Skip to main content

Members of the Order Thermotogales: From Microbiology to Hydrogen Production

  • Chapter
  • First Online:
Microbial BioEnergy: Hydrogen Production

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 38))

Summary

Members of the deep-branching order Thermotogales are widespread in various terrestrial, submarine and subterrestrial extreme environments. This bacterial order included both thermophilic and hyperthermophilic anaerobic microorganisms so far pertaining to ten genera. It is only recently (2011) that cultivation of a mesophilic member of this order belonging to a novel genus, Mesotoga, has been successful. All members, with the exception of Mesotoga spp., are recognized as high hydrogen producers having possible applications in biotechnology with a peculiar emphasis for members of the genus Thermotoga (e.g. T. maritima and T. neapolitana). The ecology, phylogeny and metabolism linked to hydrogen production of these bacteria, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMC –:

Carboxy methyl cellulose;

GAP deh –:

Glyceraldehyde-3-phosphate dehydrogenase;

GghA –:

1,4-β-D-glucan glucohydrolase;

HEPES –:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid;

MBS –:

Metabisulfite;

NRO –:

NADH oxidoreductase;

ORF –:

Open reading frames;

RET –:

Reversed electron transport;

ROS –:

Reactive oxygen species

References

  • Adams MWW (1990) The metabolism of hydrogen by extremely thermophilic, sulfur-dependent bacteria. FEMS Microbiol Rev 75:219–237

    CAS  Google Scholar 

  • Alain K, Marteinsson VT, Miroshnichenko ML, Bonch-Osmolovskaya EA, Prieur D, Birrien JL (2002) Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339

    CAS  PubMed  Google Scholar 

  • Amend JP, Plyasunov AV (2001) Carbohydrates in thermophile metabolism: calculations of the standard molal thermodynamic properties of aqueous pentoses and hexoses at elevated temperatures and pressures. Geochim Cosmochim Acta 65:3901–3917

    CAS  Google Scholar 

  • Andrews KT, Patel BKC (1996) Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from non-volcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269

    CAS  PubMed  Google Scholar 

  • Anna J, Shigetoshi A, Adams MWW (1991) The extremely thermophilic eubacterium, Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten. J Biol Chem 266:13834–13841

    Google Scholar 

  • Antoine E, Cilia V, Meunier J, Guezennec J, Lesongeur F, Barbier G (1997) Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol 47:1118–1123

    CAS  PubMed  Google Scholar 

  • Balk M, Weijma J, Stams AJ (2002) Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52:1361–1368

    CAS  PubMed  Google Scholar 

  • Ben Hania W, Ghodbane R, Postec A, Brochier-Armanet C, Hamdi M, Fardeau M-L, Ollivier B (2011) Cultivation of the first mesophilic representative (“mesotoga”) within the order Thermotogales. Syst Appl Microbiol 34:581–585

    CAS  PubMed  Google Scholar 

  • Ben Hania W, Ghodbane R, Postec A, Hamdi M, Ollivier B, Fardeau M-L (2012) Defluviitoga tunisiensis gen. nov., sp. nov., a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester. Int J Syst Evol Microbiol 62:1377–1382

    CAS  PubMed  Google Scholar 

  • Ben Hania W, Postec A, Aullo T, Ranchou-Peyruse A, Erauso G, Brochier-Armanet C, Hamdi M, Ollivier B, Saint-Laurent S, Margot M, Fardeau ML (2013) Mesotoga infera sp. nov., a novel mesophilic member of the order Thermotogales, isolated from an underground gas storage in France. Int J Syst Evol Microbiol 63:3003–3008. doi:1099/ijs.0.047993-0

    CAS  PubMed  Google Scholar 

  • Boiangiu CD, Jayamani E, Brugel D, Hermann G, Kim J, Forzi L, Hedderich R, Vgenopoulou I, Pierik AJ, Steuber J, Buckel W (2005) Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria. J Mol Microbiol Biotechnol 10:105–119

    CAS  PubMed  Google Scholar 

  • Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64:4774–4781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brochier C, Philippe H (2002) Phylogeny: a non-hyperthermophilic ancestor for Bacteria. Nature 417:244

    CAS  PubMed  Google Scholar 

  • Buckel W, Thauer RK (2012) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta 1827:94–113. doi:10.1016/j.bbabio.2012.07.002

    PubMed  Google Scholar 

  • Cappelletti M, Bucchi G, Mendes JDS, Alberini A, Fedi S, Bertin L, Frascari D (2012) Biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of four hyperthermophilic Thermotoga strains. J Chem Technol Biotechnol 87:1291–1301

    CAS  Google Scholar 

  • Chang VS, Nagwani M, Kim CH, Holtzapple MT (2001) Oxidative lime pretreatment of high-lignin biomass. Appl Biochem Biotechnol 94:1–28

    CAS  PubMed  Google Scholar 

  • Chhabra SR, Shockley KR, Conners SB, Scott KL, Wolfinger RD, Kelly RM (2003) Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J Biol Chem 278:7540–7552

    CAS  PubMed  Google Scholar 

  • Cohen J, Kim K, King P, Seibert M, Schulten K (2005) Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. Structure 13:1321–1329

    CAS  PubMed  Google Scholar 

  • Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM (2006) Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 30:872–905

    CAS  PubMed  Google Scholar 

  • Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848

    CAS  PubMed  Google Scholar 

  • d’Ippolito G, Dipasquala L, Vella FM, Romano I, Gambacorta A, Fontana A (2010) Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana. Int J Hydrog Energy 35:2290–2295

    Google Scholar 

  • Davey ME, Wood WA, Key R, Nakamura K, Stahl D (1993) Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the ‘Thermotogales’. Syst Appl Microbiol 16:191–200

    Google Scholar 

  • de Vrije T, De Haas GG, Tan GB, Keijsers ERP, Claassen PAM (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrog Energy 27:1381–1390

    Google Scholar 

  • de Vrije T, Bakker RR, Budde MAW, Lai MH, Mars AE, Claassen PAM (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12

    PubMed Central  PubMed  Google Scholar 

  • de Vrije T, Budde MAW, Lips SJ, Bakker RR, Mars AE, Claassen PAM (2010) Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrog Energy 35:13206–13213

    Google Scholar 

  • Di Pippo JL, Nesbo CL, Dahle H, Doolittle WF, Birkland N-K, Noll KM (2009) Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. Int J Syst Evol Microbiol 59:2991–3000

    Google Scholar 

  • Dipasquale L, d’Ippolito G, Gallo C, Vella FM, Gambacorta A, Picariello G, Fontana A (2012) Hydrogen production by the thermophilic eubacterium Thermotoga neapolitana from storage polysaccharides of the CO2-fixing diatom Thalassiosira weissflogii. Int J Hydrog Energy 37:12250–12257

    CAS  Google Scholar 

  • Dolla A, Fournier M, Dermoun Z (2006) Oxygen defense in sulfate-reducing bacteria. J Biotechnol 126:87–100

    CAS  PubMed  Google Scholar 

  • Drapcho CM, Nhuan NP, Walker TH (eds) (2008) Hydrogen production by fermentation. In: Biofuels engineering process technology. McGraw-Hill, New York, pp 269–299

    Google Scholar 

  • Eriksen NT, Nielsen TM, Iversen N (2008) Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana. Biotechnol Lett 30:103–109

    CAS  PubMed  Google Scholar 

  • Eriksen NT, Leegaard Riis M, Kindby Holm N, Iversen N (2011) H2 synthesis from pentoses and biomass in Thermotoga spp. Biotechnol Lett 33:293–300

    CAS  PubMed  Google Scholar 

  • Fardeau M-L, Olliever B, Patel BKC, Magot M, Thomas P, Rimbault A, Rocchiccioli F, Garcia J-L (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019

    CAS  PubMed  Google Scholar 

  • Feng Y, Cheng L, Zhang X, Li X, Deng Y, Zhang H (2010) Thermococcoides shengliensis gen. nov., sp. nov., a new member of the order Thermotogales isolated from oil-production fluid. Int J Syst Evol Microbiol 60:932–937

    CAS  PubMed  Google Scholar 

  • Fetzer S, Conrad R (1993) Effect of redox potential on methanogenesis by Methanosarcina barkeri. Arch Microbiol 160:108–113

    CAS  Google Scholar 

  • Friedrich AB, Antranikian G (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl Environ Microbiol 62:2875–2882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frock AD, Gray SR, Kelly RM (2012) Hyperthermophilic Thermotoga species differ with respect to specific carbohydrate transporters and glycoside hydrolases. Appl Environ Microbiol 78:1978–1986

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galperin MY, Noll KM, Romano AH (1996) The glucose transport system of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana. Appl Environ Microbiol 62:2915–2918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hawkes F, Dinsdale R, Hawkes D, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrog Energy 27:1339–1347

    CAS  Google Scholar 

  • Huber R, Hannig M (2006) Thermotogales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 899–922

    Google Scholar 

  • Huber R, Stetter KO (2001) Discovery of hyperthermophilic microorganisms. In: Adams MWW, Kelly RM (eds) Methods in enzymology. Academic, San Diego, pp 11–24

    Google Scholar 

  • Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333

    CAS  Google Scholar 

  • Huber R, Woese CR, Langworthy TA, Fricke H, Stetter KO (1989) Thermosipho africanus gen. nov., represents a new genus of thermophilic Eubacteria within the Thermotogales. Syst Appl Microbiol 12:32–37

    Google Scholar 

  • Huber R, Woese CR, Langworthy TA, Kristjansson JK, Stetter KO (1990) Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the Thermotogales. Arch Microbiol 154:105–111

    CAS  Google Scholar 

  • Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100:260–265

    CAS  PubMed  Google Scholar 

  • Jannasch HW, Huber R, Belkin S, Stetter KO (1988) Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch Microbiol 150:103–104

    Google Scholar 

  • Janssen PH, Morgan HW (1992) Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1. FEMS Microbiol Lett 96:213–217

    CAS  Google Scholar 

  • Jayasinghearachchi HS, Lal B (2011) Oceanotoga teriensis gen. nov., sp. nov., a thermophilic bacterium isolated from offshore oil-producing wells. Int J Syst Evol Microbiol 61:554–560

    CAS  PubMed  Google Scholar 

  • Jeanthon C, Reysenbach AL, L’Haridon S, Gambacorta A, Pace NR, Glenat P, Prieur D (1995) Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164:91–97

    CAS  PubMed  Google Scholar 

  • Jenney FE, Adams MWW (2008) Hydrogenases of the model hyperthermophiles. Incredible anaerobes: from physiology to genomics to fuels. Ann N Y Acad Sci 1125:252–266

    CAS  PubMed  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    CAS  Google Scholar 

  • Käslin SA, Childers SE, Noll KM (1998) Membrane-associated redox activities in Thermotoga neapolitana. Arch Microbiol 170:297–303

    PubMed  Google Scholar 

  • Kaushik N, Debabrata D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529

    Google Scholar 

  • King MR, Yernool DA, Eveleigh DE, Chassy BM (1998) Thermostable alpha-galactosidase from Thermotoga neapolitana: cloning, sequencing and expression. FEMS Microbiol Lett 163:37–42

    CAS  PubMed  Google Scholar 

  • Kopke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Durre P (2010) Clostridium ljiungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107:13087–13092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krekeler D, Teske A, Cypionka H (1998) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol Ecol 25:89–96

    CAS  Google Scholar 

  • L’Haridon S, Miroshnichenko M, Hippe H, Fardeau M-L, Bonch-Osmolovskaya EA, Stackebrandt E, Jeanthon C (2001) Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 51:1327–1334

    Google Scholar 

  • L’Haridon S, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya EA, Stackebrandt E, Jeanthon C (2002) Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 52:1715–1722

    PubMed  Google Scholar 

  • Lakhal R, Auria R, Davidson S, Ollivier B, Dolla A, Hamdi M, Combet-Blanc Y (2010) Effect of oxygen and redox potential on glucose fermentation in thermotoga maritima under controlled physicochemical conditions. Int J Microbiol 2010:896510. doi:10.1155/2010/896510

    PubMed Central  PubMed  Google Scholar 

  • Lakhal R, Auria R, Davidson S, Ollivier B, Durand M-C, Dolla A, Hamdi M, Combet-Blanc Y (2011) Oxygen uptake rates in the hyperthermophilic anaerobe Thermotoga maritima grown in a bioreactor under controlled oxygen exposure: clues to its defence strategy against oxidative stress. Arch Microbiol 193:429–438

    CAS  PubMed  Google Scholar 

  • Lay JJ (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68:269–278

    CAS  PubMed  Google Scholar 

  • Le Fourn C, Fardeau M-L, Ollivier B, Lojou E, Dolla A (2008) The hyperthermophilic anaerobe Thermotoga maritima is able to cope with limited amount of oxygen: insights into its defence strategies. Environ Microbiol 10:1877–1887

    PubMed  Google Scholar 

  • Le Fourn C, Brasseur G, Brochier-Armanet C, Pieulle L, Brioukhanov A, Ollivier B, Dolla A (2011) An oxygen reduction chain in the hyperthermophilic anaerobe Thermotoga maritima highlights horizontal gene transfer between Thermococcales and Thermotogales. Environ Microbiol 13:2132–2145

    PubMed  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    CAS  Google Scholar 

  • Liang TM, Cheng SS, Wu KL (2002) Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane. Int J Hydrog Energy 27:1157–1165

    CAS  Google Scholar 

  • Lien T, Madsen M, Rainey FA, Birkeland N-K (1998) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48:1007–1013

    CAS  PubMed  Google Scholar 

  • Magot M, Ollivier B, Patel BK (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116

    CAS  PubMed  Google Scholar 

  • McCarthy JK, Uzelac A, Davis DF, Eveleigh DE (2004) Improved catalytic efficiency and active site modification of 1,4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution. J Biol Chem 279:11495–11502

    CAS  PubMed  Google Scholar 

  • Miranda-Tello E, Fardeau M-L, Thomas P, Ramirez F, Casalot L, Cayol J-L, Garcia J-L, Ollivier B (2004) Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54:169–174

    CAS  PubMed  Google Scholar 

  • Miranda-Tello E, Fardeau M-L, Joulian C, Magot M, Thomas P, Tholozan JL, Ollivier B (2007) Petrotoga halophila sp. nov., a thermophilic, moderately halophilic, fermentative bacterium isolated from an offshore oil well in Congo. Int J Syst Evol Microbiol 57:40–44

    CAS  PubMed  Google Scholar 

  • Munro SA, Zinder SH, Walker LP (2009) The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production. Biotechnol Prog 25:1035–1042

    CAS  PubMed  Google Scholar 

  • Nesbø CL, Dlutek M, Zhaxybayeva O, Doolittle WF (2006) Evidence for existence of “Mesotogas,” members of the order Thermotogales adapted to low-temperature environments. Appl Environ Microbiol 72:5061–5068

    PubMed Central  PubMed  Google Scholar 

  • Nesbø CL, Kumaraswamy R, Dlutek M, Doolittle WF, Foght J (2010) Searching for mesophilic Thermotogales bacteria: “Mesotogas” in the wild. Appl Environ Microbiol 76:4896–4900

    PubMed Central  PubMed  Google Scholar 

  • Nesbø C, Bradnan D, Adebusuyi A, Dlutek M, Petrus A, Foght J, Doolittle W, Noll K (2012) Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales. Extremophiles 16:387–393

    PubMed  Google Scholar 

  • Ngo TA, Sim SJ (2011) Dark fermentation of hydrogen from waste glycerol using hyperthermophilic eubacterium Thermotoga neapolitana. Environ Prog Sustain Energy 31:466–473

    Google Scholar 

  • Ngo TA, Kim MS, Sim SJ (2011a) High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. Int J Hydrog Energy 36:5836–5842

    CAS  Google Scholar 

  • Ngo TA, Kim MS, Sim SJ (2011b) Thermophilic hydrogen fermentation using Thermotoga neapolitana DSM 4359 by fed-batch culture. Int J Hydrog Energy 36:14014–14023

    CAS  Google Scholar 

  • Ngo TA, Nguyen TH, Bui HTV (2012) Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359. Renew Energy 37:174–179

    CAS  Google Scholar 

  • Nguyen TN, Borges KM, Romano AH, Noll KM (2001) Differential gene expression in Thermotoga neapolitana in response to growth substrate. FEMS Microbiol Lett 195:79–83

    CAS  PubMed  Google Scholar 

  • Nguyen TN, Ejaz AD, Brancieri MA, Mikula AM, Nelson KE, Gill SR, Noll KM (2004) Whole-genome expression profiling of Thermotoga maritima in response to growth on sugars in a chemostat. J Bacteriol 186:4824–4828

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen TAD, Kim JP, Kim MS, Oh YK, Sima SJ (2008a) Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation. Int J Hydrog Energy 33:1483–1488

    CAS  Google Scholar 

  • Nguyen TAD, Kim JP, Kim MS, Oh YK, Sim SJ (2008b) Hydrogen production by the hyperthermophilic eubacterium, Thermotoga neapolitana, using cellulose pretreated by ionic liquid. Int J Hydrog Energy 33:5161–5168

    CAS  Google Scholar 

  • Nguyen TAD, Han SJ, Kim JP, Kim MS, Sim SJ (2010a) Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition. Bioresour Technol 101:S38–S41

    CAS  PubMed  Google Scholar 

  • Nguyen TAD, Kim KR, Kim MS, Sim SJ (2010b) Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int J Hydrog Energy 35:13392–13398

    CAS  Google Scholar 

  • Nguyen TAD, Kim KR, Nguyen MT, Kim MS, Kim D, Sim SJ (2010c) Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. Int J Hydrog Energy 35:13035–13040

    CAS  Google Scholar 

  • Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valor 1:21–39

    CAS  Google Scholar 

  • Nunoura T, Oida H, Miyazaki M, Suzuki Y, Takai K, Horikoshi K (2007) Marinitoga okinawensis sp. nov., a novel thermophilic and anaerobic heterotroph isolated from a deep-sea hydrothermal field, Southern Okinawa Trough. Int J Syst Evol Microbiol 57:467–471

    CAS  PubMed  Google Scholar 

  • Nunoura T, Hirai M, Imachi H, Miyazaki M, Makita H, Hirayama H, Furushima Y, Yamamoto H, Takai K (2010) Kosmotoga arenicorallina sp. nov. a thermophilic and obligately anaerobic heterotroph isolated from a shallow hydrothermal system occurring within a coral reef, southern part of the Yaeyama Archipelago, Japan, reclassification of Thermococcoides shengliensis as Kosmotoga shengliensis comb. nov., and emended description of the genus Kosmotoga. Arch Microbiol 192:811–819

    CAS  PubMed  Google Scholar 

  • Ollivier B, Cayol J-L (2005) The fermentative, iron-reducing, and nitrate-reducing microorganisms. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 71–88

    Google Scholar 

  • Patel BKC, Morgan HW, Daniel RM (1985) Fervidobacterium nodosum; gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69

    CAS  Google Scholar 

  • Pierce E, Xie G, Barabote RD, Saunders E, Han CS, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 10:2550–2573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poehlein A, Schmidt S, Kaster AK, Goenrich M, Vollmers J, Thurmer A, Bertsch J, Schuchmann K, Voigt B, Hecker M, Daniel R, Thauer RK, Gottschalk G, Muller V (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7:e33439. doi:10.1371/journal.pone.0033439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Postec A, Le Breton C, Fardeau M-L, Lesongeur F, Pignet P, Querellou J, Ollivier B, Godfroy A (2005) Marinitoga hydrogenitolerans sp. nov., a novel member of the order Thermotogales isolated from a black smoker chimney on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:1217–1221

    CAS  PubMed  Google Scholar 

  • Postec A, Ciobanu MC, Birrien J-L, Bienvenu N, Prieur D, Le Romancer M (2010) Marinitoga litoralis sp. nov., a thermophilic, heterotrophic bacterium isolated from a coastal thermal spring on Ile Saint-Paul, Southern Indian Ocean. Int J Syst Evol Microbiol 60:1778–1782

    CAS  PubMed  Google Scholar 

  • Ravot G, Ollivier B, Magot M, Patel B, Crolet J, Fardeau M-L, Garcia J (1995) Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales. Appl Environ Microbiol 61:2053–2055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravot G, Ollivier B, Fardeau M-L, Patel BKC, Andrews KT, Magot M, Garcia JL (1996) L-alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea: a remnant of an ancestral metabolism? Appl Environ Microbiol 62:2657–2659

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reysenbach A-L, Boone DR, Castenholz RW, Garrity GM (2001) Phylum BII. Thermotogae phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 369–387

    Google Scholar 

  • Schink B, Stams A (2006) Syntrophism among prokaryotes. In: Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 322–337

    Google Scholar 

  • Schröder C, Selig M, Schönheit P (1994) Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch Microbiol 161:460–470

    Google Scholar 

  • Schut GJ, Adams MW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Selig M, Xavier KB, Santos H, Schonheit P (1997) Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol 167:217–232

    CAS  PubMed  Google Scholar 

  • Soboh B, Linder D, Hedderich R (2004) A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150:2451–2463

    CAS  PubMed  Google Scholar 

  • Takahata Y, Nishijima M, Hoaki T, Maruyama T (2001) Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901–1909

    CAS  PubMed  Google Scholar 

  • Takai K, Horikoshi K (2000) Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17

    CAS  PubMed  Google Scholar 

  • Teske A, Ramsing NB, Habicht K, Fukui M, Kuver J, Jorgensen BB, Cohen Y (1998) Sulfate-reducing bacteria and their activities in cyanobacterial mats of solar Lake (Sinai, Egypt). Appl Environ Microbiol 64:2943–2951

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Microbiol Mol Biol Rev 41:100–180

    CAS  Google Scholar 

  • Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536

    CAS  PubMed  Google Scholar 

  • Tosatto SCE, Toppo S, Carbonera D, Giacometti GM, Costantini P (2008) Comparative analysis of the [FeFe] hydrogenase from Thermotogales indicates the molecular bases of resistance to oxygen inactivation. Int J Hydrog Energy 33:570–578

    CAS  Google Scholar 

  • Urios L, Cueff-Gauchard V, Pignet P, Postec A, Fardeau M-L, Ollivier B, Barbier G (2004) Thermosipho atlanticus sp. nov., a novel member of the Thermotogales isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 54:1953–1957

    CAS  PubMed  Google Scholar 

  • Van Niel EWJ, Budde MAW, de Haas GG, van der Wal FJ, Claassen PAM, Stams AJM (2002) Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrog Energy 27:1391–1398

    Google Scholar 

  • Van Ooteghem SA, Beer SK, Yue PC (2002) Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl Biochem Biotechnol 98–100:177–189

    PubMed  Google Scholar 

  • Van Ooteghem SA, Jones A, van der Lelie D, Dong B, Mahajan D (2004) H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol Lett 26:1223–1232

    PubMed  Google Scholar 

  • Vanfossen AL, Lewis DL, Nichols JD, Kelly RM (2008) Polysaccharide degradation and synthesis by extremely thermophilic anaerobes. Ann N Y Acad Sci 1125:322–337

    CAS  PubMed  Google Scholar 

  • Vargas M, Noll KM (1996) Catabolite repression in the hyperthermophilic bacterium Thermotoga neapolitana is independent of cAMP. Microbiology 142:139–144

    CAS  PubMed  Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67

    CAS  PubMed  Google Scholar 

  • Verhagen MF, O’Rourke T, Adams MW (1999) The hyperthermophilic bacterium Thermotoga maritima contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. Biochim Biophys Acta 1412:212–229

    CAS  PubMed  Google Scholar 

  • Vincent KA, Parkin A, Lenz O, Albracht SPJ, Fontecilla-Camps JC, Cammack R, Friedrich B, Armstrong FA (2005) Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases. J Am Chem Soc 127:18179–18189

    CAS  PubMed  Google Scholar 

  • Wery N, Lesongeur F, Pignet P, Derennes V, Cambon-Bonavita M, Godfroy A, Barbier G (2001) Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504

    CAS  PubMed  Google Scholar 

  • Wiegel J, Ljungdahl LG, Demain AL (1985) The importance of thermophilic bacteria in biotechnology. Crit Rev Biotechnol 3:39–108

    Google Scholar 

  • Windberger E, Huber R, Trincone A, Fricke H, Stetter KO (1989) Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch Microbiol 151:506–512

    CAS  Google Scholar 

  • Woodward J, Heyer NI, Getty JP, O’Neill HM, Pinkhassik E, Evans BR (2002) Efficient hydrogen production using enzymes of the pentose phosphate pathway. NREL/CP-610–32405. US Department of Energy, Washington, DC

    Google Scholar 

  • Yang X, Ma K (2005) Purification and characterization of an NADH oxidase from extremely thermophilic anaerobic bacterium Thermotoga hypogea. Arch Microbiol 183:331–337

    CAS  PubMed  Google Scholar 

  • Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, Nelson KE, NesbØ CL, Doolittle WF, Gogarten JP, Noll KM (2009) On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci U S A 106:5865–5870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zverlov VV, Volkov IY, Velikodvorskaya TV, Schwarz WH (1997) Highly thermostable endo-1,3-β-glucanase (chrysolaminaranase) LamA from Thermotoga neapolitana: nucleotide sequence of the gene and characterization of the recombinant gene product. Microbiology 143:1701–1708

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to results obtained by D.Z. and M.C. on H2-production by Thermotoga spp. has received funding from the Italian Ministry of Agriculture, Food and Forestry (MIPAAF) under grant ‘Combined production of hydrogen and methane from agricultural and zootechnical wastes through biological processes (BIO-HYDRO)’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Zannoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cappelletti, M., Zannoni, D., Postec, A., Ollivier, B. (2014). Members of the Order Thermotogales: From Microbiology to Hydrogen Production. In: Zannoni, D., De Philippis, R. (eds) Microbial BioEnergy: Hydrogen Production. Advances in Photosynthesis and Respiration, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8554-9_9

Download citation

Publish with us

Policies and ethics