Skip to main content

Optimizations in Project Scheduling: A State-of-Art Survey

  • Chapter
  • First Online:
Book cover Optimization and Control Methods in Industrial Engineering and Construction

Abstract

Project scheduling is concerned with an optimal allocation of resources to activities realized over time. To survive in today’s competitive environment, efficient scheduling for project development becomes more and more important. The classical project scheduling is based on the critical path method (CPM) in which resources required are assumed unlimited. This is however impractical. To overcome CPM’s drawback, several techniques and optimizations have been proposed in project scheduling literature. In this chapter, we will present a state-of-art survey on project scheduling from the optimization point of view. In particularly, we will focus on the advancements of optimization formulations and solutions on project scheduling in the recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egan J (1998) Rethinking construction, the report of the construction task force to the Deputy Prime Minister John Prescott, scope for improving the quality and efficiency of UK construction. HMSO, London

    Google Scholar 

  2. Love PED, Simpson I, Hill A, Standing C (2013) From justification to evaluation: building information modeling for asset owners, Automation in Construction (in press)

    Google Scholar 

  3. Queensland Department of Main Roads (2005) Roads implementation program 2004–2005 to 2008–2009. www.mainroads.qld.gov.au. Accessed 28 June 2011

  4. Waldron B (2011) Scope for Improvement 2011-Project Risk Getting the Right Balance and Outcomes, 27th July 2011. (Available at: http://careers.blakedawson.com, access 15th November 2011)

  5. Assaf S, Al-Hejji S (2006) Causes of delay in large construction projects. Int J Proj Manag 24:349–357

    Article  Google Scholar 

  6. Galloway PD, Fasce PE (2006) Survey of the construction industry relative to the use of CPM scheduling for construction projects. J Constr Eng Manage 132:697–711

    Article  Google Scholar 

  7. Horbach A (2010) A boolean satisfiability approach to the resource-constrained project scheduling problem. Ann Oper Res 181:89–107

    Article  MATH  MathSciNet  Google Scholar 

  8. Liao TW, Egbelu PJ, Sarker BR, Leu SS (2011) Metaheuristics for project and construction management–a state-of-the-art review. Autom Constr 20:491–505

    Article  Google Scholar 

  9. Kolisch R, Padman R (2001) An integrated survey of deterministic project scheduling. Omega 29:249–272

    Article  Google Scholar 

  10. Harmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained project scheduling problem. Eur J Oper Res 207:1–14

    Article  Google Scholar 

  11. Hartmann S (2001) Project scheduling with multiple modes: a genetic algorithm. Ann Oper Res 102:111–135

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang L, Fang C (2011) An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem. Inf Sci 181:4804–4822

    Article  MATH  MathSciNet  Google Scholar 

  13. Bianco L, Caramia M (2012) An exact algorithm to minimize the makespan in project scheduling with scarce resources and generalized precedence relations. Eur J Oper Res 219:73–85

    Article  MATH  MathSciNet  Google Scholar 

  14. Jia Q, Seo Y (2013) Solving resource-constrained project scheduling problems: conceptual validation of FLP formulation and efficient permutation-based ABC computation. Comput Oper Res 40:2037–2050

    Article  MathSciNet  Google Scholar 

  15. Son J, Hong T, Lee S (2013) A mixed (continuous + discrete) time-cost trade-off model considering four different relationships with lag time. KSCE J Civil Eng 17:281–291

    Article  Google Scholar 

  16. Hazir O, Haouari M, Erel E (2010) Discrete time/cost trade-off problem: a decomposition-based solution algorithm for the budget version. Comput Oper Res 37:649–655

    Article  MATH  Google Scholar 

  17. Klansek U, Psunder M (2012) MINLP optimization model for the nonlinear discrete time-cost trade-off problem. Adv Eng Softw 48:6–16

    Article  Google Scholar 

  18. Ghoddousi P, Eshtehardian E, Jooybanpuur S, Javanmardi A (2013) Multi-mode resource-constrained discrete time-cost-resource optimization in project scheduling using non-dominated sorting genetic algorithm. Autom Constr 30:216–227

    Article  Google Scholar 

  19. Koulinas GK, Anagnostopoulos KP (2013) A new tabu search-based hyper-heuristic algorithm for solving construction leveling problmes with limited resource availablitis. Autom Constr 31:169–175

    Article  Google Scholar 

  20. Rieck J, Zimmermann J, Gather T (2012) Mixed-integer linear programming for resource leveling problem. Eur J Oper Res 221:27–37

    Article  MATH  MathSciNet  Google Scholar 

  21. Lin C, Gen M (2007) Multiobjective resource allocation problem by multistage decision-based hybrid genetic algorithm. Appl Math Comput 187:574–583

    Article  MATH  MathSciNet  Google Scholar 

  22. Fan K, You W, Li YY (2013) An effective modified binary particle swarm optimization (mBPSO) algorithm for multi-objective resource allocation problem (MORAP). Appl Math Comput 221:257–267

    Article  MathSciNet  Google Scholar 

  23. Baradaran S, Ghomi SMTF, Ranjbar M, Hashemin SS (2012) Multi-mode renewable resource-constrained allocation in PERT networks. Appl Soft Comput 12:82–90

    Google Scholar 

  24. Yin PY, Wang JY (2006) Ant colony optimization for the nonlinear resource allocation problem. Appl Math Comput 174:1438–1453

    Article  MATH  MathSciNet  Google Scholar 

  25. Patriksson M (2008) A survey on the continuous nonlinear resource allocation problem. Eur J Oper Res 185:1–46

    Article  MATH  MathSciNet  Google Scholar 

  26. Peng W, Wang C (2009) A multi-mode resource constrained discrete time-cost tradeoff problem and its genetic algorithm based solution. Int J Proj Manage 27:600–609

    Article  Google Scholar 

  27. Ranjbar M, Khalilzadeh M, Kianfar F, Etminani K (2012) An optimal procedure for minimizing total weighted resource tardiness penalty costs in the resource-constrained project scheduling problem. Comput Ind Eng 62:264–270

    Article  Google Scholar 

  28. Ranjbar M, Hosseinabadi S, Abasian F (2013) Minimizing total weighted late work in the resource-constrained project scheduling problem. Appl Math Model (in press)

    Google Scholar 

  29. Ranjbar M, Davari M (2013) An exact method for scheduling of the alternative technologies in R &D projects. Comput Oper Res 40:395–405

    Article  MathSciNet  Google Scholar 

  30. Klein R, Scholl A (1999) Computign lower bounds by destructive improvement: an application to resource-constrained project scheduling. Eur J Oper Res 112:322–346

    Article  MATH  Google Scholar 

  31. Stinson JP, Davis EW, Khumawala BM (1978) Multiple resource-constrained scheduling using branch and bound. AIIE Trans 10:23–40

    Article  Google Scholar 

  32. Drotos M, Kis T (2011) Resource leveling in a machine environment. Eur J Oper Res 212:12–21

    Article  MATH  MathSciNet  Google Scholar 

  33. Kone O, Artigues C, Lopez P, Mongeau M (2011) Event-based MILP models for resource-constrained project scheduling problems. Comput Oper Res 38:3–13

    Article  MATH  MathSciNet  Google Scholar 

  34. Ziarati K, Akbaria R, Zeighamib V (2011) On the performance of bee algorithms for resource-constrained project scheduling problem. Appl Soft Comput 11:3720–3733

    Article  Google Scholar 

  35. Bouleimen K, Lecocq H (2003) A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. Eur J Oper Res 149:268–281

    Article  MATH  MathSciNet  Google Scholar 

  36. Mika M, Waligora G, Weglarz J (2005) Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models. Eur J Oper Res 164:639–668

    Article  MATH  MathSciNet  Google Scholar 

  37. Mika M, Waligora G, Weglarz J (2008) Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times. Eur J Oper Res 187:1238–1250

    Article  MATH  Google Scholar 

  38. Khoshjahan Y, Najafi AA, Nadjafi BA (2013) Resource constrained project scheduling problem with discounted earliness tardiness penalties: mathematical modeling and solving procedure. Comput Ind Eng (in press)

    Google Scholar 

  39. He Z, Wang N, Jia T, Xu Y (2009) Simulated annealing and tabu search for multi-mode project payment scheduling. Eur J Oper Res 198:688–696

    Article  MATH  Google Scholar 

  40. He Z, Liu R, Jia T (2012) Metaheuristic for multi-mode capital-constrained project payment scheduling. Eur J Oper Res 223:605–613

    Article  Google Scholar 

  41. Anagnostopoulos KP, Kotsikas L (2010) Experimental evaluation of simulated annealing algorithms for the time-cost trade-off problem. Appl Math Comput 217:260–270

    Article  MATH  MathSciNet  Google Scholar 

  42. Montoya-Torres JR, utierrez-Franco E, Pirachican-Mayorga C (2010) Project scheduling with limited resources using a genetic algorithm. Int J Project Manage 28:619–628

    Article  Google Scholar 

  43. Zamani R (2013) A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem. Eur J Oper Res 229:552–559

    Article  MathSciNet  Google Scholar 

  44. Peteghem V, Vanhoucke M (2010) A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. Eur J Oper Res 201:409–441

    Article  MATH  Google Scholar 

  45. Buddhakulsomsiri J, Kim D (2006) Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting. Eur J Oper Res 175:279–295

    Article  MATH  Google Scholar 

  46. Long LD, Ohsato A (2009) A genetic algorithm-based method for scheduling repetitive construction projects. Autom Constr 18:499–511

    Article  Google Scholar 

  47. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  48. Lorenzoni LL, Ahonen H, Alvarenga AG (2006) A multi-mode resource-constrained scheduling problem in the context of port operations. Comput Ind Eng 50:55–65

    Article  Google Scholar 

  49. Damaka N, Jarbouia B, Siarryb P, Loukila T (2009) Differential evolution for solving multi-mode resource-constrained project scheduling problems. Comput Oper Res 36:2653–2659

    Article  MathSciNet  Google Scholar 

  50. Zamani R (2013) An evolutionary search procedure for optimizing timeCcost performance of projects under multiple renewable resource constraints. Comput Ind Eng (in press)

    Google Scholar 

  51. Wang L, Fang C (2012) An effective estimation of distribution algorithm for the multi-mode resource-constrained project scheduling problem. Comput Oper Res 39:449–460

    Google Scholar 

  52. Chen SH, Chen MC (2013) Addressing the advantages of using ensemble probabilistic models in estimation of distribution algorithms for scheduling problems. Int J Prod Econ 141:24–33

    Article  Google Scholar 

  53. Wang L, Wang S, Liu M (2013) A Pareto-based estimation of distribution algorithm for the multi-objective flexible job-shop scheduling problem. Int J Prod Res 51:3574–3592

    Article  Google Scholar 

  54. Mahdi Mobini MD, Rabban M, Amalnik MS, Razmi J, Rahimi-Vahed AR (2009) Using an enhanced scatter search algorithm for a resource-constrained project scheduling problem. Soft Comput 13:597–610

    Google Scholar 

  55. Mario V (2010) A scatter search heuristic for maximizing the net present value of a resource-constrained project with fixed activity cash flows. Int J Prod Res 48:1983–2001

    Article  MATH  Google Scholar 

  56. Merkle D, Middendorf M, Schmeck H (2002) Ant colony optimization for resource-constrained project scheduling. IEEE Trans Evol Comput 6:333–346

    Article  Google Scholar 

  57. Li H, Zhang H (2013) Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints. Autom Constr 35:431–438(online publishing)

    Google Scholar 

  58. Chaharsooghi SK, Kermani AHM (2008) An effective ant colony optimization algorithm (ACO) for multi-objective resource allocation problem (MORAP). Appl Math Comput 200:167–177

    Article  MATH  MathSciNet  Google Scholar 

  59. Xiong Y, Kuang Y (2008) Applying an ant colony optimization algorithm-based multiobjective approach for time-cost trade-off. J Constr Eng Manage 134:153–156

    Article  Google Scholar 

  60. Zheng DXM, Ng ST, Kumaraswamy MM (2004) Applying a genetic algorithm-based multiobjective approach for time-cost optimization. J Constr Eng Manage 130:168–176

    Article  Google Scholar 

  61. Mokhtari H, Baradaran Kazemzadeh R, Salmasnia A (2011) Time-cost tradeoff analysis in project management: an ant system approach. IEEE Trans Eng Manage 58:36–43

    Google Scholar 

  62. Chen RM, Wu CL, Wang CM, Lo ST (2010) Using novel particle swarm optimization scheme to solve resource-constrained scheduling problem in PSPLIB. Expert Sys Appl 37:1899–1910

    Article  Google Scholar 

  63. Valls V, Ballest F, Quintanilla S (2005) Justification and RCPSP: a technique that pays. Eur J Oper Res 165:375–386

    Article  MATH  Google Scholar 

  64. Chen RM (2011) Particle swarm optimization with justification and designed mechanisms for resource-constrained project scheduling problem. Expert Sys Appl 38:7102–7111

    Google Scholar 

  65. Jia Q, Seo Y (2013) An improved particle swarm optimization for the resource-constrained project scheduling problem. Int J Adv Manuf Technol 67:2627–2638

    Article  Google Scholar 

  66. Zhang H, Li H (2010) Multi-objective particle swarm optimization for construction time-cost trade off problems. Constr Manage Econ 28:75–88

    Article  Google Scholar 

  67. Fang C, Wang L (2012) An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem. Comput Oper Res 39:890–901

    Article  MATH  MathSciNet  Google Scholar 

  68. Ashuri B, Tavakolan M (2013) A shuffled frog-leaping model for solving time-cost-resource optimization (TCRO) problems in construction project planning. J Comput Civil Eng (in press)

    Google Scholar 

  69. Huang YM, Lin JC (2011) A new bee colony optimization algorithm with idle-time-based filtering scheme for open shop-scheduling problems. Expert Sys Appl 38:5438–5447

    Article  Google Scholar 

Download references

Acknowledgments

Changzhi Wu was partially supported by NSFC 11001288, the key project of Chinese Ministry of Education 210179, and the project from Chongqing Nature Science Foundation cstc2013jjB0149 and cstc2013jcyjA1338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzhi Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, C., Wang, X., Lin, J. (2014). Optimizations in Project Scheduling: A State-of-Art Survey. In: Xu, H., Wang, X. (eds) Optimization and Control Methods in Industrial Engineering and Construction. Intelligent Systems, Control and Automation: Science and Engineering, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8044-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8044-5_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8043-8

  • Online ISBN: 978-94-017-8044-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics