Skip to main content

Time-Resolved XAS Spectroscopy Probing Dynamic Species in Homogeneous Catalysis – Towards Faster Methods Providing More Information

  • Conference paper
  • First Online:
The Future of Dynamic Structural Science
  • 4428 Accesses

Abstract

A catalyst (Many textbooks exist on catalysis. Look also at http://www.youtube.com/user/proftromp?feature¼watch) is a material, which increases the rate of a chemical reaction without being consumed itself and can direct the reaction to specifically form desired products. Catalytic processes are widely used in daily life: A catalyst in a car converts the toxic exhaust gases from the engine into more environmentally friendly gases. In the pharmaceutical and flavour and fragrance industry, catalysts are used to produce the required medicines or perfumes. Understanding the catalytic process itself, i.e. how the catalyst works and what factors affect its performance will help us to optimise many industrially important processes, making them more efficient and environmentally sustainable for example by producing less waste or requiring milder process conditions. A way to study these catalytic systems in detail is using spectroscopy, different types of light to take pictures or movies of the catalysts while they are working. In this chapter spectroscopic X-ray methods are described, which have been developed over the last few years and which can provide detailed electronic and structural information at relevant time-resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Many textbooks exist on catalysis. Look also at http://www.youtube.com/user/proftromp?feature¼watch

  2. Koningsberger DC, Prins R (eds) (1988) For example, X-ray absorption, principles, applications and techniques of EXAFS, SEXAFS and XANES. Wiley, New York

    Google Scholar 

  3. Newton MA, Dent AJ, Evans J (2002) Bringing time resolution to EXAFS: recent developments and application to chemical systems. Chem Soc Rev 31:83

    Article  CAS  Google Scholar 

  4. Some examples out of a large amount of literature: Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C (2013) Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem Rev 113:1736; Evans J, Puig-Molina A, Tromp M (2007) In situ EXAFS characterization of nanoparticulate catalysts. MRS Bull 32:1038–1043; Evans J, Tromp M (2008) Interaction of small gas phase molecules with alumina supported rhodium nanoparticles: an in-situ spectroscopic study. J Phys Condens Matter 20:184020; Dent AJ, Evans J, Fiddy SG, Jyoti B, Newton MA, Tromp M (2007) Rhodium dispersion during NO/CO conversions. Angew Chem Int Ed 46 (28):5356; Dent AJ, Evans J, Fiddy SG, Jyoti B, Newton MA, Tromp M (2008) Structure-performance curriculum vitae relationships of Rh and RhPd alloy supported catalysts using combined EDE/DRIFTS/MS. Faraday Discuss 138:287

    Google Scholar 

  5. Some selected examples: Tromp M, Sietsma JRA, van Bokhoven JA, van Strijdonck GPF, van Haaren RJ, van der Eerden AMJ, van Leeuwen PWNM, Koningsberger DC (2003) Deactivation processes of homogeneous Pd catalysts using in situ time resolved spectroscopic techniques. Chem Commun 7(1):128; Tromp M, van Bokhoven JA, van Haaren RJ, van Strijdonck GPF, van der Eerden AMJ, van Leeuwen PWNM, Koningsberger DC (2002) Structure-performance relations in homogeneous Pd catalysis by in situ EXAFS spectroscopy. J Am Chem Soc 124(50):14814; Smolentsev G, Guilera G, Tromp M, Pascarelli S, Soldatov A (2009) Local structures of reaction intermediates probed by time-resolved XANES spectroscopy. J Chem Phys 130:174508

    Google Scholar 

  6. Tromp M, van Berkel SS, van den Hoogenband A, Feiters MC, de Bruin B, Fiddy SG, van Bokhoven JA, van Leeuwen PWNM, van Strijdonck GPF, Koningsberger DC (2010) Multi-technique approach to reveal the mechanism of Cu(II) catalyzed arylation reactions. Organometallics 29:3085

