Skip to main content

Immobilization of Photosynthetic Microorganisms for Efficient Hydrogen Production

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 38))

Summary

The immobilization is a process of catalyst (cells) attachment to the matrix. It separates effectively the cells from the liquid and gas phases, allowing a significant increase in the culture density. This review describes various approaches used for immobilization of photosynthetic cells. The main attention is focused on advantages and limitations of immobilized systems for hydrogen photoproduction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Chl –:

Chlorophyll;

EPS –:

Extracellular polysaccharides;

Fd –:

Ferredoxin;

PAR –:

Photosynthetic active radiation;

PhBR(s) –:

Photobioreactor(s);

PSI –:

Photosystem I;

PSII –:

Photosystem II;

PVA –:

Polyvinyl alcohol

References

  • Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27:1195–1208

    CAS  Google Scholar 

  • Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium Arthrospira (Spirulina) maxima. Appl Environ Microbiol 74:6102–6113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Appel J, Schulz R (1998) Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? J Photochem Photobiol B 47:1–11

    CAS  Google Scholar 

  • Appel J, Phunpruch S, Steinmuller K, Schulz R (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch Microbiol 173:333–338

    CAS  PubMed  Google Scholar 

  • Azbar N, Kapdan IK (2011) Use of immobilized cell systems in biohydrogen production. In: Levin D, Azbar N (eds) State of the art and progress in production of biohydrogen. Bentham Science Publishers, Bussum, pp 228–250

    Google Scholar 

  • Baca HK, Carnes E, Singh S, Ashley C, Lopez D, Brinker CJ (2007) Cell-directed assembly of bio/nano interfaces – a new scheme for cell immobilization. Acc Chem Res 40:836–845

    CAS  PubMed  Google Scholar 

  • Bai X, Ye ZF, Li YF, Ma YX (2010) Macroporous poly(vinyl alcohol) foam crosslinked with epichlorohydrin for microorganism immobilization. J Appl Polym Sci 117:2732–2739

    CAS  Google Scholar 

  • Batyrova K, Tsygankov A, Kosourov SN (2012) Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. Int J Hydrog Energy 37:8834–8839

    CAS  Google Scholar 

  • Boichenko VA, Hoffmann P (1994) Photosynthetic hydrogen production in prokaryotes and eukaryotes: occurrence, mechanism, and functions. Photosynthetica 30:527–552

    CAS  Google Scholar 

  • Boichenko VA, Greenbaum E, Seibert M (2004) Hydrogen production by photosynthetic microorganisms. In: Archer MD, Barber J (eds) Molecular to global photosynthesis: photoconversion of solar energy. Imperial College Press, London, pp 397–452

    Google Scholar 

  • Brena BM, Batista-Viera F (2006) Immobilization of enzymes. In: Guisan JM (ed) Methods in biotechnology. Immobilization of enzymes and cells. Humana Press, Totowa, pp 15–30

    Google Scholar 

  • Brodelius P, Vandamme EJ (1987) Immobilized cell systems. In: Kennedy JF (ed) Biotechnology, vol 7a: Enzyme technology. VCH Publication, New York, pp 405–464

    Google Scholar 

  • Carnes EC, Lopez DM, Donegan NP, Cheung A, Gresham H, Timmins GS, Brinker CJ (2010) Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nat Chem Biol 6:41–45

    CAS  PubMed  Google Scholar 

  • Carrieri D, Wawrousek K, Eckert C, Yu J, Maness P-C (2011) The role of the bidirectional hydrogenase in cyanobacteria. Bioresour Technol 102:8368–8377

    CAS  PubMed  Google Scholar 

  • Carturan G, Campostrini R, Dire S, Scardi V, DeAlteriis E (1989) Inorganic gels for immobilization of biocatalysts. Inclusion of invertase-active whole cells of yeast (Saccharomyces cerevisiae) into thin layers of SiO2 gel deposited on glass sheets. J Mol Catal 57:L13–L16

    CAS  Google Scholar 

  • Chen CY, Chang JS (2006) Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination. Process Biochem 41:2041–2049

    CAS  Google Scholar 

  • Cheng K-C, Demirci A, Catchmark JM (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87:445–456

    CAS  PubMed  Google Scholar 

  • Cournac L, Guedeney G, Peltier G, Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186:1737–1746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dagher SF, Ragout AL, Sineriz F, Bruno-Barcena JM (2010) Cell immobilization for production of lactic acid: biofilms do it naturally. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 71. Elsevier Academic Press, San Diego, pp 113–148

    Google Scholar 

  • Dante R (2005) Hypotheses for direct PEM fuel cells applications of photobioproduced hydrogen by Chlamydomonas reinhardtii. Int J Hydrog Energy 30:421–424

    CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    CAS  PubMed  Google Scholar 

  • Dickson D, Page C, Ely R (2009) Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol–gel. Int J Hydrog Energy 34:204–215

    CAS  Google Scholar 

  • Fedorov A, Tsygankov A, Rao KK, Hall DO (1998) Hydrogen photoproduction by Rhodobacter capsulatus immobilized on polyurethane foam. Biotechnol Lett 20:1007–1009

    CAS  Google Scholar 

  • Fiedler D, Hager U, Franke H, Soltmann U, Bottcher H (2007) Algae biocers: astaxanthin formation in sol-gel immobilised living microalgae. J Mater Chem 17:261–266

    CAS  Google Scholar 

  • Fissler J, Kohring GW, Giffhorn F (1995) Enhanced hydrogen production from aromatic acids by immobilized cells of Rhodopseudomonas palustris. Appl Biochem Biotechnol 44:43–46

    CAS  Google Scholar 

  • Flickinger MC, Schottel JL, Bond DR, Aksan A, Scriven LE (2007) Painting and printing living bacteria: engineering nanoporous biocatalytic coatings to preserve microbial viability and intensify reactivity. Biotechnol Progr 23:2–17

    CAS  Google Scholar 

  • Fukushima Y, Okamura K, Imai K, Motai H (1988) A new immobilization technique of whole cells and enzymes with colloidal silica and alginate. Biotechnol Bioeng 32:584–594

    CAS  PubMed  Google Scholar 

  • Garnham GW, Codd GA, Gadd GM (1992) Accumulation of cobalt, zinc and manganese by the estuarine green microalga Chlorella salina immobilized in alginate microbeads. Environ Sci Technol 26:1764–1770

    CAS  Google Scholar 

  • Ghirardi ML (2006) Hydrogen production by photosynthetic green algae. Indian J Biochem Biophys 43:201–210

    CAS  PubMed  Google Scholar 

  • Ghirardi ML, Togasaki RK, Seibert M (1997) Oxygen sensitivity of algal H2-production. Appl Biochem Biotechnol 63:141–151

    PubMed  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511

    CAS  PubMed  Google Scholar 

  • Gosse JL, Engel BJ, Rey FE, Harwood CS, Scriven LE, Flickinger MC (2007) Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009. Biotechnol Progr 23:124–130

    CAS  Google Scholar 

  • Gosse JL, Engel BJ, Hui JC-H, Harwood CS, Flickinger MC (2010) Progress toward a biomimetic leaf: 4,000 h of hydrogen production by coating-stabilized nongrowing photosynthetic Rhodopseudomonas palustris. Biotechnol Progr 26:907–918

    CAS  Google Scholar 

  • Gosse JL, Chinn MS, Grunden AM, Bernal OI, Jenkins JS, Yeager C, Kosourov S, Seibert M, Flickinger MC (2012) A versatile method for preparation of hydrated microbial-latex biocatalytic coatings for gas absorption and gas evolution. J Ind Microbiol Biotechnol 39:1269–1278

    CAS  PubMed  Google Scholar 

  • Guan YF, Zhang W, Yu XJ, Deng MC (2003) Two-stage photo hydrogen production using immobilized marine green alga Platymonas subcordiformis. Abstracts of marine biotechnology: basics and applications. Biomol Eng 20:37–82

    Google Scholar 

  • Guan YF, Zhang W, Deng MC, Jin MF, Yu XJ (2004) Significant enhancement of photobiological H2 evolution by carbonylcyanide m-chlorophenylhydrazone in the marine green alga Platymonas subcordiformis. Biotechnol Lett 26:1031–1035

    CAS  PubMed  Google Scholar 

  • Gugerli R, Breguet V, von Stockar U, Marison IW (2004) Immobilization as a tool to control fermentation in yeast-leavened refrigerated dough. Food Hydrocoll 18:703–715

    CAS  Google Scholar 

  • Guo CL, Zhu X, Liao Q, Wang Y-Z, Chen R, Lee D-J (2011) Enhancement of photo-hydrogen production in a biofilm photobioreactor using optical fiber with additional rough surface. Bioresour Technol 102:8507–8513

    CAS  PubMed  Google Scholar 

  • Hahn JJ, Ghirardi ML, Jacoby WA (2007) Immobilized algal cells used for hydrogen production. Biochem Eng J 37:75–79

    CAS  Google Scholar 

  • Hall DO, Rao KK (1988) Immobilized photosynthetic membranes and cells for the production of fuels and chemicals. In: Gaber BP, Schnur JM, Chapman D (eds) Biotechnological applications of lipid structures. Plenum Press, New York/London, pp 225–245

    Google Scholar 

  • Hallenbeck PC (1983) Immobilized microorganisms for hydrogen and ammonia production. Enzyme Microb Technol 5:171–180

    CAS  Google Scholar 

  • Hatanaka Y, Kudo T, Miyataka M, Kobayashi O, Higashihara M, Hiyama K (1999) Asymmetric reduction of hydroxyacetone to propanediol in immobilized halotolerant microalga Dunaliella parva. J Biosci Bioeng 88:281–286

    CAS  PubMed  Google Scholar 

  • Jimenez-Perez MV, Sanchez-Castillo P, Romera O, Fernadnez-Moreno D, Perez-Martinez C (2004) Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzyme Microb Technol 34:392–398

    CAS  Google Scholar 

  • Kandimalla VB, Tripathi VS, Ju HX (2006) Immobilization of biomolecules in sol-gels: biological and analytical applications. Crit Rev Anal Chem 36:73–106

    CAS  Google Scholar 

  • Kannaiyan S, Rao KK, Hall DO (1994) Immobilization of Anabaena azollae from Azolla filiculoides in polyvinyl foam for ammonia production in a photobioreactor system. World J Microbiol Biotechnol 10:55–58

    CAS  PubMed  Google Scholar 

  • Kaya VM, Picard G (1995) The viability of Scenedesmus bicellularis cells immobilized on alginate screens following nutrient starvation in air at 100 percent relative humidity. Biotechnol Bioeng 46:459–464

    CAS  PubMed  Google Scholar 

  • Kosourov SN, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58

    CAS  PubMed  Google Scholar 

  • Kosourov S, Tsygankov A, Seibert M, Ghirardi ML (2002) Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol Bioeng 78:731–740

    CAS  PubMed  Google Scholar 

  • Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways of sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44:146–155

    CAS  PubMed  Google Scholar 

  • Kosourov SN, Ghirardi ML, Seibert M (2011) A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. Int J Hydrog Energy 36:2044–2048

    CAS  Google Scholar 

  • Kosourov SN, Batyrova K, Petushkova EP, Tsygankov A, Ghirardi ML, Seibert M (2012) Maximizing the hydrogen photoproduction yields in Chlamydomonas reinhardtii cultures: the effect of the H2 partial pressure. Int J Hydrog Energy 37:8850–8858

    CAS  Google Scholar 

  • Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397

    CAS  Google Scholar 

  • Krastanov A (1997) Continuous sucrose hydrolysis by yeast cells immobilized to wool. Appl Microbiol Biotechnol 47:476–481

    CAS  PubMed  Google Scholar 

  • Kumazawa S, Mitsui A (1985) Comparative amperometric study of uptake hydrogenase and hydrogen photoproduction activities between heterocystous cyanobacterium Anabaena cylindrica B629 and nonheterocystous cyanobacterium Oscillatoria sp. strain Miami BG7. Appl Environ Microbiol 50:287–291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1998) Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris. Bioresour Technol 63:115–121

    CAS  Google Scholar 

  • Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA (2006) Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. Int J Hydrog Energy 31:659–667

    CAS  Google Scholar 

  • Laurinavichene TV, Kosourov SN, Ghirardi ML, Seibert M, Tsygankov AA (2008) Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. J Biotechnol 134:275–277

    CAS  PubMed  Google Scholar 

  • Leino H, Kosourov SN, Saari L, Sivonen K, Tsygankov A, Aro E-M, Allahverdiyeva Y (2012) Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films. Int J Hydrog Energy 37:151–161

    CAS  Google Scholar 

  • Leon R, Galvan F (1995) Glycerol photoproduction by free and Ca-alginate entrapped cells of Chlamydomonas reinhardtii. J Biotechnol 42:61–67

    CAS  Google Scholar 

  • Liu L, Shang L, Guo S, Li D, Liu C, Qi L, Dong S (2009) Organic-inorganic hybrid material for the cells immobilization: long-term viability mechanism and application in BOD sensors. Biosens Bioelectron 25:523–526

    PubMed  Google Scholar 

  • Lyngberg OK, Ng CP, Thiagarajan V, Scriven LE, Flickinger MC (2001) Engineering the microstructure and permeability of thin multilayer latex biocatalytic coatings containing E. coli. Biotechnol Progr 17:1169–1179

    CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    CAS  PubMed  Google Scholar 

  • Mallick N (2006) Immobilization of microalgae. In: Guisan JM (ed) Immobilization of enzymes and cells. Humana Press, Totowa, pp 373–391

    Google Scholar 

  • Markov SA, Lichtl R, Rao KK, Hall DO (1993) A hollow-fiber photobioreactor for continuous production of hydrogen by immobilized cyanobacteria under partial vacuum. Int J Hydrog Energy 18:901–906

    CAS  Google Scholar 

  • Markov SA, Bazin MJ, Hall DO (1995) Hydrogen photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow-fiber photobioreactor. Enzyme Microb Technol 17:306–310

    CAS  Google Scholar 

  • Martens N, Hall EAH (1994) Immobilization of photosynthetic cells based on film-forming emulsion polymers. Anal Chim Acta 292:49–63

    CAS  Google Scholar 

  • Matsunaga T, Takeyama H, Sudo H, Oyama N, Ariura S, Takano H, Hirano M, Burgess JG, Sode K, Nakamura N (1991) Glutamate production from CO2 by marine cyanobacterium Synechococcus sp. using a novel biosolar reactor employing light-diffusing optical fibers. Appl Biochem Biotechnol 28:157–167

    Google Scholar 

  • Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086

    CAS  PubMed  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meunier CF, Dandoy P, Su BL (2010) Encapsulation of cells within silica matrixes: towards a new advance in the conception of living hybrid materials. J Colloid Interface Sci 342:211–224

    CAS  PubMed  Google Scholar 

  • Meuser JE, Ananyev G, Wittig LE, Kosourov S, Ghirardi ML, Seibert M, Dismukes GC, Posewitz MC (2009) Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. J Biotechnol 142:21–30

    CAS  PubMed  Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964

    CAS  PubMed  Google Scholar 

  • Moreno-Garrido I, Campana O, Lubian LM, Blasco J (2005) Calcium alginate immobilized marine microalgae: experiments on growth and short-term heavy metal accumulation. Mar Pollut Bull 51:823–929

    CAS  PubMed  Google Scholar 

  • Pannier A, Oehm C, Fischer AR, Werner P, Soltmann U, Bottcher H (2011) Biodegradation of fuel oxygenates by sol-gel immobilized bacteria Aquincola tertiaricarbonis L108. Enzyme Microb Technol 47:291–296

    Google Scholar 

  • Park IH, Rao KK, Hall DO (1991) Photoproduction of hydrogen, hydrogen-peroxide and ammonia using immobilized cyanobacteria. Int J Hydrog Energy 16:313–318

    CAS  Google Scholar 

  • Philipps G, Happe T, Hemschemeier A (2012) Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta 235:729–745

    CAS  PubMed  Google Scholar 

  • Phlips J, Mitsui A (1986) Characterization and optimization of hydrogen production by a salt water blue-green alga Oscillatoria sp. Miami BG 7. II. Use of immobilization for enhancement of hydrogen production. Int J Hydrog Energy 11:83–89

    CAS  Google Scholar 

  • Planchard A, Mignot L, Jouenne T, Junter G-A (1984) Photoproduction of molecular hydrogen by Rhodospirillum rubrum immobilized in composite agar layer/microporous membrane structures. Appl Microbiol Biotechnol 31:49–54

    Google Scholar 

  • Rashid N, Song W, Park J, Jin H-F, Lee K (2009) Characteristics of hydrogen production by immobilized cyanobacterium Microcystis aeruginosa through cycles of photosynthesis and anaerobic incubation. J Ind Eng Chem 15:498–503

    CAS  Google Scholar 

  • Rashid N, Choi W, Lee K (2012) Optimization of two-staged bio-hydrogen production by immobilized Microcystis aeruginosa. Biomass Bioenergy 36:241–249

    CAS  Google Scholar 

  • Robinson PK (1998) Immobilized algal technology for wastewater treatment purposes. In: Wong Y-S, Tam NFY (eds) Wastewater treatment with algae. Springer and Landes Bioscience, New York, pp 1–16

    Google Scholar 

  • Romanova YM, Didenko LV, Tolordava ER, Ginzburg AL (2011) Biofilms of pathogenic bacteria: a role in chronic of infectious process and search of agents of struggle. Vestnik RAMN (Russ) 10:31–39

    Google Scholar 

  • Rooke JC, Meunier C, Leonard A, Su BL (2008) Energy from photobioreactors: bioencapsulation of photosynthetically active molecules, organelles, and whole cells within biologically inert matrices. Pure Appl Chem 80:2345–2376

    CAS  Google Scholar 

  • Saetang J, Babel S (2009) Effect of leachate loading rate and incubation period on the treatment efficiency by T. versicolor immobilized on foam cubes. Int J Environ Sci Technol 6:457–466

    CAS  Google Scholar 

  • Sarkar S, Pandey KD, Kashyap AK (1992) Hydrogen photoproduction by filamentous nonheterocystous cyanobacterium Plectonema boryanum and simultaneous release of ammonia. Int J Hydrog Energy 17:689–694

    CAS  Google Scholar 

  • Sasikala K, Ramana CV, Rao PR (1992) Photoproduction of hydrogen from the waste-water of a distillery by Rhodobacter sphaeroides OU 001. Int J Hydrog Energy 17:23–27

    CAS  Google Scholar 

  • Scholz W, Galvan F, de la Rosa FF (1995) The microalga Chlamydomonas reinhardtii CW-15 as a solar cell for hydrogen peroxide photoproduction: comparison between free and immobilized cells and thylakoids for energy conversion efficiency. Sol Energy Mater Sol Cell 39:61–69

    CAS  Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300

    CAS  Google Scholar 

  • Serebryakova LT, Tsygankov AA (2007) Two-stage system for hydrogen production by immobilized cyanobacterium Gloeocapsa alpicola CALU 743. Biotechnol Progr 23:1106–1110

    CAS  Google Scholar 

  • Serebryakova L, Sheremetieva M, Tsygankov A (1998) Reversible hydrogenase activity of Gloeocapsa alpicola in continuous culture. FEMS Microbiol Lett 166:89–94

    CAS  Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423

    CAS  Google Scholar 

  • Skjanes K, Knutsen G, Kallqvist T, Lindblad P (2008) H2 production from marine and freshwater species of green algae during sulfur deprivation and considerations for bioreactor design. Int J Hydrog Energy 33:511–521

    CAS  Google Scholar 

  • Smirnova TA, Didenko LV, Andreev AL, Alekseeva NV, Stepanova TV, Romanova YM (2008) Electron microscopic study of Burkholderia cepacia biofilms. Microbiology 77:55–61

    CAS  Google Scholar 

  • Smirnova TA, Didenko LV, Azizbekyan RR, Romanova YM (2010) Structural and functional characteristics of bacterial biofilms. Microbiology 79:413–423

    CAS  Google Scholar 

  • Song W, Rashid N, Choi W, Lee K (2011) Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis. Bioresour Technol 102:8676–8681

    CAS  PubMed  Google Scholar 

  • Stolarzewicz I, Bialecka-Florjanczyk E, Majewska E, Krzyczkowska J (2011) Immobilization of yeast on polymeric supports. Chem Biochem Eng Q 25:135–144

    CAS  Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamagnini P, Leitao E, Oliveira P, Ferreira D, Pinto F, Harris D, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720

    CAS  PubMed  Google Scholar 

  • Tekucheva DN, Laurinavichene T, Seibert M, Tsygankov A (2011) Immobilized purple bacteria for light-driven H2 production from starch and potato fermentation effluents. Biotechnol Progr 27:1248–1256

    CAS  Google Scholar 

  • Tian X, Liao Q, Liu W, Wang YZ, Zhu X, Li J, Wang H (2009) Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells. Int J Hydrog Energy 34:4708–4717

    CAS  Google Scholar 

  • Tian X, Liao Q, Zhu X, Wang Y, Zhang P, Li J, Wang H (2010) Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresour Technol 101:977–983

    CAS  PubMed  Google Scholar 

  • Torzillo G, Pushparaj B, Masojidek J, Vonshak A (2003) Biological constraints in algal biotechnology. Biotechnol Bioprocess Eng 8:338–348

    CAS  Google Scholar 

  • Travieso L, Benitez F, Dupeiron R (1992) Sewage treatment using immobilized microalgae. Bioresour Technol 40:183–187

    CAS  Google Scholar 

  • Travieso L, Benitez F, Weiland P, Sanchez E, Dupeyron R, Dominguez AR (1996) Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresour Technol 55:181–186

    CAS  Google Scholar 

  • Troshina O, Serebryakova L, Sheremetieva M, Lindblad P (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. J Gen Microbiol 27:1283–1289

    CAS  Google Scholar 

  • Tsygankov AA (2001a) Laboratory scale photobioreactors. Appl Biochem Microbiol 37:333–341

    CAS  Google Scholar 

  • Tsygankov AA (2001b) Hydrogen production by purple bacteria: immobilized vs. suspension cultures. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen 2. An approach to environmentally acceptable technology. Pergamon Press, Amsterdam, pp 229–244

    Google Scholar 

  • Tsygankov A (2004) Hydrogen production by suspension and immobilized cultures of phototrophic microorganisms. Technological aspects. In: Miyake J, Igarashi H, Rogner M (eds) Biohydrogen III. Renewable energy system by biological solar energy conversion. Elsevier, Amsterdam, pp 57–74

    Google Scholar 

  • Tsygankov AA (2007) Nitrogen-fixing cyanobacteria: a review. Appl Biochem Microbiol 43:279–288

    CAS  Google Scholar 

  • Tsygankov AA, Hirata Y, Miyake M, Asada Y, Miyake J (1993) Immobilization of the purple nonsulfur bacterium Rhodobacter sphaeroides on glass surfaces. Biotechnol Tech 77:575–578

    Google Scholar 

  • Tsygankov AA, Hirata Y, Miyake M, Asada Y, Miyake J (1994) Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction. J Ferment Bioeng 77:575–578

    CAS  Google Scholar 

  • Tsygankov AA, Fedorov AS, Laurinavichene TV, Gogotov IN, Rao KK, Hall DO (1998a) Actual and potential rates of hydrogen photoproduction by continuous culture of the purple non-sulphur bacterium Rhodobacter capsulatus. Appl Microbiol Biotechnol 49:102–107

    CAS  Google Scholar 

  • Tsygankov AA, Fedorov AS, Talipova IV, Laurinavichene TV, Miyake J, Gogotov IN (1998b) Use of immobilized phototrophic microorganisms for wastewater treatment and simultaneous production of hydrogen. Appl Biochem Microbiol 34:362–366

    Google Scholar 

  • Tsygankov AA, Fedorov AS, Kosourov SN, Rao KK (2002) Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol Bioeng 80:777–783

    CAS  PubMed  Google Scholar 

  • Tsygankov AA, Kosourov SN, Tolstygina IV, Ghirardi ML, Seibert M (2006) Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int J Hydrog Energy 31:1574–1584

    CAS  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    CAS  PubMed  Google Scholar 

  • Vignais PM, Colbeau A, Willison JC, Jouanneau Y (1985) Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv Microb Physiol 26:155–234

    CAS  PubMed  Google Scholar 

  • Vincenzini M, Balloni W, Mannelli D, Florenzano G (1981) A bioreactor for continuous treatment of waste waters with immobilized cells of photosynthetic bacteria. Experientia 37:710–711

    CAS  Google Scholar 

  • Vincenzini M, Materassi R, Tredici MR, Florenzano G (1982a) Hydrogen production by immobilized cells. I. Light-dependent dissimilation of organic substances by Rhodopseudomonas palustris. Int J Hydrog Energy 7:231–236

    CAS  Google Scholar 

  • Vincenzini M, Materassi R, Tredici MR, Florenzano G (1982b) Hydrogen production by immobilized cells. II. H2-photoevolution and wastewater treatment by agar-entrapped cells of Rhodopseudomonas palustris and Rhodospirillum molischianum. Int J Hydrog Energy 7:725–728

    CAS  Google Scholar 

  • Vincenzini M, Materassi R, Sili C, Florenzano G (1986) Hydrogen production by immobilized cells. III. Prolonged and stable H2 photoevolution by Rhodopseudomonas palustris in light-dark cycles. Int J Hydrog Energy 11:623–626

    CAS  Google Scholar 

  • Wang YZ, Liao Q, Zhu X, Tian X, Zhang C (2010) Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor. Bioresour Technol 101:4034–4041

    CAS  PubMed  Google Scholar 

  • Winkler M, Hemschemeier A, Gotor C, Melis A, Happe T (2002) [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. Int J Hydrog Energy 27:1431–1439

    CAS  Google Scholar 

  • Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electrontransport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Huang G, Yu Y (1998) Immobilization of microalgae for biosorption and degradation of butyltin chlorides. Artif Cell Blood Substit 26:399–410

    CAS  Google Scholar 

  • Zhu H, Suzuki T, Asada Y, Miyake J (1999a) Entrapment of Rhodobacter sphaeroides RV in cationic polymer/agar gels for hydrogen production in the presence of NH4 +. J Biosci Bioeng 88:507–512

    CAS  PubMed  Google Scholar 

  • Zhu H, Suzuki T, Tsygankov A, Asada Y, Miyake J (1999b) Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized on agar gel. Int J Hydrog Energy 24:305–310

    CAS  Google Scholar 

  • Zurrer H, Bachofen R (1985) Production of molecular hydrogen with immobilized cells of Rhodospirillum rubrum. Appl Microbiol Biotechnol 23:15–20

    Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Ministry of Science and Education (Agreement 8077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Tsygankov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tsygankov, A., Kosourov, S. (2014). Immobilization of Photosynthetic Microorganisms for Efficient Hydrogen Production. In: Zannoni, D., De Philippis, R. (eds) Microbial BioEnergy: Hydrogen Production. Advances in Photosynthesis and Respiration, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8554-9_14

Download citation

Publish with us

Policies and ethics