Skip to main content

Numerical Simulations of Shock Emission by Bubble Collapse Near a Rigid Surface

With Applications to Shock-Wave Lithotripsy (SWL) and the Spallation Neutron Source

  • Chapter
  • First Online:
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 106))

  • 2864 Accesses

Abstract

The event central to cavitation erosion is bubble collapse. Yet, the detailed physics of the process are not well characterized. In recent years, direct simulations of the Euler equations have been used to study the collapse of a single bubble and the subsequent shock emission, in contexts ranging from naval engineering to biomedical applications. In the present work, shock-induced collapse and Rayleigh collapse of a single gas bubble are examined, with emphasis on cavitation damage in biomedical applications and the Spallation Neutron Source (SNS). After an overview following Johnsen [32], the non-spherical bubble dynamics are considered in detail for problems in which the collapse time is on the order of the time scale of shock propagation through the bubble. The pressures generated by bubble collapse near a solid surface are measured, and it is shown that the resulting wall pressure may be larger than that of the incoming shock. The current work is then applied to shock-wave lithotripsy, a procedure developed to treat renal calculi. In particular, one-way coupled fluid and elastic wave propagation simulations are used to investigate damage to kidney stones. Two stone comminution mechanisms are proposed: shock-induced bubble collapse and spallation due to shocks emitted by bubble collapse. The results suggest that the coupling between the fluid and solid mechanics are important in terms of understanding cavitation erosion. In the context of the SNS, the effect of confinement on the bubble dynamics and the pressure generated by collapse are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arndt REA (1981) Cavitation in fluid machinery and hydraulic structures. Annu Rev Fluid Mech 12:273–328

    Article  MathSciNet  Google Scholar 

  2. Ball GJ, Howell BP, Leighton TG, Schofield MJ (2000) Shock-induced collapse of a cylindrical air cavity in water: a Free-Lagrange simulation. Shock Waves 10:265–276

    Article  MATH  Google Scholar 

  3. Benjamin TB, Ellis AT (1966) The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries. Phil Trans R Soc Lond A 260:221–240

    Article  Google Scholar 

  4. Best JP (1993) The formation of toroidal bubbles upon the collapse of transient cavities. J Fluid Mech 251:79–107

    Article  MATH  Google Scholar 

  5. Blake JR, Taib BB, Doherty G (1986) Transient cavities near boundaries. Part 1: rigid boundary. J Fluid Mech 170:479–497

    Article  MATH  Google Scholar 

  6. Bourne NK, Field JE (1992) Shock-induced collapse of single cavities in liquids. J Fluid Mech 244:225–240

    Article  Google Scholar 

  7. Brennen CE (1995) Cavitation and bubble dynamics. University Press, Oxford

    Google Scholar 

  8. Brouillette M (2002) The Richtmyer-Meshkov instability. Annu Rev Fluid Mech 34:445–468

    Article  MathSciNet  Google Scholar 

  9. Busnaina AA, Kashkoush II, Gale GW (1995) An experimental study of megasonic cleaning of silicon wafers. J Electrochem Soc 142:2812–2817

    Article  Google Scholar 

  10. Chahine GL, Duraiswami R (1992) Dynamical interactions in a multi-bubble cloud. Trans ASME J Fluids Eng 114:680–686

    Article  Google Scholar 

  11. Chang CH, Liou MS (2007) A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM+-up scheme. J Comput Phys 225:840–873

    Article  MATH  MathSciNet  Google Scholar 

  12. Chaussy C (1982) Extracorporeal shock wave lithotripsy: new aspects in the treatment of kidney stone disease. Karger, Basel

    Google Scholar 

  13. Cleveland RO, Sapozhnikov OA (2005) Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J Acoust Soc Am 118:2667–2676

    Article  Google Scholar 

  14. Cohen NP, Whitfield HN (1993) Mechanical testing of urinary calculi. World J Urol 11:1–18

    Article  Google Scholar 

  15. Coleman AJ, Saunders JE, Crum LA, Dyson M (1987) Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med Biol 13:69–76

    Article  Google Scholar 

  16. Crum LA (1988) Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. J Urol 140:1587–1590

    Google Scholar 

  17. Eisenmenger W (2001) The mechanisms of stone fragmentation in ESWL. Ultrasound Med Biol 27:683–693

    Article  Google Scholar 

  18. Elder SA (1959) Cavitation microstreaming. J Acoust Soc Am 31:54–64

    Article  Google Scholar 

  19. Fujikawa S, Akamatsu T (1980) Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J Fluid Mech 97:481–512

    Article  MATH  Google Scholar 

  20. Giannadakis E, Gavaises M, Arcoumanis C (2008) Modelling of cavitation in diesel injector nozzles. J Fluid Mech 629:153–193

    Article  Google Scholar 

  21. Gracewski SM, Dahake G, Ding Z, Burns SJ, Everbach EC (1993) Internal stress wave measurements in solids subjected to lithotripter pulses. J Acoust Soc Am 94:652–661

    Article  Google Scholar 

  22. Haas JF, Sturtevant B (1987) Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J Fluid Mech 181:41–76

    Article  Google Scholar 

  23. Haines JF, Riemer BW, Felde DK, Hunn JD, Pawel SJ, Tai CC (2005) Summary of cavitation erosion investigations for the SNS mercury target. J Nucl Mater 343:58–69

    Article  Google Scholar 

  24. Hammitt FG (1980) Cavitation and multiphase flow phenomena. McGraw-Hill, New York

    Google Scholar 

  25. Hansson I, Kedrinskii V, Morch KA (1982) On the dynamics of cavity clusters. J Phys D Appl Phys 12:1725–1734

    Article  Google Scholar 

  26. Hickling R, Plesset MS (1964) Collapse and rebound of a spherical bubble in water. Phys Fluids 7:7–14

    Article  MATH  Google Scholar 

  27. Hu XY, Khoo BC, Adams NA, Huang FL (2006) A conservative interface method for compressible flows. J Comput Phys 219:553–578

    Article  MATH  MathSciNet  Google Scholar 

  28. Hua C, Johnsen E (2013) Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium. Phys Fluids 25, 083101

    Google Scholar 

  29. Jamaluddin AR (2005) Free-Lagrange simulations of shock-bubble interaction in extracorporeal shock wave lithotripsy. PhD thesis, University of Southampton, Southampton

    Google Scholar 

  30. Jiang GS, Shu CW (1996) Efficient implementation of weighted ENO schemes. J Comput Phys 126:202–228

    Article  MATH  MathSciNet  Google Scholar 

  31. Johnsen E, Colonius T (2006) Implementation of WENO schemes in compressible multicomponent flow problems. J Comput Phys 219:715–732

    Article  MATH  MathSciNet  Google Scholar 

  32. Johnsen E (2008) Numerical simulations of non-spherical bubble collapse, PhD thesis, California Institute of Technology, California

    Google Scholar 

  33. Johnsen E, Colonius T (2008) Shock-induced collapse of a gas bubble in shockwave lithotripsy. J Acoust Soc Am 124:2011–2020

    Article  Google Scholar 

  34. Johnsen E, Colonius T (2009) Numerical simulations of non-spherical bubble collapse. J Fluid Mech 629:231–262

    Article  MATH  MathSciNet  Google Scholar 

  35. Johnsen E, Colonius T, Cleveland R (2009) Damage potential of the shock-induced collapse of a gas bubble. Proceedings of the 7th International Symposium on Cavitation, Ann Arbor, Michigan

    Google Scholar 

  36. Klaseboer E, Turangan C, Fong SW, Liu TG, Hung KC, Khoo BC (2006) Simulations of pressure pulse-bubble interaction using boundary element method. Comput Methods Appl Mech Eng 195:4287–4302

    Article  MATH  Google Scholar 

  37. Kling CL, Hammitt FG (1972) A photographic study of spark-induced cavitation bubble collapse. Trans ASME: J Basic Eng 94:825–833

    Article  Google Scholar 

  38. Knapp RT, Daily JW, Hammitt FG (1970) Cavitation. McGraw-Hill, New York

    Google Scholar 

  39. Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Appl Phys 15:495–506

    Article  Google Scholar 

  40. Lauterborn W, Bolle H (1975) Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 72:391–399

    Article  Google Scholar 

  41. Li SC (2000) Cavitation of hydraulic machinery. Imperial College Press, London

    Book  Google Scholar 

  42. Lindau O, Lauterborn W (2003) Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J Fluid Mech 479:327–348

    Article  MATH  Google Scholar 

  43. Lubock P, Goldsmith W (1980) Experimental cavitation studies in a model head-neck system. J Biomech 13:1041–1052

    Article  Google Scholar 

  44. McClintock DA, Riemer BW, Ferguson PD, Carroll AJ, Dayton MJ (2012) Initial observations of cavitation-induced erosion of liquid metal spallation target vessels at the Spallation Neutron Source. J Nucl Mat 431(1–3):147–159 (in press)

    Google Scholar 

  45. Moholkar VS, Warmoeskerken MMCG, Ohl CD, Prosperetti A (2004) Mechanism of mass-transfer enhancement in textiles by ultrasound. AIChE J 60:58–64

    Article  Google Scholar 

  46. Mourad PD, Roberts FA, McInnes C (2007) Synergistic use of ultrasound and sonic motion for removal of dental plaque bacteria. Compend Contin Educ. Dent 28:354–358

    Google Scholar 

  47. Nagrath S, Jansen K, Lahey RT Jr, Akhatov I (2006) Hydrodynamic simulation of air bubble implosion using a level set approach. J Comput Phys 215:98–132

    Article  MATH  MathSciNet  Google Scholar 

  48. Naude CF, Ellis AT (1961) On the mechanism of cavitation damage by nonhemispherical cavities in contact with a boundary. Trans ASME: J Basic Eng 83:648–656

    Article  Google Scholar 

  49. Nourgaliev RR, Dinh TN, Theofanous TG (2006) Adaptive characteristics-based matching for compressible multifluid dynamics. J Comput Phys 213:500–529

    Article  MATH  Google Scholar 

  50. Ohl CD, Ikink R (2003) Shock-wave-induced jetting of micron-size bubbles. Phys Rev Lett 90:214502

    Article  Google Scholar 

  51. Ohl CD, Arora M, Dijkink R, Janve V, Lohse D (2006) Surface cleaning from laser-induced cavitation bubbles. Appl Phys Lett 89:074102

    Article  Google Scholar 

  52. Packer M, Fishkind WJ, Fine IH, Seibel BS, Hoffman RS (2005) The physics of phaco: a review. J Cataract Refract Surg 31:424–431

    Article  Google Scholar 

  53. Philipp A, Delius M, Scheffczyk C, Vogel A, Lauterborn W (1993) Interaction of lithotripter-generated shock waves with air bubbles. J Acoust Soc Am 93:2496–2509

    Article  Google Scholar 

  54. Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116

    Article  MATH  Google Scholar 

  55. Pishchalnikov YA, Sapozhnikov OA, Bailey MR, Williams JC, Cleveland RO, Colonius T, Crum LA, Evan AP, McAteer JA (2003) Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J Endourol 17:435–446

    Article  Google Scholar 

  56. Plesset MS (1949) The dynamics of cavitation bubbles. Trans ASME: J Appl Mech 16:277–282

    Google Scholar 

  57. Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech 49:283–290

    Article  Google Scholar 

  58. Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9:145–185

    Article  Google Scholar 

  59. Popinet S, Zaleski S (2002) Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J Fluid Mech 464:137–163

    Article  MATH  Google Scholar 

  60. Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Phil Mag 34:94–98

    Article  MATH  Google Scholar 

  61. Riemer BW, Wendel MW, Felde DK (2010) Cavitation damage experiments for mercury spallation targets at the LANSCE—WNR in 2008. J Nucl Mater 398:207–219

    Google Scholar 

  62. Roberts WW, Hall TL, Ives K, Wolf JS Jr, Fowlkes JB, Cain CA (2006) Pulsed cavitational ultrasound: a non-invasive technology for controlled tissue ablation (Histotripsy) in the rabbit kidney. J Urol 175:734–738

    Article  Google Scholar 

  63. Sankin GN, Simmons WN, Zhu SL, Zhong P (2005) Shock wave interaction with laser-generated single bubbles. Phys Rev Lett 95:034501

    Article  Google Scholar 

  64. Suslick KS (1990) Sonochemistry. Science 247:1439–1445

    Article  Google Scholar 

  65. Thornycroft J, Barnaby SW (1895) Torpedo boat destroyers. Proc Inst Of Civ Eng 122:51–103

    Google Scholar 

  66. Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin

    Google Scholar 

  67. Tomita Y, Shima A (1986) Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J Fluid Mech 169:535–564

    Article  Google Scholar 

  68. Vogel A, Lauterborn W, Timm R (1988) Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J Acoust Soc Am 84:719–731

    Article  Google Scholar 

  69. Vogel A, Lauterborn W, Timm R (1989) Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J Fluid Mech 206:299–338

    Article  Google Scholar 

  70. Walmsley AD, Laird WRE, Williams AR (1988) Dental plaque removal by cavitational activity during ultrasonic scaling. J Clin Periodontal 15:539–543

    Article  Google Scholar 

  71. Walters J, Davidson JF (1962) The initial motion of a gas bubble formed in an inviscid liquid. Part 1. The two-dimensional bubble. J Fluid Mech 12:408–416

    Article  Google Scholar 

  72. Wardlaw AB, Luton JA (2000) Fluid-structure interaction mechanisms for close-in explosions. Shock Vib 7:265–275

    Article  Google Scholar 

  73. Yoganathan AP, He Z, Jones SC (2004) Fluid mechanics of heart valves. Annu Rev Biomed Eng 6:331–362

    Article  Google Scholar 

  74. Zhang SG, Duncan JH, Chahine GL (1993) The final stage of the collapse of a cavitation bubble near a rigid wall. J Fluid Mech 257:147–181

    Article  MATH  Google Scholar 

  75. Zhu S, Cocks FH, Preminger GM, Zhong P (2002) The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol 28:661–671

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work was supported during the author’s Ph.D. studies by NIH Grant PO1 DK043881 and ONR grant N00014-06-1-0730. The more recent work was partly supported by Oak Ridge Associated Universities through the Ralph E. Powe Junior Faculty Enhancement Award. The author gratefully acknowledges helpful conversations with Tim Colonius, Robin Cleveland, Bernie Riemer and the Consortium for Shock Waves in Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Johnsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johnsen, E. (2014). Numerical Simulations of Shock Emission by Bubble Collapse Near a Rigid Surface. In: Kim, KH., Chahine, G., Franc, JP., Karimi, A. (eds) Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction. Fluid Mechanics and Its Applications, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8539-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8539-6_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8538-9

  • Online ISBN: 978-94-017-8539-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics