Skip to main content

Nitrogenase-Dependent Hydrogen Production by Cyanobacteria

  • Chapter
  • First Online:
Microbial BioEnergy: Hydrogen Production

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 38))

Summary

Cyanobacteria possess three different types of nitrogenases, two Mo- and one V-nitrogenases, all of which catalyse the reduction of the dinitrogen molecule to ammonia accompanied by the evolution of molecular hydrogen. V-nitrogenase is most effective in producing H2 and is, therefore, suited for potential applications in solar energy conversion programs to generate molecular H2 as a clean and renewable energy source. Intact cells of cyanobacteria often show rather little net H2-production due to the concomitant H2-consumption by uptake hydrogenase. The unicellular N2-fixing Cyanothece is currently the focus of H2-production research. Wild-type cyanobacteria are already capable of maximal H2-production and any further enhancement of H2-formation must be achieved by manipulating linear photosynthetic electron transport which is rate-limiting in light- and nitrogenase-dependent H2-generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Basset R, Bader KP (1999) Effects of stress conditions and calcium on the light-induced hydrogen gas exchange in Oscillatoria chalybea. J Plant Physiol 155:86–92

    CAS  Google Scholar 

  • Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98:114–120

    CAS  PubMed  Google Scholar 

  • Aryal UK, Stöckel J, Krovvidi RK, Gritsenko MA, Monroe ME, Moore RJ, Koppenaal DW, Smith RD, Pakrasi HB, Jacobs JM (2011) Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light–dark diurnal cycles. BMC Syst Biol 5:194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Attridge EM, Rowell P (1997) Growth, heterocyst differentiation and nitrogenase activity in the cyanobacteria Anabaena variabilis and Anabaena cylindrica in response to molybdenum and vanadium. New Phytol 135:517–526

    CAS  Google Scholar 

  • Bandyopadhyay A, Stöckel J, Min HT, Sherman LA, Pakrasi HB (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 1:139

    PubMed  Google Scholar 

  • Bandyopadhyay A, Elvitigala T, Welsh E, Stöckel J, Liberton M, Min H, Sherman LA, Pakrasi HB (2011) Novel attributes of the genus Cyanothece, comprising a group of unicellular nitrogen-fixing cyanobacteria. mBio J 2:article e00214

    Google Scholar 

  • Barney BM, Laryukhin M, Igarashi RY, Lee HI, Dos Santos PC, Yang TC, Hoffman BM, Dean DR, Seefeldt LC (2005) Trapping a hydrazine reduction intermediate on the nitrogenase active site. Biochemistry 44:8030–8037

    CAS  PubMed  Google Scholar 

  • Belkin S, Padan E (1978) Hydrogen metabolism in the facultative anoxygenic cyanobacteria (blue-green algae) Oscillatoria limnetica and Aphanothece halophytica. Arch Microbiol 116:109–111

    CAS  PubMed  Google Scholar 

  • Betancourt DA, Loveless TM, Brown J, Bishop PE (2008) Characterization of diazotrophs containing Mo-independent nitrogenases, isolated from diverse natural environments. Appl Environ Microbiol 74:3471–3480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernát G, Waschewski N, Rögner M (2009) Towards efficient hydrogen production: the impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. Photosynth Res 99:205–216

    PubMed  Google Scholar 

  • Biggins J (1967a) Photosynthetic reactions by lysed protoplasts and particle preparations from the blue-green alga, Phormidium luridum. Plant Physiol 42:1447–1456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biggins J (1967b) Preparation of metabolically active protoplasts from the blue-green alga, Phormidium luridum. Plant Physiol 42:1442–1446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Billi D, Viaggiu E, Cockel CS, Rabbow E, Horneck G, Onofri S (2011) Damage escape and repair in dried Chroococcidiopsis spp. from hot and cold deserts exposed to simulated space and Martian conditions. Astrobiology 11:65–73

    CAS  PubMed  Google Scholar 

  • Boison G, Mergel A, Jolkver H, Bothe H (2004) Bacterial life and dinitrogen fixation at a gypsum rock. Appl Environ Microbiol 70:7070–7077

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boison G, Steingen C, Stal LJ, Bothe H (2006) The rice field cyanobacteria Anabaena azotica and Anabaena sp.CH1 express vanadium-dependent nitrogenase. Arch Microbiol 186:367–376

    CAS  PubMed  Google Scholar 

  • Borodin VB, Rao KK, Hall DO (2002) Manifestation of behavioral and physiological functions of Synechococcus sp. Miami BG 043511. Mar Biol 140:455–463

    CAS  Google Scholar 

  • Bothe H, Eisbrenner G (1977) Effect of 7-azatryptophan on nitrogen fixation and heterocyst formation in the blue-green alga Anabaena cylindrica. Biochem Physiol Pflanz 133:323–332

    Google Scholar 

  • Bothe H, Loos E (1972) Effect of far red light and inhibitors on nitrogen fixation and photosynthesis in the blue-green alga Anabaena cylindrica. Arch Mikrobiol 86:241–254

    CAS  Google Scholar 

  • Bothe H, Winkelmann S, Boison G (2008) Maximizing hydrogen production by cyanobacteria. Z Naturforsch 63c:226–232

    Google Scholar 

  • Bothe H, Schmitz O, Yates MG, Newton WE (2010a) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74:529–551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bothe H, Tripp HJ, Zehr JP (2010b) Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed. Arch Microbiol 192:783–790

    CAS  PubMed  Google Scholar 

  • Buikema WJ, Haselkorn R (2001) Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. Proc Natl Acad Sci U S A 98:2729–2734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burns RC, Hardy RWF (1975) Nitrogen fixation in bacteria and higher plants. Springer-Verlag, Berlin, Heidelberg, New York, p 189

    Google Scholar 

  • Burrows EH, Chaplen FWR, Ely RL (2008) Optimization of media nutrient composition for increased photofermentative hydrogen production by Synechocystis sp PCC 6803. Int J Hydrogen Energ 33:6092–6099

    CAS  Google Scholar 

  • Camsund D, Devine E, Holmqvist M, Johanoun P, Lindblad P, Stensjö K (2011) A HupS-GFP fusion demonstrates a heterocyst-specific location of the uptake hydrogenase in Nostoc punctiforme. FEMS Microbiol Lett 316:152–159

    CAS  PubMed  Google Scholar 

  • Canganella F, Wiegel J (2011) Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 28:253–279

    Google Scholar 

  • Carrieri D, Ananyev G, Costas AMG, Bryant DA, Dismukes CG (2008) Renewable hydrogen production by cyanobacteria: nickel requirements for optimal hydrogenase activity. Int J Hydrog Energy 33:2014–2022

    CAS  Google Scholar 

  • Chien Y-T, Auerbruch V, Brabban AD, Zinder SH (2000) Analysis of genes encoding an alternative nitrogenase in the archaeon Methanosarcina barkeri 227. J Bacteriol 182:3247–3253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Compaore J, Stal LJ (2010) Oxygen and the light–dark cycle of nitrogenase activity in two unicellular cyanobacteria. Environ Microbiol 12:54–62

    CAS  PubMed  Google Scholar 

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046–6057

    CAS  Google Scholar 

  • Dixon ROD (1972) Hydrogenase in legume root nodule bacteroids, occurrence and properties. Arch Microbiol 85:193–201

    CAS  Google Scholar 

  • Ducat DC, Sachdeva G, Silver PA (2011) Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc Natl Acad Sci U S A 108:3941–3946

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Fact 4:36. doi:10.1186/1475-2859-1184-1136

    PubMed Central  PubMed  Google Scholar 

  • Eisbrenner G, Bothe H (1979) Modes of electron transfer from molecular hydrogen in Anabaena cylindrica. Arch Microbiol 123:37–45

    CAS  Google Scholar 

  • Eisbrenner G, Evans HJ (1982) Spectral evidence for a component involved in hydrogen metabolism of soybean nodule bacteroids. Plant Physiol 70:1667–1672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413

    CAS  PubMed  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fewer D, Friedl T, Büdel B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol 23:82–90

    CAS  PubMed  Google Scholar 

  • Fisher K, Lowe DJ, Tavares P, Pereira AS, Huynh BH, Edmondson D, Newton WE (2007) Conformations generated during turnover of the Azotobacter vinelandii nitrogenase MoFe protein and their relationship to physiological functions. J Inorg Biochem 101:1649–1656

    CAS  PubMed  Google Scholar 

  • Gallon JR (2001) N2 fixation in phototrophs: adaptation to a specialized way of life. Plant Soil 239:39–48

    Google Scholar 

  • Gallon JR, Larue T, Kurz W (1974) Photosynthesis and nitrogenase activity in the blue-green-alga Gloeocapsa. Can J Microbiol 20:1633–1637

    CAS  PubMed  Google Scholar 

  • Germer F, Zelger I, Saggu M, Lendzian F, Schulz R, Appel J (2009) Overexpression, isolation and spectroscopic characterization of the bidirectional [NiFe] hydrogenase from Synechocystis sp PCC 6803. J Biol Chem 284:36462–36472

    CAS  PubMed  Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91

    CAS  PubMed  Google Scholar 

  • Ghirardi ML, Dubini A, Yu JP, Maness PC (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61

    CAS  PubMed  Google Scholar 

  • Giddings JW, Staehelin LA (1978) Plasma membrane architecture of Anabaena cylindrica: occurrence of microplasmodesmata and changes associated with heterocyst development and the cell cycle. Eur J Cell Biol 16:235–249

    Google Scholar 

  • Giddings JW, Staehelin LA (1981) Observation of microplasmodesmata in both heterocyst forming and non-heterocyst forming filamentous cyanobacteria by freeze-fracture electron -microscopy. Arch Microbiol 129:295–298

    Google Scholar 

  • Goebel NL, Turk KA, Achilles KM, Paerl R, Hewson I, Morrison AE, Montoya JP, Edwards CA, Zehr JP (2010) Abundance and distribution of major groups of diazotrophic cyanobacteria and their potential contribution to N2-fixation in the tropical Atlantic Ocean. Environ Microbiol 12:3272–3289

    CAS  PubMed  Google Scholar 

  • Hall DO, Markov SA, Watanabe Y, Rao KK (1995) The potential applications of cyanobacterial photosythesis for clean technologies. Photosynth Res 46:159–167

    CAS  PubMed  Google Scholar 

  • Hallenbeck P (2012) Hydrogen production by cyanobacteria. In: Hallenbeck P (ed) Microbial technologies in advanced biofuel production. Springer, Heidelberg/Berlin/New York, pp 15–28

    Google Scholar 

  • Happe T, Schütz K, Böhme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis. J Bacteriol 182:1624–1631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hess WR (2011) Cyanobacterial genomics for ecology and biotechnology. Curr Opin Microbiol 14:608–614

    CAS  PubMed  Google Scholar 

  • Hu YL, Lee CC, Ribbe HW (2012) Vanadium nitrogenase: a two-hit wonder? Dalton Trans 41:1118–1127

    CAS  PubMed  Google Scholar 

  • Ihara M, Nishihara H, Yoon KS, Lenz O, Friedrich B, Nakamoto H, Kojima K, Honma D, Kamachi T, Okura I (2006a) Light-driven production by a hybrid complex of a [NiFe]-Hydrogenase and the cyanobacterial photosystem I. Photochem Photobiol 82:676–682

    CAS  PubMed  Google Scholar 

  • Ihara M, Nakamoto H, Kamachi T, Okura I, Maeda M (2006b) Photoinduced hydrogen production by direct electron transfer from photosystem I cross-linked with cytochrome c3 to [NiFe]-hydrogenase. Photochem Photobiol 82:1677–1685

    CAS  PubMed  Google Scholar 

  • Joerger RD, Bishop PE (1988) Bacterial alternative nitrogen fixation systems. CRC Crit Rev Microbiol 14:1–14

    Google Scholar 

  • Kelly M, Postgate JR, Richards RL (1967) Reduction of cyanide and isocyanide by nitrogenase of Azotobacter chroocccum. Biochem J 102:1–3

    Google Scholar 

  • Kentemich T, Danneberg G, Hundeshagen B, Bothe H (1988) Evidence for the occurrence of the alternative, vanadium-containing nitrogenase in the cyanobacterium Anabaena variabilis. FEMS Microbiol Lett 51:19–24

    CAS  Google Scholar 

  • Kentemich T, Haverkamp G, Bothe H (1991) The expression of a third nitrogenase in the cyanobacterium Anabaena variabilis. Z Naturforsch 46c:217–222

    Google Scholar 

  • Khetkorn W, Baebprasert W, Lindblad P, Incharoensakdi A (2012) Redirection the electron flow towards the nitrogenase and bidirectional Hox-hydrogenase by using specific inhibitors results in enhanced H2-production in the cyanobacterium Anabaena siamensis TISTR 8012. Bioresour Technol 118:265–271

    CAS  PubMed  Google Scholar 

  • Kim DH, Kim MS (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102:6423–8431

    Google Scholar 

  • Laczko I (1986) Appearance of a reversible hydrogenase activity in Anabaena cylindrica grown in high light. Physiol Plant 67:634–637

    CAS  Google Scholar 

  • Lancaster KM et al (2011) X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 334:974–977

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larsson J, Nylander JAA, Bergman B (2011) Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol Biol 11:187

    PubMed Central  PubMed  Google Scholar 

  • Latysheva N, Junker VV, Palmer WJ, Codd GA, Barker D (2012) The evolution of nitrogen fixation in cyanobacteria. Bioinformatics 28:603–608

    CAS  PubMed  Google Scholar 

  • Liang C-M, Ekman M, Bergman B (2004) Expression of cyanobacterial genes involved in heterocyst differentiation and dinitrogen fixation along a plant symbiosis development profile. Mol Plant Microbe Interact 17:436–443

    Google Scholar 

  • Loveless TM, Saah JR, Bishop PE (1999) Isolation of nitrogen-fixing bacteria containing molybdenum – independent nitrogenases from natural environments. Appl Environ Microbiol 65:4223–4225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lukanov D, Yang ZY, Barney BM, Dean DR, Seefeldt LC, Hoffman BM (2012) Unification of reaction pathway and kinetic scheme for N2 reduction catalyzed by nitrogenase. Proc Natl Acad Sci U S A 109:5583–5587

    Google Scholar 

  • Luo YH, Mitsui A (1996) Sulfide as electron source for H2-photoproduction in the cyanobacterium Synechococcus sp, strain Miami BG 043511, under stress conditions. J Photochem Photobiol B 35:203–207

    CAS  Google Scholar 

  • Madamwar D, Garg N, Shah V (2000) Cyanobacterial hydrogen production. World J Microbiol Biotechnol 16:757–767

    CAS  Google Scholar 

  • Mariscal V, Herrero A, Flores E (2007) Continuous periplasm in a filamentous, heterocyst-forming cyanobacterium. Mol Microbiol 65:1139–1145

    CAS  PubMed  Google Scholar 

  • Marques AE, Barbosa AT, Jotta J, Coelho MC, Tamagnini P, Gouveia L (2011) Biohydrogen production by Anabaena sp PPCC 7120 wild-type and mutants under different conditions: light, nickel, propane, carbon dioxide and nitrogen. Biomass Bioenerg 35:4426–4434

    CAS  Google Scholar 

  • Masukawa H, Mochimaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58:618–624

    CAS  PubMed  Google Scholar 

  • Masukawa H, Zhang X, Yamazaki E, Iwata S, Nakamura K, Mochimaru M, Inoue K, Sakurai H (2009) Survey of the distribution of different types of nitrogenases and hydrogenases in heterocyst-forming cyanobacteria. Mar Biotechnol 11:397–409

    CAS  PubMed  Google Scholar 

  • Masukawa H, Kitashima M, Inoue K, Sakurai H, Hausinger RP (2012) Genetic engineering of cyanobacteria to enhance biohydrogen production from sunlight and water. Ambio 41(Suppl 2):169–173

    CAS  PubMed Central  PubMed  Google Scholar 

  • McIntosh CL, Germer F, Schulz R, Appel J, Jones AK (2011) The [NiFe]-hydrogenase of the cyanobacterium Synechocystis sp PCC 6803 works bidirectionally with a bias to H2-production. J Am Chem Soc 133:11308–11319

    CAS  PubMed  Google Scholar 

  • Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66:94–121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106

    CAS  PubMed  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mikheeva LE, Schmitz O, Shestakov SV, Bothe H (1995) Mutants of the cyanobacterium Anabaena variabilis altered in hydrogenase activities. Z Naturforsch 50c:505–510

    Google Scholar 

  • Min HT, Sherman LA (2010a) Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light. Appl Environ Microbiol 76:4293–4301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Min HT, Sherman L (2010b) Genetic transformation and mutagenesis via single-stranded DNA in the unicellular, diazotrophic cyanobacteria of the genus Cyanothece. Appl Environ Microbiol 76:7641–7645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitsui A, Kumazawa S (1977) Hydrogen production by marine photosynthetic organisms as potential energy resource. In: Mitsui A, Miyachi S, San Pietro A, Tamura S (eds) Biological solar energy conversion. Academic, London/New York/San Francisco, pp 275–289

    Google Scholar 

  • Mitsui A, Kumazawa S, Takahashi J, Ikernoto H, Cao S, Arai T (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323:720–722

    CAS  Google Scholar 

  • Mullineaux PM, Chaplin AE, Gallon JR (1983) Synthesis of nitrogenase in the cyanobacterium Gloeothece (Gloeocapsa) sp CCAP1430/3. J Gen Microbiol 129:1689–1696

    CAS  Google Scholar 

  • Mullineaux CW, Mariscal V, Nenninger A, Khanum H, Herrero A, Flores E, Adams DG (2008) Mechanism of intercellular molecular exchange in heterocyst forming cyanobacteria. EMBO J 27:1299–1308

    CAS  PubMed  Google Scholar 

  • Ni CV, Yakuninin AF, Gogotov IN (1990) Influence of molybdenum, vanadium, and tungsten on growth and nitrogenase synthesis of the free-living cyanobacterium Anabaena azollae. Microbiology 59:395–398

    Google Scholar 

  • Pfreundt U, Stal LJ, Voss B, Hess WR (2012) Nitrogen fixation in a unicellular chlorophyll d-containing cyanobacterium. ISME J 6:1367–1377

    CAS  PubMed  Google Scholar 

  • Postgate J (1972) Biological nitrogen fixation, A Merrow monograph. Watford, Herts

    Google Scholar 

  • Rashid N, Song W, Park J, Jin HF, Lee K (2009) Characteristics of hydrogen production by immobilized cyanobacterium Microcystis aeruginosa through cycles of photosynthesis and anaerobic incubation. J Ind Eng Chem 15:498–503

    CAS  Google Scholar 

  • Reddy PM, Spiller H, Albracht SL, Shanmugam KT (1996) Photodissimilation of fructose to H2 and CO2 by a dinitrogen-fixing cyanobacterium, Anabaena variabilis. Appl Environ Microbiol 62:1220–1226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romero M, Muro-Pastor AM, Otero A (2011) Quorum sensing N-acylhomoserine lactone signals affect nitrogen fixation in the cyanobacterium Anabaena sp PCC7120. FEMS Microbiol Lett 315:101–108

    CAS  PubMed  Google Scholar 

  • Ruvkun GB, Ausubel FM (1980) Interspecies homology of nitrogenase genes. Proc Natl Acad Sci U S A 77:191–195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saito MA, Bertrand EM, Dutkiewicz S, Bulygin VV, Moran DM, Monteiro FM, Follows MJ, Valois FW, Waterbury JB (2011) Iron conservation by reduction of metalloenzyme inventories in the marine diazotrophic Crocosphaera watsonii. Proc Natl Acad Sci U S A 108:2184–2189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez-Barcaldo P, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the cyanobacteria using a compartmentalization approach. Geobiology 3:145–165

    Google Scholar 

  • Schmitz O, Bothe H (1996) NAD(P)+-dependent hydrogenase activity in extracts from the cyanobacterium Anacystis nidulans. FEMS Microbiol Lett 135:97–101

    CAS  Google Scholar 

  • Schmitz O, Boison G, Hilscher R, Hundeshagen B, Zimmer W, Lottspeich F, Bothe H (1995) Molecular biological analysis of a directional hydrogenase from cyanobacteria. Eur J Biochem 233:266–276

    CAS  PubMed  Google Scholar 

  • Schrautemeier B, Neveling U, Schmitz S (1995) Distinct and differentially regulated Mo-dependent nitrogen-fixing systems evolved for heterocysts and vegetative cells of Anabaena variabilis ATCC 29413: characterization of the fdX1/2 gene regions as part of the nif1/2 gene clusters. Mol Microbiol 18:357–359

    CAS  PubMed  Google Scholar 

  • Schwarz C, Poss Z, Hoffmann D, Appel J (2010) Hydrogenases and hydrogen metabolism in photosynthetic prokaryotes. Adv Exp Med Biol 675:305–348

    CAS  PubMed  Google Scholar 

  • Sherman LA, Min H, Toepel J, Pakrasi HB (2010) Better living through Cyanothece – unicellular diazotrophic cyanobacteria with highly versatile metabolic systems. Adv Exp Med Biol 675:275–290

    CAS  PubMed  Google Scholar 

  • Shi T, Falkowski PG (2008) Genome evolution in cyanobacteria. The stable core and the variable shell. Proc Natl Acad Sci U S A 105:2510–2515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skizim NJ, Anayev GM, Krishnan A, Dismukes GC (2012) Metabolic pathways for photobiological hydrogen production by nitrogenase- and hydrogenase containing unicellular cyanobacteria Cyanothece. J Biol Chem 287:2777–2786

    CAS  PubMed  Google Scholar 

  • Spatzal T, Aksoyoglu M, Zhang L, Andrade SL, Schleicher E, Weber S, Rees DC, Einsle O et al (2011) Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334:940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Srirangan K, Pyne ME, Perry Chou C (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102:8589–8604

    CAS  PubMed  Google Scholar 

  • Stewart WDP, Lex M (1970) Nitrogenase activity in the blue-green alga Plectonema boryanum. Arch Mikrobiol 73:250–260

    CAS  PubMed  Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamagnini P, Leitão E, Oxelfelt F (2005) Uptake hydrogenase in cyanobacteria: novel input from non-heterocystous strains. Biochem Soc Trans 33:67–68

    CAS  PubMed  Google Scholar 

  • Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P et al (2007) Cyanobacterial hydrogenases: diversity, regulation and application. FEMS Microbiol Rev 31:692–720

    CAS  PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy-conversation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thiel T (1990) Protein-turnover and heterocyst differentiation in the cyanobacterium Anabaena variabilis. J Phycol 26:50–54

    CAS  Google Scholar 

  • Thiel T (1993) Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 175:6276–6286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thiel T, Lyons EM, Erker J, Ernst A (1995) A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci U S A 92:9358–9362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thiel T, Lyons EM, Erker J (1997) Characterization of genes for a second Mo-dependent nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 179:5222–5225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thorneley RNF, Lowe DJ (1984) The mechanism of Klebsiella pneumoniae nitrogenase action. Pre-steady-state kinetics of an enzyme bound intermediate in N2 reduction and of NH3 formation. Biochem J 224:877–886

    PubMed  Google Scholar 

  • Thorneley RNF, Eady RR, Lowe DJ (1978) Substrate hydrazine as an adduct bound to the active metal cluster of nitrogenase. Nature 272:557–558

    CAS  Google Scholar 

  • Tiwari A, Pandey A (2012) Cyanobacterial hydrogen production – a step towards clean energy. Int J Hydrog Energy 37:139–150

    CAS  Google Scholar 

  • Toepel J, Welsh E, Sumerfield TC, Prakasi HB, Sherman LA (2008) Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC51142 during light–dark and continuous-light growth. J Bacteriol 190:3904–3913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, Affourtit JP, Zehr JP et al (2010) Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464:90–94

    CAS  PubMed  Google Scholar 

  • Tsygankov A (2007) Nitrogen fixing cyanobacteria: a review. Appl Biochem Microbiol 43:250–259

    CAS  Google Scholar 

  • Wall JD (2004) Rain or shine – a phototroph that delivers. Nat Biotechnol 22:40–41

    CAS  PubMed  Google Scholar 

  • Weyman PD, Pratte B, Thiel T (2010) Hydrogen production in nitrogenase mutants in Anabaena variabilis. FEMS Microbiol Lett 304:55–61

    CAS  PubMed  Google Scholar 

  • Wiig JA, Hu Y, Lee CC, Ribbe M (2012) Radical SAM-dependent carbon insertion into the nitrogenase M-cluster. Science 337:1672–1675

    CAS  PubMed  Google Scholar 

  • Wilcox M, Mitchison G, Smith RJ (1973) Pattern formation in the blue-green alga Anabaena. 2. Controlled proheterocyst repression. J Cell Sci 13:637–649

    CAS  PubMed  Google Scholar 

  • Wilson ST, Kolber ZS, Tozzi S, Zehr JP, Karl DM (2012) Nitrogen fixation, hydrogen cycling, and electron transport kinetics in Trichodesmium erythraeum (cyanobacterium) strain IMS101. J Phycol 48:595–606

    CAS  Google Scholar 

  • Winkler M, Kawelke S, Happe T (2011) Light driven hydrogen production in protein based semi-artificial systems. Bioresour Technol 102:8493–8500

    CAS  PubMed  Google Scholar 

  • Woebken D, Burow LC, Prufert-Bebout L, Bebout BM, Hoehler TM, Pett-Ridge J, Spormann AM, Weber PK, Singer SW (2012) Identification of a novel cyanobacterial group of active diazotrophs in a coastal microbial mat using nanoSIMS analysis. ISME J 6:1427–1439

    CAS  PubMed  Google Scholar 

  • Yeager CM, Milliken CE, Bagwell CE, Staples L, Berseth PA, Sessions HT (2011) Evaluation of experimental conditions that influence hydrogen production among heterocystous cyanobacteria. Int J Hydrog Energy 36:7487–7499

    CAS  Google Scholar 

  • Yoshino F, Ikeda H, Masukawa H, Sakurai H (2007) High photobiological hydrogen production activity of a Nostoc sp PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Mar Biotechnol 9:101–112

    CAS  PubMed  Google Scholar 

  • Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173

    CAS  PubMed  Google Scholar 

  • Zhang Z, Pendse ND, Phillips KN, Cotner JB, Khodursky A (2008) Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803. BMC Genomics 9:344–354

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Bothe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bothe, H., Newton, W.E. (2014). Nitrogenase-Dependent Hydrogen Production by Cyanobacteria. In: Zannoni, D., De Philippis, R. (eds) Microbial BioEnergy: Hydrogen Production. Advances in Photosynthesis and Respiration, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8554-9_6

Download citation

Publish with us

Policies and ethics