Skip to main content

Structural Foundations for O2 Sensitivity and O2 Tolerance in [NiFe]-Hydrogenases

  • Chapter
  • First Online:
Book cover Microbial BioEnergy: Hydrogen Production

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 38))

  • 2423 Accesses

Summary

Nature has evolved three different ways of metabolizing hydrogen, represented by the anaerobic [Fe]-, [FeFe]- and [NiFe]-hydrogenases. Structural and functional studies of these enzymes have unveiled the unusual composition of their active sites and characterized their catalytic mechanisms. From a biotechnological viewpoint, the most interesting hydrogenases are those that contain a [NiFe] moiety in their active sites. Some of these enzymes are O2-resistant and can rapidly reductively recover from oxygen exposure whereas others are O2-tolerant and can oxidize H2 even at atmospheric oxygen levels. O2-resistant [NiFeSe]-hydrogenases have one of the Cys ligands of the active site replaced by a SeCys and do not display the hard-to-reactivate “unready” state provoked by O2. The reasons for this property might be related to the formation of O2-derived Se-O bonds, which are weaker than S-O bonds and, consequently, easier to break upon reduction. Conversely, membrane-bound O2-tolerant hydrogenases have an unusual proximal (relative to the active site) [Fe4S3] cluster coordinated by six Cys ligands. This cluster can rapidly send two successive electrons to the active site helping to reduce oxygen to water there. Some microorganisms posses more than one hydrogenase and use them in different ways. For instance, there are three well-characterized [NiFe]-hydrogenases in the model bacterium Escherichia coli. They are highly regulated and each one plays a specific role: microaerobic/anaerobic H2 uptake, anaerobic H2 evolution and, protection from O2-induced damage, respectively. These enzymes are discussed in connection with the metabolic changes E. coli undergoes during its transit through the intestinal tract of the host. O2-tolerant hydrogenases have been used to build bio-fuel cells that can function under air. Also, O2-resistant [NiFeSe]-hydrogenases have been attached to TiO2 particules for H2 production from solar energy. Hydrogenase active sites have also served as a source of inspiration for the synthesis of organometallic catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EPR –:

Electron Paramagnetic Resonance spectroscopy;

FTIR –:

Fourier Transform InfraRed spectroscopy;

Pt –:

Platinum;

TiO2 – :

Titanium dioxide

References

  • Alexeeva S, de Kort B, Sawers G, Hellingwerf KJ, de Mattos JT (2000) Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli. J Bacteriol 182:4934–4940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alexeeva S, Hellingwerf KJ, de Mattos JT (2002) Quantitative assessment of oxygen availability: perceived aerobiosis and its effect on flux distribution in the respiratory chain of Escherichia coli. J Bacteriol 184:1402–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alvarez AF, Malpica R, Contreras M, Escamilla E, Georgellis D (2010) Cytochrome d but not cytochrome o rescues the toluidine blue growth sensitivity of arc mutants of Escherichia coli. J Bacteriol 192:391–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atlung T, Knudsen K, Heerfordt L, Brøndsted L (1997) Effects of sigmaS and the transcriptional activator AppY on induction of the Escherichia coli hya and cbdAB-appA operons in response to carbon and phosphate starvation. J Bacteriol 179:2141–2146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baltazar CSA, Marques MC, Soares CM, DeLacey AM, Pereira IAC, Matias PM (2011) Nickel–iron–selenium hydrogenases – an overview. Eur J Inorg Chem 2011:948–962

    Google Scholar 

  • Becker S, Holighaus G, Gabrielczyk T, Unden G (1996) O2 as the regulator signal for FNR-dependent gene regulation in Escherichia coli. J Bacteriol 178:4515–4521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Böck A, King PW, Blokesch M, Posewitz MC (2006) Maturation of hydrogenases. Adv Microb Physiol 51:1–71

    Article  PubMed  Google Scholar 

  • Boga HI, Brune A (2003) Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl Environ Microbiol 69:779–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74:529–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brecht M, Van Gastel M, Buhrke T, Friedrich B, Lubitz W (2003) Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy. J Am Chem Soc 125:13075–13083

    Article  CAS  PubMed  Google Scholar 

  • Brøndsted L, Atlung T (1994) Anaerobic regulation of the hydrogenase 1 (hya) operon of Escherichia coli. J Bacteriol 176:5423–5428

    PubMed Central  PubMed  Google Scholar 

  • Buhrke T, Lenz O, Porthun A, Friedrich B (2004) The H2-sensing complex of Ralstonia eutropha: interaction between a regulatory [NiFe] hydrogenase and a histidine protein kinase. Mol Microbiol 51:1677–1689

    Article  CAS  PubMed  Google Scholar 

  • Buhrke T, Lenz O, Krauss N, Friedrich B (2005) Oxygen tolerance of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha is based on limited access of oxygen to the active site. J Biol Chem 280:23791–23796

    Article  CAS  PubMed  Google Scholar 

  • Bürstel I, Hummel P, Siebert E, Wisitruangsakul N, Zebger I, Friedrich B, Lenz O (2011) Probing the origin of the metabolic precursor of the CO ligand in the catalytic center of [NiFe] hydrogenase. J Biol Chem 286:44937–44944

    Article  PubMed  Google Scholar 

  • Chan K-H, Li T, Wong C-O, Wong K-B (2012) Structural basis for GTP-dependent dimerization of hydrogenase maturation factor HypB. PLoS One 7:e30547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung KC, Zamble DB (2011) The Escherichia coli metal-binding chaperone SlyD interacts with the large subunit of [NiFe]-hydrogenase 3. FEBS Lett 585:291–294

    Article  CAS  PubMed  Google Scholar 

  • Dassa J, Fsihi H, Marck C, Dion M, Kieffer-Bontemps M, Boquet PL (1991) A new oxygen-regulated operon in Escherichia coli comprises the genes for a putative third cytochrome oxidase and for pH 2.5 acid phosphatase (appA). Mol Gen Genet 229:341–352

    Article  CAS  PubMed  Google Scholar 

  • De Lacey AL, Fernández VM, Rousset M, Cammack R (2007) Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem Rev 107:4304–4330

    Article  PubMed  Google Scholar 

  • Dubini A, Pye RL, Jack RL, Palmer T, Sargent F (2002) How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli. Int J Hydrog Energy 27:1413–1420

    Article  CAS  Google Scholar 

  • Duché O, Elsen S, Cournac L, Colbeau A (2005) Enlarging the gas access channel to the active site renders the regulatory hydrogenase HupUV of Rhodobacter capsulatus O2 sensitive without affecting its transductory activity. FEBS J 272:3899–3908

    Article  PubMed  Google Scholar 

  • Efremov RG, Sazanov LA (2012) The coupling mechanism of respiratory complex I – a structural and evolutionary perspective. Biochim Biophys Acta 1817:1785–1795

    Article  CAS  PubMed  Google Scholar 

  • Elsen S, Duché O, Colbeau A (2003) Interaction between the H2 sensor HupUV and the histidine kinase HupT controls HupSL hydrogenase synthesis in Rhodobacter capsulatus. J Bacteriol 185:7111–7119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farmer PJ, Reibenspies JH, Lindahl PA, Darensbourg M (1993) Effect of sulfur site modification on the redox potentials of derivatives of [N, N’-bis(2-mercaptoethyl)-1,5-diazocyclooctanato]nickel(II). J Am Chem Soc 115:4665–4674

    Article  CAS  Google Scholar 

  • Fdez Galván I, Volbeda A, Fontecilla-Camps JC, Field MJ (2008) A QM/MM study of proton transport pathways in a [NiFe] hydrogenase. Proteins 73:195–203

    Article  PubMed  Google Scholar 

  • Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107:4273–4303

    Article  CAS  PubMed  Google Scholar 

  • Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842

    Article  CAS  PubMed  Google Scholar 

  • Frielingsdorf S, Schubert T, Pohlmann A, Lenz O, Friedrich B (2011) A trimeric supercomplex of the oxygen-tolerant membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha H16. Biochemistry 50:10836–10843

    Article  CAS  PubMed  Google Scholar 

  • Fritsch J, Lenz O, Friedrich B (2011a) The maturation factors HoxR and HoxT contribute to oxygen tolerance of membrane-bound [NiFe] hydrogenase in Ralstonia eutropha H16. J Bacteriol 193:2487–2497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fritsch J, Scheerer P, Frielingsdorf S, Kroschinsky S, Friedrich B, Lenz O, Spahn CMT (2011b) The crystal structure of an oxygen tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature 479:249–252

    Article  CAS  PubMed  Google Scholar 

  • Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC (1999) The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 7:557–566

    Article  CAS  PubMed  Google Scholar 

  • Gasper R, Scrima A, Wittinghofer A (2006) Structural insights into HypB, a GTP-binding protein that regulated metal binding. J Biol Chem 281:27492–27502

    Article  CAS  PubMed  Google Scholar 

  • Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O (2011) A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat Chem Biol 7:310–318

    Article  CAS  PubMed  Google Scholar 

  • Hedderich R (2004) Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr 36:65–75

    Article  CAS  PubMed  Google Scholar 

  • Heering HA, Bulsink YBM, Hagen WR, Meyer TE (1995) Reversible super reduction of the cubane [4Fe-4S](3+,2+,1+) in the high-potential iron-sulfur protein under nondenaturating conditions. Eur J Biochem 232:811–817

    Article  CAS  PubMed  Google Scholar 

  • Helm ML, Stewart MP, Bullock RM, Rakowski DuBois M, DuBois DL (2011) A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333:863–866

    Article  CAS  PubMed  Google Scholar 

  • Higuchi Y, Ogata H, Miki K, Yasuoka N, Yagi T (1999) Removal of the bridging ligand atom at the Ni-Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 Å resolution. Structure 7:549–556

    Article  CAS  PubMed  Google Scholar 

  • Horch M, Lauterbach L, Lenz O, Hildebrandt P, Zebger I (2012) NAD(H)-coupled hydrogen cycling – structure-function relationships of bidirectional [NiFe] hydrogenases. FEBS Lett 586:545–556

    Article  CAS  PubMed  Google Scholar 

  • Jones AK, Sillery E, Albracht SPJ, Armstrong FA (2002) Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chem Commun 8:866–867

    Article  Google Scholar 

  • Kaluarachchi H, Altenstein M, Sugumar SR, Balbach J, Zamble DB, Haupt C (2012) Nickel binding and [NiFe]-hydrogenase maturation by the metallchaperone SlyD with a single metal-binding site in Escherichia coli. J Mol Biol 417:28–35

    Article  CAS  PubMed  Google Scholar 

  • Kröger A, Biel S, Simon J, Gross R, Unden G, Lancaster CRD (2002) Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. Biochim Biophys Acta 1553:23–38

    Article  PubMed  Google Scholar 

  • Kumarevel T, Tanaka T, Bessho Y, Shinkai A, Yokoyama S (2009) Crystal structure of hydrogenase maturating endopeptidase HycI from Escherichia coli. Biochem Biophys Res Commun 389:310–314

    Article  CAS  PubMed  Google Scholar 

  • Laurinavichene TV, Zorin NA, Tsygankov AA (2002) Effect of redox potential on activity of hydrogenase 1 and hydrogenase 2 in Escherichia coli. Arch Microbiol 178:437–442

    Article  CAS  PubMed  Google Scholar 

  • Leonhartsberger S, Korsa I, Böck A (2002) The molecular biology of formate metabolism in enterobacteria. J Mol Microbiol Biotechnol 4:269–276

    CAS  PubMed  Google Scholar 

  • Loew C, Neumann P, Tidow H, Weininger U, Haupt C, Friedrich-Epler B, Scholz C, Stubbs MT, Balbach J (2010) Crystal structure determination and functional characterization of the metallochaperone SlyD from Thermus thermophilus. J Mol Biol 398:375–390

    Article  CAS  Google Scholar 

  • Lubitz W, Reijerse E, Van Gastel M (2007) [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365

    Article  CAS  PubMed  Google Scholar 

  • Lubner CE, Knörzer P, Silva PJ, Vincent KA, Happe T, Bryant DA, Golbeck JH (2010) Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. Biochemistry 49:10264–10266

    Article  CAS  PubMed  Google Scholar 

  • Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA (2010) How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 285:3928–3938

    Article  CAS  PubMed  Google Scholar 

  • Lukey MJ, Roessler MM, Parkin A, Evans RM, Davies RA, Lenz O, Friedrich B, Sargent F, Armstrong FA (2011) Oxygen-tolerant [NiFe]-hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe-S cluster. J Am Chem Soc 133:16881–16892

    Article  CAS  PubMed  Google Scholar 

  • Marques MC, Coelho R, De Lacey AL, Pereira IAC, Matias PM (2010) The three-dimensional structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough: a hydrogenase without a bridging ligand in the active site in its oxidised, “as-isolated” state. J Mol Biol 396:893–907

    Article  CAS  PubMed  Google Scholar 

  • Matias PM, Soares CM, Saraiva LM, Coelho R, Morais J, Le Gall J, Carrondo MA (2001) [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 Å and modelling studies of its interaction with the tetrahaem cytochrome c 3 . J Biol Inorg Chem 6:63–81

    Article  CAS  PubMed  Google Scholar 

  • Matias PM, Pereira IAC, Soares CM, Carrondo MA (2005) Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Biol 89:292–329

    Article  CAS  PubMed  Google Scholar 

  • Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EC, Field MJ, Frey M, Fontecilla-Camps JC (1997) Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat Struct Biol 4:523–526

    Article  CAS  PubMed  Google Scholar 

  • Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:13–23

    Article  CAS  PubMed  Google Scholar 

  • Nicolet Y, De Lacey AL, Vernède X, Fernandez VM, Hatchikian EC, Fontecilla-Camps JC (2001) Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc 123:1596–1601

    Article  CAS  PubMed  Google Scholar 

  • O’Hagan M, Shaw WJ, Raugei S, Chen S, Yang JY, Kilgore UJ, DuBois DL, Bullock RM (2011) Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen. J Am Chem Soc 133:14301–14312

    Article  PubMed  Google Scholar 

  • Ogata H, Hirota S, Nakahara A, Komori H, Shibata N, Kato T, Kano K, Higuchi Y (2005) Activation process of [NiFe] hydrogenase elucidated by high-resolution X-Ray analyses: conversion of the ready to the unready state. Structure 13:1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Ogata H, Kellers P, Lubitz W (2010) The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme Ni-a state. J Mol Biol 420:428–444

    Article  Google Scholar 

  • Page CC, Moser CC, Dutton ET (2003) Mechanism for electron transfer within and between proteins. Curr Opin Chem Biol 7:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pandelia ME, Ogata H, Lubitz W (2010) Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site. ChemPhysChem 11:1127–1140

    Article  CAS  PubMed  Google Scholar 

  • Pandelia ME, Nitschke W, Infossi P, Giudici-Orticoni MT, Bill E, Lubitz W (2011) Characterization of a unique [FeS] cluster in the electron transfer chain of the oxygen tolerant [NiFe] hydrogenase from Aquifex aeolicus. Proc Natl Acad Sci U S A 108:6097–6102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pandelia ME, Lubitz W, Nitschke W (2012) Evolution and diversification of group 1 [NiFe] hydrogenases. Is there a phylogenetic marker for O2-tolerance? Biochim Biophys Acta 1817:1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Parkin A, Goldet G, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2008) The difference a Se makes? Oxygen-tolerant hydrogen production by the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum. J Am Chem Soc 130:13410–13416

    Article  CAS  PubMed  Google Scholar 

  • Parkin A, Bowman L, Roessler MM, Davies RA, Palmer T, Armstrong FA, Sargent FA (2012) How salmonella oxidises H2 under aerobic conditions. FEBS Lett 586:536–544

    Article  CAS  PubMed  Google Scholar 

  • Petkun S, Shi R, Li Y, Asinas A, Munger C, Zhang L, Waclawek M, Soboh B, Sawers RG, Cygler M (2011) Structure of hydrogenase maturation protein HypF with reaction intermediates shows two active sites. Structure 19:1773–1783

    Article  CAS  PubMed  Google Scholar 

  • Pinske C, Krüger S, Soboh B, Ihling C, Kuhns M, Braussemann M, Jaroschinsky M, Sauer C, Sargent F, Sinz A, Sawers RG (2011) Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron-sulfur-containing small subunit. Arch Microbiol 193:893–903

    Article  CAS  PubMed  Google Scholar 

  • Pinske C, Jaroschinsky M, Sargent F, Sawers G (2012) Zymographic differentiation of NiFe]-hydrogenases 1, 2 and 3 of Escherichia coli K-12. BMC Microbiol 12:134. doi:10.1186/1471-2180-12-134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poole RK, Hill S (1997) Respiratory protection of nitrogenase activity in Azotobacter vinelandii–roles of the terminal oxidases. Biosci Rep 17:303–317

    Article  CAS  PubMed  Google Scholar 

  • Poole LB, Nelson KJ (2008) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12:18–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rangarajan ES, Asinas A, Proteau A, Munger C, Baardsnes J, Iannuzzi P, Matte A, Cygler M (2008) Structure of [NiFe] hydrogenase maturation protein HypE from Escherichia coli and its interaction with HypF. J Bacteriol 190:1447–1458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Redwood MD, Mikheenko IP, Sargent F, Macaskie L (2007) Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 278:48–55

    Article  PubMed  Google Scholar 

  • Reisner E, Armstrong FA (2011) A TiO2 nanoparticle system for sacrificial solar H2 production prepared by rational combination of hydrogenase with a ruthenium photosensitizer. Methods Mol Biol 743:107–117

    Article  CAS  PubMed  Google Scholar 

  • Reisner E, Powell DJ, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J Am Chem Soc 131:18457–18466

    Article  CAS  PubMed  Google Scholar 

  • Roessler MM, Evans RM, Davies RA, Harmer JR, Armstrong FA (2012) EPR spectroscopic studies of the Fe-S clusters in the O2-tolerant [NiFe]hydrogenase Hyd-1 from E. coli, and characterization of the unique [4Fe-3S] cluster by HYSCORE. J Am Chem Soc 134:15581–15594

    Article  CAS  PubMed  Google Scholar 

  • Shomura Y, Higuchi Y (2012) Structural basis for the reaction mechanism of S-carbamoylation of HypE by HypF in the maturation of [NiFe]-hydrogenases. J Biol Chem 287:28409–28419

    Article  CAS  PubMed  Google Scholar 

  • Shomura Y, Komori H, Miyabe N, Tomiyama M, Shibata N, Higuchi Y (2007) Crystal structures of hydrogenase maturation protein HypE in the apo and ATP-bound forms. J Mol Biol 372:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Shomura Y, Yoon KS, Nishihara H, Higuchi Y (2011) Structural basis for [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature 479:253–256

    Article  CAS  PubMed  Google Scholar 

  • Soboh B, Kuhns M, Braussemann M, Waclawek M, Muhr E, Pierik AJ, Sawers RG (2012) Evidence for an oxygen-sensitive iron-sulfur cluster in an immature large subunit species of Escherichia coli [NiFe]-hydrogenase 2. Biochem Biophys Res Commun 424:158–163

    Article  CAS  PubMed  Google Scholar 

  • Söderhjelm P, Ryde U (2006) Combined computational and crystallographic study of the oxidised states of [NiFe] hydrogenase. J Mol Struct (THEOCHEM) 770:199–219

    Article  Google Scholar 

  • Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor and H2 storage. Annu Rev Biochem 79:507–536

    Article  CAS  PubMed  Google Scholar 

  • Thoden JB, Holden HM, Wesenberg G, Raushel FM, Rayment I (1997) Structure of carbamoyl phosphate synthetase: a journey of 96 Å from substrate to product. Biochemistry 36:6305–6316

    Article  CAS  PubMed  Google Scholar 

  • Tremblay PL, Lovley DR (2012) Role of the NiFe hydrogenase Hya in oxidative stress defense in Geobacter sulfurreducens. J Bacteriol 194:2248–2253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vignais MV, Billoud B (2007) Occurrence, classification and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  CAS  PubMed  Google Scholar 

  • Vincent KA, Cracknell JA, Lenz O, Zebger I, Friedrich B, Armstrong FA (2005a) Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels. Proc Natl Acad Sci U S A 102:16951–16954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vincent KA, Parkin A, Lenz O, Albracht SP, Fontecilla-Camps JC, Cammack R, Friedrich B, Armstrong FA (2005b) Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases. J Am Chem Soc 127:18179–18189

    Article  CAS  PubMed  Google Scholar 

  • Vincent KA, Cracknell JA, Clark JR, Ludwig M, Lenz O, Friedrich B, Armstrong FA (2006) Electricity from low-level H2 in still air – an ultimate test for an oxygen tolerant hydrogenase. Chem Commun 48:5033–5035

    Article  Google Scholar 

  • Vincent KA, Parkin A, Armstrong FA (2007) Inves-tigating and exploiting the electrocatalytic properties of hydrogenases. Chem Rev 107:4366–4413

    Article  CAS  PubMed  Google Scholar 

  • Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587

    Article  CAS  PubMed  Google Scholar 

  • Volbeda A, Montet Y, Vernède X, Hatchikian EC, Fontecilla-Camps JC (2002) High resolution crystallographic analysis of Desulfovibrio fructosovorans [NiFe] hydrogenase. Int J Hydrog Energy 27:1449–1461

    Article  CAS  Google Scholar 

  • Volbeda A, Martin L, Cavazza C, Matho M, Faber BW, Roseboom W, Albracht SPJ, Garcin E, Rousset M, Fontecilla-Camps JC (2005) Structural differences between the ready and unready oxidized states of [NiFe]-hydrogenases. J Biol Inorg Chem 10:239–249

    Article  CAS  PubMed  Google Scholar 

  • Volbeda A, Amara P, Darnault C, Mouesca J-M, Parkin A, Roessler MM, Armstrong FA, Fontecilla-Camps JC (2012) X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli. Proc Natl Acad Sci U S A 109:5305–5310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe S, Matsumi R, Arai T, Atomi H, Imanaka T, Miki K (2007) Crystal structures of HypC, HypD and HypE: insights into cyanation reaction by thiol redox signaling. Mol Cell 27:29–40

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Arai T, Matsumi R, Atomi H, Imanaka T, Miki K (2009) Crystal structure of HypA, a nickel-binding metallochaperone for [NiFe] hydrogenase maturation. J Mol Biol 394:448–459

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Li H, Sze K-H, Sun H (2009) Structure of a nickel chaperone, HypA, from Helicobacter pylori reveals two distinct metal binding sites. J Am Chem Soc 131:10031–10040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and the Centre National de la Recherche Scientifique (CNRS) for institutional funding and the Agence Nationale de la Recherche for several contracts concerning the subject of this chapter. Erwin Reisner is thanked for providing Fig. 2.5b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Fontecilla-Camps .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Volbeda, A., Fontecilla-Camps, J.C. (2014). Structural Foundations for O2 Sensitivity and O2 Tolerance in [NiFe]-Hydrogenases. In: Zannoni, D., De Philippis, R. (eds) Microbial BioEnergy: Hydrogen Production. Advances in Photosynthesis and Respiration, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8554-9_2

Download citation

Publish with us

Policies and ethics