    Article  CAS  Google Scholar 

  7. Chen LX (2005) Probing transient molecular structures in photochemical processes using laser-initiated time-resolved X-ray absorption spectroscopy. Ann Rev Phys Chem 56:221; Chen LX (2004) Taking snapshots of photoexcited molecular structures in disordered media using pulsed X-rays. Angew Chem Int Ed 43:2886; Chen LX (2002) Excited state molecular structure determination in disordered media using laser pump/X-ray probe time-domain X-ray absorption spectroscopy. Faraday Discuss 122:315; Tromp M et al (2013) Energy dispersive XAFS: characterisation of electronically excited states of Cu(I) complexes. Phys Chem B 117(24):7381

    Google Scholar 

  8. Glatzel P, Bergmann U (2005) High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes – electronic and structural information; and references therein. Coord Chem Rev 249:65

    Article  CAS  Google Scholar 

  9. Brinkgreve P, Koningsberger DC (1983) Patent application NL8300927; Thulke W, Haensel R, Rabe P (1983) Versatile curved crystal spectrometer for laboratory extended X‐ray absorption fine structure measurements. Rev Sci Instrum 54:277; Williams A (1983) Laboratory X‐ray spectrometer for EXAFS and XANES measurements. Rev Sci Instrum 54:193; Yamashita S, Taniguchi K, Nomoto S, Yamagucchi T, Wakita H (1992) A new laboratory XAFS spectrometer for X-ray absorption spectra of light elements. X-Ray Spectrom 21:91

    Google Scholar 

  10. Tromp M, van Bokhoven JA, van Strijdonck GPF, van Leeuwen PWNM, Koningsberger DC, Ramaker DE (2005) Probing the molecular orbitals and charge redistribution in organometallic (PP)Pd(XX) complexes. A Pd K-edge study. J Am Chem Soc 127:777; Wilke M, Farges F, Petit PE, Brown GE, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K XANES spectroscopic study. Am. Mineral 86:714; DeBeer S, Randall DW, Nersissian AM, Valentine JS, Hedman B, Hodgson KO, Solomon EI (2000) X-ray absorption edge and EXAFS studies of the blue copper site in stellacyanin: effects of axial amide coordination. J Phys Chem B 104:10814; Wong J, Lytle FW, Messmer RP, Maylotte DH (1984) K-edge absorption spectra of selected vanadium compounds. Phys Rev B 30:5596

    Google Scholar 

  11. Koningsberger DC, Mojet BL, van Dorssen GE, Ramaker DE (2000) XAFS spectroscopy; fundamental principles and data analysis. Top Catal 10:143

    Article  CAS  Google Scholar 

  12. Richwin M, Zaeper R, Lützenkirchen-Hecht D, Frahm R (2001) Piezo-QEXAFS: advances in time-resolved X-ray absorption spectroscopy. J Synchrotron Radiat 8:354

    Article  CAS  Google Scholar 

  13. Frahm R, Richwin M, Lützenkirchen-Hecht D (2005) Recent advances and new applications of time-resolved x-ray absorption spectroscopy. Phys Scr T115:974

    Article  CAS  Google Scholar 

  14. Matsushita T, Phizackerley RP (1981) A Fast X-ray absorption spectrometer for use with synchrotron radiation. Jpn J Appl Phys 20:2223; Flank AM, Fontaine A, Jucha A, Lemonnier M, Williams C (1982) Extended X-ray absorption fine structure in dispersive mode. J Phys Lett 43: 315

    Google Scholar 

  15. Bartlett SA, Wells PP, Nachtegaal M, Dent AJ, Cibin G, Reid G, Evans J, Tromp M (2011) Insights in the mechanism of selective olefin oligomerisation catalysis using stopped-flow freeze-quench techniques: a Mo K edge QEXAFS study. J Catal 284:247; Bartlett SA, Cibin G, Dent AJ, Evans J, Hanton MJ, Reid G, Tooze RP, Tromp M (2013) Sc(III) complexes with neutral N3- and SNS-donor ligands – a spectroscopic study of the activation of ethene polymerisation catalyst. Dalton Trans 42:2213–2223

    Google Scholar 

  16. Chen LX (2005) Probing transient molecular structures in photochemical processes using laser-initiated time-resolved X-ray absorption spectroscopy. Annu Rev Phys Chem 56:221; Chen LX (2004) Taking snapshots of photoexcited molecules in disordered media by using pulsed synchrotron X-rays. Angew Chem Int Ed 43:2886; Chen LX (2002) Excited state molecular structure determination in disordered media using laser pump/X-ray probe time-domain X-ray absorption spectroscopy. Faraday Discuss 122:315–329

