–42.

    CAS  PubMed  Google Scholar 

  166. Distler MG, Opal MD, Dulawa SC, et al. Assessment of behaviors modeling aspects of schizophrenia in Csmd1 mutant mice. PLoS One. 2012;7:e51235.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Uhl GR, Drgon T, Liu QR, et al. Genome-wide association for methamphetamine dependence. Arch Gen Psychiatry. 2008;65:345–55.

    CAS  PubMed  Google Scholar 

  168. Hall FS. Transgenic mouse studies reveal substantial roles for opioid receptors in the rewarding effects of several classes of addictive drugs. Curr Psychiatry Rev. 2006;2:27–37.

    CAS  Google Scholar 

  169. Cinque C, Pondiki S, Oddi D, et al. Modeling socially anhedonic syndromes: genetic and pharmacological manipulation of opioid neurotransmission in mice. Transl Psychiatry. 2012;2:e155.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Komatsu H, Ohara A, Sasaki K, et al. Decreased response to social defeat stress in mu-opioid-receptor knockout mice. Pharmacol Biochem Behav. 2011;99:676–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Lahmame A, del Arco C, Pazos A, et al. Are Wistar-Kyoto rats a genetic animal model of depression resistant to antidepressants? Eur J Pharmacol. 1997;337:115–23.

    CAS  PubMed  Google Scholar 

  172. Will CC, Aird F, Redei EE. Selectively bred Wistar-Kyoto rats: an animal model of depression and hyper-responsiveness to antidepressants. Mol Psychiatry. 2003;8:925–32.

    CAS  PubMed  Google Scholar 

  173. Overstreet DH, Friedman E, Mathe AA, et al. The Flinders Sensitive Line rat: a selectively bred putative animal model of depression. Neurosci Biobehav Rev. 2005;29:739–59.

    CAS  PubMed  Google Scholar 

  174. Zambello E, Jimenez-Vasquez PA, El Khoury A, et al. Acute stress differentially affects corticotropin-releasing hormone mRNA expression in the central amygdala of the “depressed” flinders sensitive line and the control flinders resistant line rats. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:651–61.

    CAS  PubMed  Google Scholar 

  175. Rezvani AH, Parsian A, Overstreet DH. The Fawn-Hooded (FH/Wjd) rat: a genetic animal model of comorbid depression and alcoholism. Psychiatr Genet. 2002;12:1–16.

    PubMed  Google Scholar 

  176. Overstreet DH, Wegener G. The flinders sensitive line rat model of depression–25 years and still producing. Pharmacol Rev. 2013;65:143–55.

    CAS  PubMed  Google Scholar 

  177. Vollmayr B, Bachteler D, Vengeliene V, et al. Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning. Behav Brain Res. 2004;150:217–21.

    CAS  PubMed  Google Scholar 

  178. Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–93.

    CAS  PubMed  Google Scholar 

  179. Pare WP. Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats. Physiol Behav. 1994;55:433–9.

    CAS  PubMed  Google Scholar 

  180. Lopez-Rubalcava C, Lucki I. Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology. 2000;22:191–9.

    CAS  PubMed  Google Scholar 

  181. Malkesman O, Braw Y, Zagoory-Sharon O, et al. Reward and anxiety in genetic animal models of childhood depression. Behav Brain Res. 2005;164:1–10.

    CAS  PubMed  Google Scholar 

  182. Overstreet DH, Russell RW, Helps SC, et al. Selective breeding for sensitivity to the anticholinesterase DFP. Psychopharmacology (Berl). 1979;65:15–20.

    CAS  Google Scholar 

  183. Overstreet DH, Griebel G. Antidepressant-like effects of the vasopressin V1b receptor antagonist SSR149415 in the Flinders Sensitive Line rat. Pharmacol Biochem Behav. 2005;82:223–7.

    CAS  PubMed  Google Scholar 

  184. Roth-Deri I, Friedman A, Abraham L, et al. Antidepressant treatment facilitates dopamine release and drug seeking behavior in a genetic animal model of depression. Eur J Neurosci. 2009;30:485–92.

    PubMed  Google Scholar 

  185. Overstreet DH, Rezvani AH. Behavioral differences between two inbred strains of Fawn-Hooded rat: a model of serotonin dysfunction. Psychopharmacology (Berl). 1996;128:328–30.

    CAS  Google Scholar 

  186. Aulakh CS, Tolliver T, Wozniak KM, et al. Functional and biochemical-evidence for altered serotonergic function in the Fawn-Hooded rat strain. Pharmacol Biochem Behav. 1994;49:615–20.

    CAS  PubMed  Google Scholar 

  187. Overstreet DH, Rezvani AH, Janowsky DS. Genetic animal-models of depression and ethanol preference provide support for cholinergic and serotonergic involvement in depression and alcoholism. Biol Psychiatry. 1992;31:919–36.

    CAS  PubMed  Google Scholar 

  188. Rezvani AH, Overstreet DH, Janowsky DS. Genetic serotonin deficiency and alcohol preference in the Fawn Hooded rats. Alcohol Alcohol. 1990;25:573–5.

    CAS  PubMed  Google Scholar 

  189. Hall FS, Huang S, Fong GW, et al. Effects of isolation-rearing on voluntary consumption of ethanol, sucrose and saccharin solutions in Fawn Hooded and Wistar rats. Psychopharmacology (Berl). 1998;139:210–6.

    CAS  Google Scholar 

  190. Hall FS, Huang S, Fong GW, et al. Effects of isolation rearing on locomotion, anxiety and responses to ethanol in Fawn Hooded and Wistar rats. Psychopharmacology (Berl). 1998;139:203–9.

    CAS  Google Scholar 

  191. Hall FS, Huang S, Fong GW, et al. Differential basis of strain and rearing effects on open-field behavior in Fawn Hooded and Wistar rats. Physiol Behav. 2000;71:525–32.

    CAS  PubMed  Google Scholar 

  192. Hall FS, Sundstrom JM, Lerner J, et al. Enhanced corticosterone release after a modified forced swim test in Fawn Hooded rats is independent of rearing experience. Pharmacol Biochem Behav. 2001;69:629–34.

    CAS  PubMed  Google Scholar 

  193. Aulakh CS, Hill JL, Murphy DL. Attenuation of hypercortisolemia in Fawn-Hooded rats by antidepressant drugs. Eur J Pharmacol. 1993;240:85–8.

    CAS  PubMed  Google Scholar 

  194. Aulakh CS, Wozniak KM, Hill JL, et al. Differential neuroendocrine responses to the 5-HT agonist m-chlorophenylpiperazine in Fawn-Hooded rats relative to Wistar and Sprague-Dawley rats. Neuroendocrinology. 1988;48:401–6.

    CAS  PubMed  Google Scholar 

  195. Hall FS, Huang S, Fong GF, et al. The effects of social isolation on the forced swim test in Fawn Hooded and Wistar rats. J Neurosci Methods. 1998;79:47–51.

    CAS  PubMed  Google Scholar 

  196. Lahmame A, Gomez F, Armario A. Fawn-Hooded rats show enhanced active behaviour in the forced swimming test, with no evidence for pituitary-adrenal axis hyperactivity. Psychopharmacology (Berl). 1996;125:74–8.

    CAS  Google Scholar 

  197. Seligman ME, Maier SF, Geer JH. Alleviation of learned helplessness in dog. J Abnorm Psychol. 1968;73:256–62.

    CAS  PubMed  Google Scholar 

  198. Seligman MEP, Rosellini RA, Kozak MJ. Learned helplessness in rat – time course, immunization, and reversibility. J Comp Physiol Psychol. 1975;88:542–7.

    CAS  PubMed  Google Scholar 

  199. Henn FA, Vollmayr B. Stress models of depression: forming genetically vulnerable strains. Neurosci Biobehav Rev. 2005;29:799–804.

    PubMed  Google Scholar 

  200. Sanchis-Segura C, Spanagel R, Henn FA, et al. Reduced sensitivity to sucrose in rats bred for helplessness: a study using the matching law. Behav Pharmacol. 2005;16:267–70.

    CAS  PubMed  Google Scholar 

  201. Vollmayr B, Henn FA. Learned helplessness in the rat: improvements in validity and reliability. Brain Res Brain Res Protoc. 2001;8:1–7.

    CAS  PubMed  Google Scholar 

  202. Barr AM, Fiorino DF, Phillips AG. Effects of withdrawal from an escalating dose schedule of d-amphetamine on sexual behavior in the male rat. Pharmacol Biochem Behav. 1999;64:597–604.

    CAS  PubMed  Google Scholar 

  203. Vacca G, Ahn S, Phillips AG. Effects of short-term abstinence from escalating doses of d-amphetamine on drug and sucrose-evoked dopamine efflux in the rat nucleus accumbens. Neuropsychopharmacology. 2007;32:932–9.

    CAS  PubMed  Google Scholar 

  204. Markou A, Koob GF. Bromocriptine reverses the elevation in intracranial self-stimulation thresholds observed in a rat model of cocaine withdrawal. Neuropsychopharmacology. 1992;7:213–24.

    CAS  PubMed  Google Scholar 

  205. Stoker AK, Markou A. Withdrawal from chronic cocaine administration induces deficits in brain reward function in C57BL/6J mice. Behav Brain Res. 2011;223:176–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Chartoff E, Sawyer A, Rachlin A, et al. Blockade of kappa opioid receptors attenuates the development of depressive-like behaviors induced by cocaine withdrawal in rats. Neuropharmacology. 2012;62:167–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Wise RA, Munn E. Withdrawal from chronic amphetamine elevates base-line intracranial self-stimulation thresholds. Psychopharmacology (Berl). 1995;117:130–6.

    CAS  Google Scholar 

  208. Barr AM, Phillips AG. Increased successive negative contrast in rats withdrawn from an escalating-dose schedule of d-amphetamine. Pharmacol Biochem Behav. 2002;71:293–9.

    CAS  PubMed  Google Scholar 

  209. Semenova S, Markou A. The alpha 2 adrenergic receptor antagonist idazoxan, but not the serotonin-2A receptor antagonist M100907, partially attenuated reward deficits associated with nicotine, but not amphetamine, withdrawal in rats. Eur Neuropsychopharmacol. 2010;20:731–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Zhornitsky S, Potvin S, Stip E, et al. Acute quetiapine dose-dependently exacerbates anhedonia induced by withdrawal from escalating doses of d-amphetamine. Eur Neuropsychopharmacol. 2010;20:695–703.

    CAS  PubMed  Google Scholar 

  211. Takigawa M, Maeda H, Ueyama K, et al. A dual approach to self-stimulation and locomotor trace affected by chronic methamphetamine treatment for an animal-model of schizophrenia. Can J Physiol Pharmacol. 1993;71:321–5.

    CAS  PubMed  Google Scholar 

  212. Pulvirenti L, Koob GF. Lisuride reduces psychomotor retardation during withdrawal from chronic intravenous amphetamine self-administration in rats. Neuropsychopharmacology. 1993;8:213–8.

    CAS  PubMed  Google Scholar 

  213. Kitanaka N, Kitanaka J, Hall FS, et al. A single administration of methamphetamine to mice early in the light period decreases running wheel activity observed during the dark period. Brain Res. 2012;1429:155–63.

    CAS  PubMed  Google Scholar 

  214. Perrine SA, Sheikh IS, NwaneshiudU CA, et al. Withdrawal from chronic administration of cocaine decreases delta opioid receptor signaling and increases anxiety- and depression-like behaviors in the rat. Neuropharmacology. 2008;54:355–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Fukushiro DF, Mari-Kawamoto E, Aramini TCF, et al. Withdrawal from repeated treatment with amphetamine reduces novelty-seeking behavior and enhances environmental habituation in mice. Pharmacol Biochem Behav. 2011;100:180–4.

    CAS  PubMed  Google Scholar 

  216. Barr AM, Phillips AG. Withdrawal following repeated exposure to d-amphetamine decreases responding for a sucrose solution as measured by a progressive ratio schedule of reinforcement. Psychopharmacology (Berl). 1999;141:99–106.

    CAS  Google Scholar 

  217. Solinas M, Thiriet N, Chauvet C, et al. Prevention and treatment of drug addiction by environmental enrichment. Prog Neurobiol. 2010;92:572–92.

    CAS  PubMed  Google Scholar 

  218. Thiel KJ, Pentkowski NS, Peartree NA, et al. Environmental living conditions introduced during forced abstinence alter cocaine-seeking behavior and Fos protein expression. Neuroscience. 2010;171:1187–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Gipson CD, Beckmann JS, El-Maraghi S, et al. Effect of environmental enrichment on escalation of cocaine self-administration in rats. Psychopharmacology (Berl). 2011;214:557–66.

    CAS  Google Scholar 

  220. Fukushiro DF, Josino FS, Saito LP, et al. Differential effects of intermittent and continuous exposure to novel environmental stimuli on the development of amphetamine-induced behavioral sensitization in mice: implications for addiction. Drug Alcohol Depend. 2012;124:135–41.

    CAS  PubMed  Google Scholar 

  221. Nader J, Chauvet C, Rawas RE, et al. Loss of environmental enrichment increases vulnerability to cocaine addiction. Neuropsychopharmacology. 2012;37:1579–87.

    CAS  PubMed  Google Scholar 

  222. Puhl MD, Blum JS, Acosta-Torres S, et al. Environmental enrichment protects against the acquisition of cocaine self-administration in adult male rats, but does not eliminate avoidance of a drug-associated saccharin cue. Behav Pharmacol. 2012;23:43–53.

    PubMed Central  PubMed  Google Scholar 

  223. Thiel KJ, Sanabria F, Pentkowski NS, et al. Anti-craving effects of environmental enrichment. Int J Neuropsychopharmacol. 2009;12:1151–6.

    PubMed Central  PubMed  Google Scholar 

  224. Grimm JW, Osincup D, Wells B, et al. Environmental enrichment attenuates cue-induced reinstatement of sucrose seeking in rats. Behav Pharmacol. 2008;19:777–85.

    PubMed Central  PubMed  Google Scholar 

  225. Brenes JC, Padilla M, Fornaguera J. A detailed analysis of open-field habituation and behavioral and neurochemical antidepressant-like effects in postweaning enriched rats. Behav Brain Res. 2009;197:125–37.

    CAS  PubMed  Google Scholar 

  226. Chauvet C, Goldberg SR, Jaber M, et al. Effects of environmental enrichment on the incubation of cocaine craving. Neuropharmacology. 2012;63:635–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Murphy A, Taylor E, Elliott R. The detrimental effects of emotional process dysregulation on decision-making in substance dependence. Front Integr Neurosci. 2012;6:101.

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported, in part, by Grant-in-Aids for Researchers, Hyogo College of Medicine (2012 to JK; 2013 to NK) and intramural funding from the National Institute on Drug Abuse, USA (GRU and FSH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Kitanaka Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kitanaka, J., Kitanaka, N., Hall, F.S., Uhl, G.R., Takemura, M. (2014). Anhedonia in Mouse Models of Methamphetamine-Induced Drug Seeking Behavior. In: Ritsner, M. (eds) Anhedonia: A Comprehensive Handbook Volume I. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8591-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8591-4_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8590-7

  • Online ISBN: 978-94-017-8591-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics