Skip to main content

Terahertz Aperiodic Multilayered Structure Arranged According to the Kolakoski Sequence

  • Conference paper
  • First Online:
Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz)

Abstract

We report on a novel type of an aperiodic one-dimensional multilayered structure which can be used for terahertz radiation manipulations. The studied structure is formed by stacking together dielectric layers according to the Kolakoski self-generation scheme. Numerical simulations are carried out for different configurations of the structure to reveal the dependence of its optical characteristics on the generation stage, frequency, and the angle of wave incidence. The dependence of the number and width of omnidirectional bandgaps on the refractive indexes and the thicknesses of the dielectric materials is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macia E (2012) Exploiting aperiodic designs in nanophotonic devices. Rep Prog Phys 75(3):036502

    Article  ADS  Google Scholar 

  2. Zhu S-N, Zhu Y-Y, Ming N-B (1997) Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278:843–846

    Article  ADS  Google Scholar 

  3. Sibilia C, Tropea F, Bertolotti M (1998) Enhanced nonlinear optical response of a Cantor-like and Fibonacci-like quasi-periodic structures. J Mod Opt 45(11):2255–2267

    Article  ADS  Google Scholar 

  4. Makarava L, Nazarov M, Ozheredov I, Shkurinov A, Smirnov A, Zhukovsky S (2007) Fibonacci-like photonic structure for femtosecond pulse compression. Phys Rev E 75:036609

    Article  ADS  Google Scholar 

  5. Agarwal V, Mora-Ramos ME (2007) Optical characterization of polytype Fibonacci and Thue–Morse quasiregular dielectric structures made of porous silicon multilayers. J Phys D Appl Phys 40(10):3203

    Article  ADS  Google Scholar 

  6. Moretti L, Rea I, De Stefano L, Rendina I (2007) Periodic versus aperiodic: enhancing the sensitivity of porous silicon based optical sensors. Appl Phys Lett 90:191112

    Article  ADS  Google Scholar 

  7. Vaseashta A, Khudaverdyan S (eds) (2013) Advanced sensors for safety and security. Springer, Dordrecht, p 372

    Google Scholar 

  8. Tuz V, Fesenko V, Sukhoivanov I (2013) Optical characterization of the aperiodic multilayered anisotropic structure based on Kolakoski sequence. In: Integrated optics: physics and simulations, vol 8781, Proceedings of SPIE. SPIE, Bellingham, P. 87811C

    Google Scholar 

  9. Kolakoski W (1965) Self-generating runs, problem 5304. Am Math Mon 72:674

    MathSciNet  Google Scholar 

  10. Sing B (2004) Kolakoski sequences – an example of aperiodic order. J Non-Cryst Solids 334:100–104

    Article  ADS  Google Scholar 

  11. Tuz V, Kazanskiy V (2009) Electromagnetic scattering by a quasiperiodic generalized multilayer Fibonacci structure with grates of magnetodielectric bars. Waves Rand Complex Media 19(3):501–508

    Article  ADS  MATH  Google Scholar 

  12. Tuz V (2009) Optical properties of a quasiperiodic generalized Fibonacci structure of chiral and material layers. J Opt Soc Am B 26(4):627–632

    Article  ADS  MathSciNet  Google Scholar 

  13. Tuz V (2009) A peculiarity of localized mode transfiguration of a Cantor-like chiral multilayer. J Opt A Pure Appl Opt 11(12):125103

    Article  ADS  Google Scholar 

  14. Tuz V, Batrakov O (2010) Localization and polarization transformation of waves by a symmetric and asymmetric modified Fibonacci chiral multilayer. J Mod Opt 57(21):2114–2122

    Article  ADS  MATH  Google Scholar 

  15. Fesenko V, Sukhoivanov I, Shul’ga S, Andrade Lucio J (2013) Propagation of electromagnetic waves in anisotropic photonic structures. In: Passaro V (ed) Advances in photonic crystals. InTech, Rijeka, pp 79–105

    Google Scholar 

  16. Lo S-Z, Murphy T (2009) Nanoporous silicon multilayers for terahertz filtering. Opt Lett 34(19):2921–2923

    Article  ADS  Google Scholar 

  17. Hsueh WJ, Wun SJ, Lin ZJ, Cheng YH (2011) Features of the perfect transmission in Thue–Morse dielectric multilayers. J Opt Soc Am B 28(11):2584–2591

    Article  ADS  Google Scholar 

  18. Fink Y, Winn JN, Fan S, Chen C, Michel J, Joannopoulos JD, Thomas EL (1998) A dielectric omnidirectional reflector. Science 282:1679–1682

    Article  ADS  Google Scholar 

  19. Lusk D, Abdulhalim I, Placido F (2001) Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal. Opt Commun 198:273–279

    Article  ADS  Google Scholar 

  20. Qiu F, Peng RW, Huang XQ, Hu XF, Mu Wang, Hu A, Jiang SS, Feng D (2004) Omnidirectional reflection of electromagnetic waves on Thue-Morse dielectric multilayers. Europhys Lett 68(5):658–663

    Article  ADS  Google Scholar 

  21. Ben Abdelaziz K, Zaghdoudi J, Kanzari M, Rezig B (2005) A broad omnidirectional reflection band obtained from deformed Fibonacci quasi-periodic one dimensional photonic crystals. J Opt A Pure Appl Opt 7:544–549

    Article  ADS  Google Scholar 

  22. Hsueh WJ, Chen CT, Chen CH (2008) Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism. Phys Rev A 78:013836

    Article  ADS  Google Scholar 

  23. Dal Negro L, Stolfi M, Yi Y, Michel J, Duan X, Kimerling LC, LeBlanc J, Haavisto J (2004) Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue–Morse quasicrystals. Appl Phys Lett 84(25):5186–5188

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported (V. R. Tuz) by Ministry of Education and Science of Ukraine under the Program “Electrodynamics of layered composites with chiral properties and multifunctional planar systems”, Project No. 0112 U 000561.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr I. Fesenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Fesenko, V.I., Tuz, V.R., Sukhoivanov, I.A. (2014). Terahertz Aperiodic Multilayered Structure Arranged According to the Kolakoski Sequence. In: Pereira, M., Shulika, O. (eds) Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz). NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8572-3_4

Download citation

Publish with us

Policies and ethics