Advertisement

Cuban Techno-physical Experiments in Space

  • José Altshuler
  • Ocatvio Calzadilla Amaya
  • Federico Falcon
  • Juan E. FuentesEmail author
  • Jorge Lodos
  • Elena Vigil Santos
Chapter
Part of the Boston Studies in the Philosophy and History of Science book series (BSPS, volume 304)

Abstract

When Cuba joined the Intercosmos Program of the socialist countries in the mid-1960s, the great educational and scientific reform taking place at that time in the country had hardly begun to bear fruit. But when, a decade later, the Soviet Union offered all the participant countries the chance to make use of its space vehicles and related installations so that their cosmonauts could carry out original scientific experiments in space, the situation had changed radically in Cuba. In a short time around 200 people already involved in scientific and technological activities succeeded in designing and setting up—in close collaboration with various Soviet, East German and Bulgarian institutions—some 20 scientific experiments that were to be carried out in orbit around the earth during the joint Soviet-Cuban space flight of September 18–26, 1980. Those experiments, and a further one that was also set up for the same space flight—but carried out during a later flight, as mentioned below—are historically important since they were the first in their class to be carried out by humans in space under microgravity conditions.

Keywords

Epitaxial Layer Space Flight Microgravity Condition Socialist Country AlGaAs Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Altshuler, J. 1984. Space activities in Cuba. In Study week on the impact of space exploration on mankind, October 1–5, 1984, ed. C. Chagas and V. Canuto. Vatican City: Pontificia Academia Scientiarum.Google Scholar
  2. Avduyevsky, V.S. (ed.). 1984. Scientific foundations of space manufacturing. Moscow: Mir Publishers.Google Scholar
  3. Calzadilla, O. 1994. Estudio de la influencia de la convección en los crecimientos por el método de Bridgman. Doctoral thesis, University of Havana.Google Scholar
  4. Calzadilla, O., J. Fuentes, J. Vidal, P. Diaz, R. Romero, C. Arencibia, E. Hernández, L.M. Sorokin, I.I. Shulpina, and A.S. Trebugova. 1984. Influencia de la microgravitación en la estructura y distribución del elemento indio en una aleación de Ge-In. Ciencias Técnicas, Físicas y Matemáticas 4: 17–21.Google Scholar
  5. Calzadilla, O., J. Fuentes, I.L. Shulpina, and L. Sorokin. 1985. Estudio de los cristales de germanio dopados con indio en el experimento “Caribe”. In IX SLAFES, Latin American Seminar on Solid State Physics. Mar del Plata, Argentina.Google Scholar
  6. Calzadilla, O., J. Fuentes, I.L. Shulpina, and L. Sorokin. 1986. Caracterización estructural de una aleación de Ge-In crecida en el cosmos. Rev. Cub. Fis. 6(2): 47–52.Google Scholar
  7. Díaz, P., E. Vigil, R. Romero, E. Purón, S. de Roux, F. Sánchez, V.M. Andreev, S.G. Konnikov, and T.B. Papova. 1983. Experiment “Caribe”: Growth of GaAs and AlGaAs epitaxial layers and p-n junctions in space. In International conference of socialist countries about materials science results in space program, Riga, May 18–22, 1983.Google Scholar
  8. Díaz, P., E. Vigil, R. Romero, E. Purón, S. de Roux, F. Sánchez, V.M. Andreev, S.G. Konnikov, and T.B. Papova. 1984. Homo y heteroepitaxia de GaAlAs-GaAs en condiciones de ingravidez. Ciencias Técnicas, Físicas y Matemáticas 4: 23–28.Google Scholar
  9. Falcón Rodríguez, F.L. 1987. Utilización de la fusión zonal con gradiente de temperatura (FGZT) en el estudio de los mecanismos de cristalización de la sacarosa. Doctoral thesis, University of Oriente.Google Scholar
  10. Falcón Rodríguez, F.L., P.V. Pérez, and G.F. Zhukov. 1984. Fusión zonal con gradiente de temperatura en el sistema H2O-sacarosa en condiciones de microgravidez. Ciencias Técnicas, Físicas y Matemáticas 4: 11–16.Google Scholar
  11. Falcón Rodríguez, F.L., P.V. Pérez, S. Ameneiro, and G.F. Zhukov. 1985. Zonal fusion with temperature gradient in the H2O-Sucrose under microgravity conditions. Space experiment “Zona.”. Kosmicheskaia Issledovanie 23(3): 488–492 (In Russian).Google Scholar
  12. Gansherli, N.M., S.B. Gurevich, V.V. Kovalenok, V.B. Konstantinov, M. Cordero, I.A. Maurer, S. Mesa, R. Homs, S.A. Pisarevskaia, V. Rivera, et al. 1982. Holographic recording on board the Salyut-6 space station. Zhurnal Tekhnicheskoi Fiziki 52(11): 2192–2195 (In Russian).ADSGoogle Scholar
  13. Gurragcha, Z., S.B. Gurevich, V.A. Dzhanibekov, B.E. Kashonov, V.V. Kovalenok, V.B. Konstantinov, M. Cordero, S. Mesa, A.V. Militsin, R. Homs, et al. 1982. Exchange of holographaic information between Saliut-6 space station and flight control center. Tekhn., Kino i Televideniya 2: 5–11 (In Russian).Google Scholar
  14. Morera R., J. Lodos, and E. Casanova. 1983. Study of sucrose monocrystal growth in space: experiment “Sugar”. In International conference of socialist countries about materials science results in space program, Riga, May 18–22, 1983. Published as “Saliut-6”- “Soyuz” Materials science and technology (1984).Google Scholar
  15. Morera, R., J. Lodos, and E. Casanova. 1984. Crecimiento de monocristales de sacarosa en el espacio cósmico. Ciencias Técnicas, Físicas y Matemáticas 4: 3–9.Google Scholar
  16. Riegel, L., and W. Wilcox. 1996. Modeling of detached solidification. Final report, NASA-CR-208314. USA.Google Scholar
  17. Vigil, E. 1984. Chapter 3. In Estudio y aplicación del GaAs y sus soluciones sólidas con GaP y AlAs para la confección de diodos emisores de luz. Doctoral thesis, University of Havana.Google Scholar
  18. Vigil, E., and P. Díaz. 1981. Capas epitaxiales de GaAs y AlGaAs obtenidas en condiciones de ingravidez: características y propiedades. University of Havana third scientific conference. Havana, November 1981.Google Scholar
  19. Vigil, E., P. Díaz, V.M. Andreev, and S.G. Konnikov. 1984. Capas epitaxiales de GaAs y AlGaAs obtenidas en condiciones de microgravidez. In Fourth Mexican seminar of electronics physics. CINVESTAV, México, D. F., May 16–18, 1984.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  • José Altshuler
    • 1
  • Ocatvio Calzadilla Amaya
    • 4
  • Federico Falcon
    • 2
  • Juan E. Fuentes
    • 4
    Email author
  • Jorge Lodos
    • 3
  • Elena Vigil Santos
    • 4
  1. 1.Cuban Society for the History of Science and TechnologyHavanaCuba
  2. 2.Institute of Sciences and Technology of Materials (IMRE)University of HavanaHavanaCuba
  3. 3.Faculty of ChemistryUniversity of HavanaHavanaCuba
  4. 4.Faculty of PhysicsUniversity of HavanaHavanaCuba

Personalised recommendations