    Google Scholar 

  17. Gawelda W et al (2007) Structural determination of a short-lived excited Iron(II) complex by picosecond X-ray absorption spectroscopy. Phys Rev Lett 98:057401

    Article  Google Scholar 

  18. Chen LX et al (2003) The MLCT state structure and dynamics of a Cu(I) diimine complex characterized by pump-probe X-ray and laser spectroscopies and DFT calculations. J Am Chem Soc 125:7022; Bressler C, Chergui M (2004) Ultrafast X-ray absorption spectroscopy. Chem Rev 104:1781

    Google Scholar 

  19. Lockard JV et al (2010) Triplet excited state distortions in a pyrazolate bridged platinum dimer measured by X-ray transient absorption spectroscopy. J Phys Chem A 114:12780

    Article  CAS  Google Scholar 

  20. Lima FA et al (2011) A high-repetition rate scheme for synchrotron-based picosecond laser pump/x-ray probe experiments on chemical and biological systems in solution. Rev Sci Instrum 82:063111

    Article  Google Scholar 

  21. Tromp M et al (2013) Energy dispersive XAFS: characterisation of electronically excited states of Cu(I) complexes. J Phys Chem B 117:7381–7387

    Article  CAS  Google Scholar 

  22. Martin IPS, Rehm G, Thomas C, Bartolini R (2011) Experience with low-alpha lattices at the diamond light source. Phys Rev Spec Top Accel Beams 14:040705

    Article  Google Scholar 

  23. Glatzel P, Bergmann U (2005) High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information; and references therein. Coord Chem Rev 249:65; Glatzel P, Sikora M, Eeckhout SG, Safonova OV, Smolentsev G, Pirngruber G, van Bokhoven JA, Grunwaldt J-D, Tromp M (2007) Hard X-ray photon-in-photon-out spectroscopy with lifetime resolution – of XAS, XES, RIXSS and HERFD. AIP CP879:1731; Glatzel P, Weng TC, Kvashnina K, Swarbrick J, Sikora M, Galo E, Smolentsev N, Mori RA (2012) Reflections on hard X-ray photon-in/photon-out spectroscopy for electronic structure studies. J Electron Spec Relat Phenom 188:17–25

    Google Scholar 

  24. For example Tromp M, van Bokhoven JA, van Strijdonck GPF, van Leeuwen PWNM, Koningsberger DC, Ramaker DE (2005) Probing the molecular orbitals and charge redistribution in organometallic (PP)Pd(XX) complexes. A Pd K-edge study. J Am Chem Soc 127:777; Wilke M, Farges F, Petit PE, Brown GE, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K XANES spectroscopic study. Am Miner 86:714; DeBeer S, Randall DW, Nersissian AM, Valentine JS, Hedman B, Hodgson KO, Solomon EI (2000) X-ray absorption edge and EXAFS studies of the blue copper site in stellacyanin: effects of axial amide coordination. J Phys Chem B 104:10814; Wong J, Lytle FW, Messmer RP, Maylotte DH (1984) K-edge absorption spectra of selected vanadium compounds. Phys Rev B 30:5596

    Google Scholar 

  25. Fuggle JC, Inglesfield JE (1992) In: Fuggle JC, Inglesfield JE (eds) Unoccupied electronic states: fundamentals for XANES, EELS, IPS and BIS, vol 69, Topics in applied physics. Springer, Berlin/Heidelberg, pp 348–351, 464

    Chapter  Google Scholar 

  26. Knop-Gericke A et al (1998) New experimental technique: X-ray absorption spectroscopy detector for in situ studies in the soft X-ray range (250 eV ≤ hv ≤ 1000 eV) under reaction conditions. Nucl Instrum Method A 406:311; Knop-Gericke A et al (2000) High-pressure low-energy XAS: a new tool for probing reacting surfaces of heterogeneous catalysts. Topics Catal 10:187; Wagner JB et al (2003) In situ electron energy loss spectroscopy studies of gas-dependent metal−support interactions in Cu/ZnO catalysts. J Phys Chem B 107:7753; Hansen PL et al (2002) Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295:2053

    Google Scholar 

  27. Kortright JB, Thompson AC (2001) In: Thompson AC, Vaughan D (eds) X-ray data booklet, 2nd edn. Lawrence Berkeley National Laboratory, Berkeley

    Google Scholar 

  28. Hämäläinen K et al (1992) Spin-dependent x-ray absorption of MnO and MnF2. Phys Rev B 46:14274

    Article  Google Scholar 

  29. Doonan CJ et al (2005) High-resolution x-ray emission spectroscopy of molybdenum compounds. Inorg Chem 44:2579

    Article  CAS  Google Scholar 

  30. Smolentsev G et al (2009) X-ray emission spectroscopy to study ligand valence orbitals in Mn coordination complexes. J Am Chem Soc 131:13161–13167 ; Bergmann U, Horne CR, Collins TJ, Workman JM, Cramer SP (1999) Chemical dependence of interatomic X-ray transition energies and intensities – a study of Mn Kb″ and Kb2,5 spectra. Chem Phys Lett 302:119–124; Eeckhout SG et al (2009) Cr local environment by valence-to-core X-ray emission spectroscopy. J Anal Atom Spectrom 24:215; Delgado-Jaime MU et al (2011) Identification of a single light atom within a multinuclear metal cluster using valence-to-core X-ray emission spectroscopy. Inorg Chem 50:10709

    Google Scholar 

  31. Safonov VA, Vykhodtseva LN, Polukarov YM, Safonova OV, Smolentsev G, Sikora M, Eeckhout SG, Glatzel P (2006) Valence-to-core X-ray emission spectroscopy identification of carbide compounds in nanocrystalline Cr coatings deposited from Cr(III) electrolytes containing organic substances. J Phys Chem B 110:23192

    Article  CAS  Google Scholar 

  32. Hämäläinen K et al (1991) Elimination of the inner-shell lifetime broadening in x-ray-absorption spectroscopy. Phys Rev Lett 67:2850; de Groot FMF et al (2002) Spectral sharpening of the Pt L edges by high-resolution x-ray emission. Phys Rev B 66:195112; van Bokhoven JA, Tromp M et al (2006) Activation of oxygen on gold-alumina catalysts: in-situ high energy resolution detection and time-resolved X-ray spectroscopy. Angew Chem Int Ed 45(28):4651

    Google Scholar 

  33. Safonova OV, Tromp M et al (2006) Identification of CO adsorption sites in supported Pt catalysts using high energy resolution fluorescence detection X-ray absorption spectroscopy. J Phys Chem B 110:16162; Frenkel AI, Small MW, Smith JG, Nuzzo RG, Kvashnina KO, Tromp M (2013) An in-situ study of bond strains in 1nm Pt catalysts and their sensitivities to cluster-support and cluster-adsorbate interactions. J Phys Chem C 117(44):23286–23294

    Google Scholar 

  34. de Groot FMF (2001) High-resolution x-ray emission and x-ray absorption spectroscopy. Chem Rev 101:1779; Butorin SM (2000) Resonant inelastic X-ray scattering as a probe of optical scale excitations in strongly electron-correlated systems: quasi-localized view. J Elec Spec 110:213; Kotani A, Shin S (2001) Resonant inelastic x-ray scattering spectra for electrons in solids. Rev Mod Phys 73:203; Gel’mukhanov F, Agren H (1999) Resonant X-ray Raman scattering. Phys Rep 312:91

    Google Scholar 

  35. Matsubara M et al (2002) Polarization dependence of resonant X-ray emission spectra in 3dn transition metal compounds with n = 0,1,2,3. J Phys Soc Jpn 71:347

    Article  CAS  Google Scholar 

  36. Hobbs S, Thomas RJ, Grattage J, Dhesi S, de Groot FMF, Rehr JJ, Glatzel P, Tromp M (2013) An investigation into the electronic structure of Cr systems using complementary X-ray absorption and emission techniques. J Phys Chem B, submitted for publication

    Google Scholar 

  37. Thomas R, Kas J, Glatzel P, De Groot FMF, Mori RA, Kavčič M, Zitnik M, Bucar K, Rehr JJ, Tromp M. Resonant Inelastic X-ray Scattering of molybdenum oxides and sulfides. J Phys Chem C, submitted for publication

    Google Scholar 

  38. Hobbs S, Thomas RJ, Samson J, Grattage J, Kvashnina K, Dhesi S, de Groot FMF, Rehr JJ, Glatzel P, Tromp M (2013) In situ XAS and XES techniques revealing important insights in Cr(salen) catalysed epoxidation reaction performances. J Organomet Chem, submitted for publication

    Google Scholar 

  39. Glatzel P, Singh J, Kvashnina KO, Van Bokhoven JA (2010) In situ characterization of the 5d density of states of Pt nanoparticles upon adsorption of CO. J Am Chem Soc 132:2555; Small MW, Kas J, Kvashnina KO, Rehr JJ, Nuzzo RG, Tromp M, Frenkel AI (2013) Effects of adsorbate coverage and bond length disorder on the d-band center in carbon-supported Pt catalysts. Angew Chem Int Ed, accepted

    Google Scholar 

  40. Garino C, Gallo E, Smolentsev N, Glatzel P, Gobetto R, Lamberti C, Sadler PJ, Salassa L (2012) Resonant X-ray emission spectroscopy reveals d–d ligand-field states involved in the self-assembly of a square-planar platinum complex. Phys Chem Chem Phys 14:15278

    Article  CAS  Google Scholar 

  41. Gallo E et al (2013) Preference towards five-coordination in Ti Silicalite-1 upon molecular adsorption. ChemPhysChem 14:79

    Article  CAS  Google Scholar 

  42. FEFF8: Ankudinov AL, Ravel B, Conradson SD (1998) Real space multiple scattering calculation of XANES. Phys Rev B 58:7565; Ankudinov AL, Bouldin C, Rehr JJ, Sims J, Hung H (2002) Parallel calculation of electron multiple scattering using Lanczos algorithms. Phys Rev B 65:104107. FEFF9: Kas JJ, Rehr JJ, Soininen JA, Glatzel P (2011) Real-space Green’s function approach to resonant inelastic x-ray scattering. Phys Rev B 83(23):235114

    Google Scholar 

  43. de Groot FMF (2005) Multiplet effects in X-ray spectroscopy. Coord Chem Rev 249:31; de Groot F, Kotani A (2008) Core level spectroscopy of solids. Taylor & Francis/CRC Press, Boca Raton

    Google Scholar 

  44. Carravetta V et al (2005) StoBe Software

    Google Scholar 

  45. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133; Kohn W et al (1996) Density functional theory of electronic structure. J Phys Chem 100:12974

    Google Scholar 

  46. Smolentsev N, Sikora M, Soldatov AV, Kvashnina KO, Glatzel P (2011) Spin-orbit sensitive hard x-ray probe of the occupied and unoccupied 5d density of states. Phys Rev B 84(23):235113

    Article  Google Scholar 

  47. Vanko G et al (2012) Spin-state studies with XES and RIXS: from static to ultrafast. J Electron Spec Relat Phenom 188:166

    Article  Google Scholar 

  48. Szlachetko J, Nachtegaal M, de Boni E, Willimann M, Safonova O, Sa J, Smolentsev G, Szlachetko M, van Bokhoven JA, Dousse JCI, Hoszowska J, Kayser Y, Jagodzinski P, Bergamaschi A, Schmitt B, David C, Luecke A (2012) A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emissionspectroscopy and time-resolved resonant inelastic x-ray scattering studies. Rev Sci Instrum 83:103105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moniek Tromp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tromp, M. (2014). Time-Resolved XAS Spectroscopy Probing Dynamic Species in Homogeneous Catalysis – Towards Faster Methods Providing More Information. In: Howard, J., Sparkes, H., Raithby, P., Churakov, A. (eds) The Future of Dynamic Structural Science. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8550-1_12

Download citation

Publish with us

Policies and ethics