Skip to main content

The Alterations of Microcirculation in Burns

  • Chapter
  • First Online:
  • 1011 Accesses

Abstract

The increase in the vascular permeability is the most important pathological event in the pathogenesis of a burn injury. A massive leakage of fluid from the vascular space leads to a loss of blood plasma and a decrease in the effective circulatory blood volume, resulting in the formation of severe tissue edema, hypotension or even shock in a severe burn injury [1]. Fluid resuscitation has been the only valid method of sustaining a burn patient’s blood pressure for a long time owing to the lack of an overall and profound understanding of the mechanisms of a burn-induced vascular hyperpermeability response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Demling RH. The burn edema process: current concepts. J Burn Care Rehabil. 2005;26(3):207–27.

    PubMed  Google Scholar 

  2. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86:279–367.

    Article  CAS  PubMed  Google Scholar 

  3. Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 2009;16(2):209–21.

    Article  CAS  PubMed  Google Scholar 

  4. Komarova YA, Mehta D, Malik AB. Dual regulation of endothelial junctional permeability. Sci STKE. 2007;(412):re8.

    Google Scholar 

  5. Van Nieuw Amerongen GP, van Hinsbergh VW. Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vasc Pharmacol. 2002;39:257–72.

    Article  Google Scholar 

  6. Zhao KS, Guo YW, Zhou LD. Effects of cortisone on vascular permeability in early stage of severe burn. Acta Physiologica Sinica. 1966;29:70–3.

    Google Scholar 

  7. Zheng HZ, Zhao KS, Huang QB, et al. Role of Rho kinase and actin filament in the increased vascular permeability of skin venule in rat after scalding. Burns. 2003;29(8):820–7.

    Article  PubMed  Google Scholar 

  8. Huang Q, Xu W, Ustinova E, et al. Myosin light chain kinase-dependent microvascular hyperpermeability in thermal injury. Shock. 2003;20(4):363–8.

    Article  CAS  PubMed  Google Scholar 

  9. Wautier JL, Zoukourian C, Chappey O, et al. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy: soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest. 1996;97:238–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Guo XH, Huang QB, Chen B, et al. Mechanism of advanced glycation end products-induced hyperpermeability in endothelial cells. Acta Physiol Sino. 2005;57:205–10 (Chinese, English abstract).

    CAS  Google Scholar 

  11. Li Q, Guo XH, Zhu YJ, et al. The mechanism of advanced glycation end products-induced morphological changes of tight junction in endothelial cells. Chin J Arterioscler. 2006;14:499–502.

    CAS  Google Scholar 

  12. Breviario F, Caveda L, Corada M, et al. Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol. 1995;15:1229–39.

    Article  CAS  PubMed  Google Scholar 

  13. Liu XL, Wu W, Li Q, et al. Effect of sphingosine 1-phosphate on morphological and functional responses in endothelia and venules after scalding injury. Burns. 2009;35:1171–9.

    Article  PubMed  Google Scholar 

  14. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31:1250–6.

    Article  PubMed  Google Scholar 

  15. Song L, Huang QB, Zhao KS, et al. Effects of LPS on the organization and localization of VE-cadherin and F-actin in cultured endothelial cells. Chin J Pathophysiol. 2003;19:150–2.

    CAS  Google Scholar 

  16. Wang ZH, Guo XH, Liu XL, et al. The morphological changes of vascular endothelial cadherin in human umbilical vein endothelial cells induced by advanced glycation end products. Chin J Arterioscler. 2008;16:505–9.

    CAS  Google Scholar 

  17. Geeves MA, Holmes KC. Structural mechanism of muscle contraction. Annu Rev Biochem. 1999;68:687–728.

    Article  CAS  PubMed  Google Scholar 

  18. Lai CH, Kuo KH, Leo JM. Critical role of actin in modulating BBB permeability. Brain Res Rev. 2005;50:7–13.

    Article  CAS  PubMed  Google Scholar 

  19. Yuan Y, Huang Q, Wu HM. Myosin light chain phosphorylation: modulation of basal and agonist-stimulated venular permeability. Am J Physiol. 1997;272(3 Pt 2):H1437–43.

    CAS  PubMed  Google Scholar 

  20. Chen B, Guo XH, Wang Y, et al. Myosin light chain kinase contributes to cytoskeletal alteration of endothelial cells by rat burn serum. J 1st Mil Med Univ. 2004;24:481–4.

    Google Scholar 

  21. Huang QB, Song L, Zhao KS, et al. Effects of lipopolysaccharide on actin reorganization and actin pools in endothelial cells. Chin J Traumatol. 2004;7:195–200.

    CAS  PubMed  Google Scholar 

  22. Hall A. Rho GTPase and the actin cytoskeleton. Science. 1998;279:509–14.

    Article  CAS  PubMed  Google Scholar 

  23. Waschke J, Baumgartner W, Adamson RH, et al. Requirement of Rac activity for maintenance of capillary endothelial barrier properties. Am J Physiol Heart Circ Physiol. 2004;286:H394–401.

    Article  CAS  PubMed  Google Scholar 

  24. Kuroda S, Fukata M, Nakagawa M, et al. Role of IQGAP1, a target of the small GTPase Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-cell adhesion. Science. 1998;281:832–5.

    Article  CAS  PubMed  Google Scholar 

  25. Widmann C, Gilson S, Jarpe MB, et al. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999;79:143–80.

    CAS  PubMed  Google Scholar 

  26. Zarubin T, Han JH. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005;15:11–8.

    Article  CAS  PubMed  Google Scholar 

  27. Murphya LO, Blenisb J. MAPK signal specificity: the right place at the right time. Trends Biochem Sci. 2006;31:268–75.

    Article  Google Scholar 

  28. Huang Q, Zhao M, Wang Sh Y, et al. The role of p38 alpha and p38 delta MAP kinases in the genesis of increased vascular permeability in burns. Microcirculation. 2007;14:506.

    Google Scholar 

  29. Borbiev T, Birukova A, Liu F, et al. p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol. 2004;287:L911–8.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson A, Hocking DC, Ferro TJ. Mechanisms of pulmonary edema induced by a diacylglycerol second messenger. Am J Physiol (HeartCirc Physiol 27). 1990;258:H85–91.

    CAS  Google Scholar 

  31. Murray MA, Heistad DD, Mayhan WG. Role of protein kinase C in bradykinin-induced increases in microvascular permeability. Circ Res. 1991;68:1340–8.

    Article  CAS  PubMed  Google Scholar 

  32. Huang Q, Yuan Y. Interaction of PKC and NOS in signal transduction of microvascular hyperpermeability. Am J Physiol. 1997;273(5 Pt 2):H2442–51.

    CAS  PubMed  Google Scholar 

  33. Yang T, Huang QB. The activation and translocation of protein kinase C induced by burn serum. Chin Crit Care Med. 2001;13:427–9.

    Google Scholar 

  34. Dempsey EC, Newton AC, Mochly-Rosen D, et al. Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol Lung Cell Mol Physiol. 2000;279:L429–38.

    CAS  PubMed  Google Scholar 

  35. Bell RM. Protein kinase C activation by second messengers. Cell. 1986;45:631–2.

    Article  CAS  PubMed  Google Scholar 

  36. Garcia JGN, Davis HW, Patterson CE. Regulation of endothelial-cell gap formation and barrier dysfunction-role of myosin light-chain phosphorylation. J Cell Physiol. 1995;163:510–22.

    Article  CAS  PubMed  Google Scholar 

  37. Larsson C. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal. 2006;18:276–84.

    Article  CAS  PubMed  Google Scholar 

  38. Knezevic N, Roy A, Timblin B, et al. GDI-1 phosphorylation switch at serine 96 induces RhoA activation and increased endothelial permeability. Mol Cell Biol. 2007;27:6323–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Mehta D, Rahman A, Malik AB. Protein kinase C-alpha signals rho-guanine nucleotide dissociation inhibitor phosphorylation and rho activation and regulates the endothelial cell barrier function. J Biol Chem. 2001;276:22614–20.

    Article  CAS  PubMed  Google Scholar 

  40. Bogatcheva NV, Adyshev D, Mambetsariev B, et al. Involvement of microtubules, p38, and Rho kinases pathway in 2-methoxyestradiol-induced lung vascular barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2007;292:L487–99.

    Article  CAS  PubMed  Google Scholar 

  41. Marinissen MJ, Chiariello M, Gutkind JS. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway. Genes Dev. 2001;15(5):535–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. McVerry BJ, Garcia JG. In vitro and in vivo modulation of vascular barrier integrity by sphingosine 1-phosphate: mechanistic insights. Cell Signal. 2005;17:131–9.

    Article  CAS  PubMed  Google Scholar 

  43. Fujimi S, MacConmara MP, Maung AA, et al. Platelet depletion in mice increases mortality after thermal injury. Blood. 2006;107(11):4399–406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Garcia JG, Liu F, Verin AD, et al. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest. 2001;108(5):689–701.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lee MJ, Thangada S, Claffey KP, et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell. 1999;99:301–12.

    Article  CAS  PubMed  Google Scholar 

  46. Liu XL, Wang H, Li Q, et al. Effects of sphingosine-1-phosphate on vascular permeability in scalding injury. J Chin Microcirc. 2008;12(5):267–70.

    CAS  Google Scholar 

  47. Alewijnse AE, Peters SL. Sphingolipid signalling in the cardiovascular system: good, bad or both? Eur J Pharmacol. 2008;585(2–3):292–302.

    Article  CAS  PubMed  Google Scholar 

  48. Moore TM, Chetham PM, Kelly JJ, et al. Signal transduction and regulation of lung endothelial cell permeability. Interaction between calcium and cAMP. Am J Physiol. 1998;275:L203–22.

    CAS  PubMed  Google Scholar 

  49. Wu H, Huang Q, Yuan Y, et al. VEGF induces NO-dependent hyperpermeability in coronary venules. Am J Physiol. 1996;271:H2735–9.

    CAS  PubMed  Google Scholar 

  50. Wu MH. Endothelial focal adhesions and barrier function. J Physiol. 2005;569(Pt 2):359–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Tuma PL, Hubbard AL. Transcytosis: crossing cellular barriers. Physiol Rev. 2003;83:871–932.

    CAS  PubMed  Google Scholar 

  52. Zhao KS. Microcirculation in burns: microcirculatory changes in burned skin. Chin J Burn Reconst. 1987;3:15–57.

    Google Scholar 

  53. Zhao KS. The microcirculatory alterations in burns. Peoples Mil Surg. 1979;1:35–9.

    Google Scholar 

  54. Zhao KS, Zhu ZG, Wu GY, et al. The role of microcirculatory disorder in the genesis of burn shock. Med J Chin Lib Army. 1984;9:18–20.

    Google Scholar 

  55. Wu GY. The application of rabbit ear chamber technique in microcirculatory research of burned skin. The selection of Scientific Research (First Military Medical University). 1979;5:31.

    Google Scholar 

  56. Zhao KS, Wu GY, Tian Y, et al. The effect of polydatin on the change of microcirculation of burned skin. Med J Chin Lib Army. 1980;5:75–8.

    Google Scholar 

  57. Zhao KS, Woo GY, Tian Y, et al. The effect of polygonum cuspidatun on the microcirculation of burned skin. In: Chang HM et al., editors. Advances in Chinese medicinal materials research. World Scientific Pub: Singapore; 1985. p. 591–5.

    Google Scholar 

  58. Wu GY, Zhao KS, Zhu ZJ, et al. The electron microscopic observation of microvessels in burned skin. J First Mil Med Univ. 1984;4:49–51.

    Google Scholar 

  59. Zhao KS. The advances of microcirculatory research in burns. J First Mil Med Univ. 1984;4:131–8.

    Google Scholar 

  60. Zhao KS, Wu GY, Zhu ZG, et al. The role of leukocyte in microcirculatory disorder of shock. Chin J Med. 1986;10:722–5.

    Google Scholar 

  61. Wu XB, Zhao KS, Huang XL. The change of leukocyte adhesive feature in rat with severe burns. Chin J Med. 1994;74:312–4.

    CAS  Google Scholar 

  62. Zhao KS, Wu XB, Wang YC. Effect of polygonum cuspidatum on the leukocyte activation and adhesion of rat during burn shock. In: Niimi H et al., editors. Progress in microcirculation research. Oxford: Elsevier Science Ltd; 1994. p. 55–68.

    Google Scholar 

  63. Wang YC, Zhao KS, Wu XB. The prognostic implication of determination of activation of leukocyte in severe burns. Chin J Burn Reconst. 1994;10:286–5.

    CAS  Google Scholar 

  64. Wang YC, Zhao KS. The surface expression of LFA-1 on leukocyte in shock. Microcirc Tech. 1997;1:9–11.

    Google Scholar 

  65. Zhao ZH, Zhao KS, Zhu ZJ. Study on the expression of L-selectin at transcription level in severe burn shock rat. Chin J Pathophysiol. 1998;14:43–5.

    CAS  Google Scholar 

  66. Zhao KS. The research on leukocyte behavior of microcirculation in shock. J Microcir. 1992;2:40.

    Google Scholar 

  67. Zhao KS. Advances in the study on rheological behavior of leukocyte during severe shock. Chin Med J. 1996;109:110–1.

    CAS  PubMed  Google Scholar 

  68. Wu XB, Huang QB, Zhao KS. The effect of LFA-1 monoclonal antibody on the microcirculatory disturbance of endotoxin shock in rabbit. Chin J Trauma. 1986;12:25–7.

    Google Scholar 

  69. Zhao KS. Integrin family and leukocyte adhesion. In: Zhao KS, Jin L, editors. Cellular and molecular basis of shock. Beijing: Scient Pub; 2002. p. 11–4.

    Google Scholar 

  70. Wu KY, Huang QB, Zhao KS. The effect of TNF monoclonal antibody on leukocyte adhesion and hemodynamic of microcirculation in rat with burn shock. Chin J Pathophysiol. 1996;12:425–7.

    CAS  Google Scholar 

  71. Wu KY, Zhao KS, Zhu ZJ, et al. Burn shock can be treated with peritoneal dialysis. Chin J Pathophysiol. 1987;3:88–91.

    Google Scholar 

  72. Ballard-Croft C, Carlson D, Maass DL, et al. Burn trauma alters calcium transporter protein expression in the heart. J Appl Physiol. 2004;97:1470–6.

    Article  CAS  PubMed  Google Scholar 

  73. Horton JW. Left ventricular contractile dysfunction as a complication of thermal injury. Shock. 2004;22:495–507.

    Article  PubMed  Google Scholar 

  74. Horton JW, White DJ, Maass D, et al. Calcium antagonists improve cardiac mechanical performance after thermal trauma. J Surg Res. 1999;87:39–50.

    Article  CAS  PubMed  Google Scholar 

  75. Murphy JT, Giroir B, Horton JW. Thermal injury alters myocardial sarcoplasmic reticulum calcium channel function. J Surg Res. 1999;82:244–52.

    Article  CAS  PubMed  Google Scholar 

  76. White DJ, Maass DL, Sanders B, et al. Cardiomyocyte intracellular calcium and cardiac dysfunction after burn trauma. Crit Care Med. 2002;30:14–22.

    Article  CAS  PubMed  Google Scholar 

  77. Kawai K, Kawai T, Sambol JT, et al. Cellular mechanisms of burn-related changes in contractility and its prevention by mesenteric lymph ligation. Am J Physiol Heart Circ Physiol. 2007;292:H2475–84.

    Article  CAS  PubMed  Google Scholar 

  78. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517–29.

    Article  CAS  PubMed  Google Scholar 

  79. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11–21.

    Article  CAS  PubMed  Google Scholar 

  80. Bers DM, Perez-Reyes E. Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. Cardiovasc Res. 1999;42(2):339–60.

    Article  CAS  PubMed  Google Scholar 

  81. Zhao KS, Zhu ZJ, Wu KY, et al. Importance of enhancing cardiac function in the treatment of burn shock-effect of crystal NO4 of polygonum cuspidatum. In: Sheng CY, editor. Advances in burns. Beijing: International Academic Publishers; 1992. p. 31–8.

    Google Scholar 

  82. Moore RL, Yelamarty RV, Misawa H, et al. Altered Ca2+ dynamics in single cardiac myocytes from renovascular hypertensive rats. Am J Physiol. 1991;260:C327–37.

    CAS  PubMed  Google Scholar 

  83. Hasenfuss G, Pieske B. Calcium cycling in congestive heart failure. J Mol Cell Cardiol. 2002;34:951–69.

    Article  CAS  PubMed  Google Scholar 

  84. O’Rourke B, Kass DA, Tomaselli GF, et al. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res. 1999;84:562–70.

    Article  PubMed  Google Scholar 

  85. Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev. 2002;82(4):893–922.

    CAS  PubMed  Google Scholar 

  86. Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508.

    Article  CAS  PubMed  Google Scholar 

  87. Deng J, Wang G, Huang Q, et al. Oxidative stress induced leaky sarcoplasmic reticulum underlying acute heart failure in severe burn trauma. Free Radical Biol Med. 2008;44:375–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by several sources: Chinese National Natural Scientific Foundation grant 30028008, 30771028 and 30971201; National Key Foundation for Basic Science Research of China (grant G2005CB522601); Natural Science Foundation of Guangdong, China (grant 4020373).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht and People's Medical Publishing House

About this chapter

Cite this chapter

Zhao, K., Huang, Q. (2015). The Alterations of Microcirculation in Burns. In: Yang, Z. (eds) Chinese Burn Surgery. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8575-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8575-4_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8574-7

  • Online ISBN: 978-94-017-8575-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics