Skip to main content

Notch Signaling in Differentiation and Function of Dendritic Cells

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 12

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 12))

  • 1665 Accesses

Abstract

Hematopoietic stem cells give rise to multiple lineages of mature cells. This process is governed by a tightly controlled signaling network, regulated by cytokines and the direct interaction between progenitor cells and bone marrow stroma. Notch signaling represents one of the major pathways activated during the direct interaction between hematopoietic progenitor cells and bone marrow stroma. In this review, we discuss the recent findings that shed light on the critical role of Notch in the differentiation and function of dendritic cells, and its impact on immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahimou F, Mok LP, Bardot B, Wesley C (2004) The adhesion force of Notch with Delta and the rate of Notch signaling. J Cell Biol 167:1217–1229

    Article  CAS  PubMed  Google Scholar 

  • Allman D, Punt J, Izon DJ, Aster JC, Pear WS (2002) An invitation to T and more: notch signaling in lymphopoiesis. Cell 109:S1–S11

    Article  CAS  PubMed  Google Scholar 

  • Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA (2004) Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117:515–526

    Article  CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  • Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, Adams RH (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135

    Article  CAS  PubMed  Google Scholar 

  • Billiard F, Lobry C, Darrasse-Jeze G, Waite J, Liu X, Mouquet H, DaNave A, Tait M, Idoyaga J, Leboeuf M et al (2012) Dll4-Notch signaling in Flt3-independent dendritic cell development and autoimmunity in mice. J Exp Med 209:1011–1028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, Seandel M, Shido K, White IA, Kobayashi M et al (2010) Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6:251–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campos-Ortega JA, Knust E (1990) Molecular analysis of a cellular decision during embryonic development of Drosophila melanogaster: epidermogenesis or neurogenesis. Eur J Biochem 190:1–10

    Article  CAS  PubMed  Google Scholar 

  • Caton ML, Smith-Raska MR, Reizis B (2007) Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J Exp Med 204:1653–1664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng P, Zlobin A, Volgina V, Gottipati S, Osborne B, Simel EJ, Miele L, Gabrilovich DI (2001) Notch-1 regulates NF-kappaB activity in hemopoietic progenitor cells. J Immunol 167:4458–4467

    CAS  PubMed  Google Scholar 

  • Cheng P, Nefedova Y, Miele L, Osborne BA, Gabrilovich D (2003) Notch signaling is necessary but not sufficient for differentiation of dendritic cells. Blood 102:3980–3988

    Article  CAS  PubMed  Google Scholar 

  • Cheng P, Nefedova Y, Corzo CA, Gabrilovich DI (2007) Regulation of dendritic-cell differentiation by bone marrow stroma via different Notch ligands. Blood 109:507–515

    Article  CAS  PubMed  Google Scholar 

  • Choorapoikayil S, Willems B, Strohle P, Gajewski M (2012) Analysis of her1 and her7 mutants reveals a spatio temporal separation of the somite clock module. PLoS One 7:e39073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Souza B, Miyamoto A, Weinmaster G (2008) The many facets of Notch ligands. Oncogene 27:5148–5167

    Article  PubMed Central  PubMed  Google Scholar 

  • Dallas MH, Varnum-Finney B, Delaney C, Kato K, Bernstein ID (2005) Density of the Notch ligand Delta1 determines generation of B and T cell precursors from hematopoietic stem cells. J Exp Med 201:1361–1366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dallas MH, Varnum-Finney B, Martin PJ, Bernstein ID (2007) Enhanced T-cell reconstitution by hematopoietic progenitors expanded ex vivo using the Notch ligand Delta1. Blood 109:3579–3587

    Article  CAS  PubMed  Google Scholar 

  • Daskalaki A, Shalaby NA, Kux K, Tsoumpekos G, Tsibidis GD, Muskavitch MA, Delidakis C (2011) Distinct intracellular motifs of Delta mediate its ubiquitylation and activation by Mindbomb1 and Neuralized. J Cell Biol 195:1017–1031

    Article  CAS  PubMed  Google Scholar 

  • de Celis JF, Bray S (1997) Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 124:3241–3251

    PubMed  Google Scholar 

  • Despars G, O’Neill HC (2004) A role for niches in the development of a multiplicity of dendritic cell subsets. Exp Hematol 32:235–243

    Article  CAS  PubMed  Google Scholar 

  • Despars G, O’Neill HC (2006) Splenic endothelial cell lines support development of dendritic cells from bone marrow. Stem Cells 24:1496–1504

    Article  CAS  PubMed  Google Scholar 

  • Despars G, Ni K, Bouchard A, O’Neill TJ, O’Neill HC (2004) Molecular definition of an in vitro niche for dendritic cell development. Exp Hematol 32:1182–1193

    Article  CAS  PubMed  Google Scholar 

  • Diao J, Winter E, Chen W, Cantin C, Cattral MS (2004) Characterization of distinct conventional and plasmacytoid dendritic cell-committed precursors in murine bone marrow. J Immunol 173:1826–1833

    CAS  PubMed  Google Scholar 

  • Dontje W, Schotte R, Cupedo T, Nagasawa M, Scheeren F, Gimeno R, Spits H, Blom B (2006) Delta-like1-induced Notch1 signaling regulates the human plasmacytoid dendritic cell versus T-cell lineage decision through control of GATA-3 and Spi-B. Blood 107:2446–2452

    Article  CAS  PubMed  Google Scholar 

  • Esler WP, Kimberly WT, Ostaszewski BL, Diehl TS, Moore CL, Tsai JY, Rahmati T, Xia W, Selkoe DJ, Wolfe MS (2000) Transition-state analogue inhibitors of gamma-secretase bind directly to presenilin-1. Nat Cell Biol 2:428–434

    Article  CAS  PubMed  Google Scholar 

  • Ferrero I, Held W, Wilson A, Tacchini-Cottier F, Radtke F, MacDonald HR (2002) Mouse CD11c(+) B220(+) Gr1(+) plasmacytoid dendritic cells develop independently of the T-cell lineage. Blood 100:2852–2857

    Article  CAS  PubMed  Google Scholar 

  • Feyerabend TB, Terszowski G, Tietz A, Blum C, Luche H, Gossler A, Gale NW, Radtke F, Fehling HJ, Rodewald HR (2009) Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms. Immunity 30:67–79

    Article  CAS  PubMed  Google Scholar 

  • Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR, Cumano A, Geissmann F (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:83–87

    Article  CAS  PubMed  Google Scholar 

  • Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647

    Article  CAS  PubMed  Google Scholar 

  • Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geffers I, Serth K, Chapman G, Jaekel R, Schuster-Gossler K, Cordes R, Sparrow DB, Kremmer E, Dunwoodie SL, Klein T, Gossler A (2007) Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo. J Cell Biol 178:465–476

    Article  CAS  PubMed  Google Scholar 

  • Glittenberg M, Pitsouli C, Garvey C, Delidakis C, Bray S (2006) Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis. EMBO J 25:4697–4706

    Article  CAS  PubMed  Google Scholar 

  • Hansson EM, Lanner F, Das D, Mutvei A, Marklund U, Ericson J, Farnebo F, Stumm G, Stenmark H, Andersson ER, Lendahl U (2010) Control of Notch-ligand endocytosis by ligand-receptor interaction. J Cell Sci 123:2931–2942

    Article  CAS  PubMed  Google Scholar 

  • Heinz LX, Platzer B, Reisner PM, Jorgl A, Taschner S, Gobel F, Strobl H (2006) Differential involvement of PU.1 and Id2 downstream of TGF-beta1 during Langerhans-cell commitment. Blood 107:1445–1453

    Article  CAS  PubMed  Google Scholar 

  • Hoshino N, Katayama N, Shibasaki T, Ohishi K, Nishioka J, Masuya M, Miyahara Y, Hayashida M, Shimomura D, Kato T et al (2005) A novel role for Notch ligand Delta-1 as a regulator of human Langerhans cell development from blood monocytes. J Leukoc Biol 78:921–929

    Article  CAS  PubMed  Google Scholar 

  • Kato TM, Kawaguchi A, Kosodo Y, Niwa H, Matsuzaki F (2010) Lunatic fringe potentiates Notch signaling in the developing brain. Mol Cell Neurosci 45:12–25

    Article  CAS  PubMed  Google Scholar 

  • Kopan R, Goate A (2000) A common enzyme connects notch signaling and Alzheimer’s disease. Genes Dev 14:2799–2806

    Article  CAS  PubMed  Google Scholar 

  • Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ladi E, Nichols JT, Ge W, Miyamoto A, Yao C, Yang LT, Boulter J, Sun YE, Kintner C, Weinmaster G (2005) The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol 170:983–992

    Article  CAS  PubMed  Google Scholar 

  • Le Gall M, De Mattei C, Giniger E (2008) Molecular separation of two signaling pathways for the receptor, Notch. Dev Biol 313:556–567

    Article  PubMed Central  PubMed  Google Scholar 

  • Lewis KL, Caton ML, Bogunovic M, Greter M, Grajkowska LT, Ng D, Klinakis A, Charo IF, Jung S, Gommerman JL et al (2011) Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35:780–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liotta F, Angeli R, Cosmi L, Fili L, Manuelli C, Frosali F, Mazzinghi B, Maggi L, Pasini A, Lisi V et al (2008) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26:279–289

    Article  CAS  PubMed  Google Scholar 

  • Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, McKenna HJ (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184:1953–1962

    Article  CAS  PubMed  Google Scholar 

  • Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR, Hoek J, Caron D, Lebsack ME, McKenna HJ (2000) In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 96:878–884

    CAS  PubMed  Google Scholar 

  • McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E, Maliszewski CR, Lynch DH, Smith J, Pulendran B et al (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95:3489–3497

    CAS  PubMed  Google Scholar 

  • Meloty-Kapella L, Shergill B, Kuon J, Botvinick E, Weinmaster G (2012) Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev Cell 22:1299–1312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miele L (2006) Notch signaling. Clin Cancer Res 12:1074–1079

    Article  CAS  PubMed  Google Scholar 

  • Ngo VN, Cornall RJ, Cyster JG (2001) Splenic T zone development is B cell dependent. J Exp Med 194:1649–1660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nwabo Kamdje AH, Mosna F, Bifari F, Lisi V, Bassi G, Malpeli G, Ricciardi M, Perbellini O, Scupoli MT, Pizzolo G, Krampera M (2011) Notch-3 and Notch-4 signaling rescue from apoptosis human B-ALL cells in contact with human bone marrow-derived mesenchymal stromal cells. Blood 118:380–389

    Article  PubMed  Google Scholar 

  • O’Neill HC, Wilson HL, Quah B, Abbey JL, Despars G, Ni K (2004) Dendritic cell development in long-term spleen stromal cultures. Stem Cells 22:475–486

    Article  PubMed  Google Scholar 

  • Ohishi K, Varnum-Finney B, Serda RE, Anasetti C, Bernstein ID (2001) The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells. Blood 98:1402–1407

    Article  CAS  PubMed  Google Scholar 

  • Olivier A, Lauret E, Gonin P, Galy A (2006) The Notch ligand delta-1 is a hematopoietic development cofactor for plasmacytoid dendritic cells. Blood 107:2694–2701

    Article  CAS  PubMed  Google Scholar 

  • Onai N, Obata-Onai A, Schmid MA, Ohteki T, Jarrossay D, Manz MG (2007) Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8:1207–1216

    Article  CAS  PubMed  Google Scholar 

  • Osborne BA, Minter LM (2007) Notch signalling during peripheral T-cell activation and differentiation. Nat Rev Immunol 7:64–75

    Article  CAS  PubMed  Google Scholar 

  • Pelayo R, Hirose J, Huang J, Garrett KP, Delogu A, Busslinger M, Kincade PW (2005) Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow. Blood 105:4407–4415

    Article  CAS  PubMed  Google Scholar 

  • Petrasch S, Reinacher-Schick A, Busemann B, Radtke J, Philippou S, Dorr T, Kemmeries G, Eufinger H, Schmiegel W (2000) Neoadjuvant, hyperfractionated irradiation induces apoptosis and decreases proliferation in squamous cell cancer of the oral cavity. Int J Oral Maxillofac Surg 29:285–289

    Article  CAS  PubMed  Google Scholar 

  • Radtke F, Ferrero I, Wilson A, Lees R, Aguet M, MacDonald HR (2000) Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells. J Exp Med 191:1085–1094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sangaletti S, Gioiosa L, Guiducci C, Rotta G, Rescigno M, Stoppacciaro A, Chiodoni C, Colombo MP (2005) Accelerated dendritic-cell migration and T-cell priming in SPARC-deficient mice. J Cell Sci 118:3685–3694

    Article  CAS  PubMed  Google Scholar 

  • Saurer L, McCullough KC, Summerfield A (2007) In vitro induction of mucosa-type dendritic cells by all-trans retinoic acid. J Immunol 179:3504–3514

    CAS  PubMed  Google Scholar 

  • Sekine C, Moriyama Y, Koyanagi A, Koyama N, Ogata H, Okumura K, Yagita H (2009) Differential regulation of splenic CD8- dendritic cells and marginal zone B cells by Notch ligands. Int Immunol 21:295–301

    Article  CAS  PubMed  Google Scholar 

  • Selkoe D, Kopan R (2003) Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci 26:565–597

    Article  CAS  PubMed  Google Scholar 

  • Shortman K, Naik SH (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7:19–30

    Article  CAS  PubMed  Google Scholar 

  • Sprinzak D, Lakhanpal A, Lebon L, Santat LA, Fontes ME, Anderson GA, Garcia-Ojalvo J, Elowitz MB (2010) Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465:86–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Svensson M, Kaye PM (2006) Stromal-cell regulation of dendritic-cell differentiation and function. Trends Immunol 27:580–587

    Article  CAS  PubMed  Google Scholar 

  • Svensson M, Maroof A, Ato M, Kaye PM (2004) Stromal cells direct local differentiation of regulatory dendritic cells. Immunity 21:805–816

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Guo Z, Zhang M, Wang J, Chen G, Cao X (2006) Endothelial stroma programs hematopoietic stem cells to differentiate into regulatory dendritic cells through IL-10. Blood 108(4):1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Tsai S, Fero J, Bartelmez S (2000) Mouse Jagged2 is differentially expressed in hematopoietic progenitors and endothelial cells and promotes the survival and proliferation of hematopoietic progenitors by direct cell-to-cell contact. Blood 96:950–957

    CAS  PubMed  Google Scholar 

  • Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397

    Article  CAS  PubMed  Google Scholar 

  • Van de Walle I, De Smet G, Gartner M, De Smedt M, Waegemans E, Vandekerckhove B, Leclercq G, Plum J, Aster JC, Bernstein ID et al (2011) Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood 117:4449–4459

    Article  PubMed  Google Scholar 

  • Vremec D, Lieschke GJ, Dunn AR, Robb L, Metcalf D, Shortman K (1997) The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur J Immunol 27:40–44

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W, Liu YJ (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436:1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Yamamura K, Ohishi K, Katayama N, Kato K, Shibasaki T, Sugimoto Y, Miyata E, Shiku H, Masuya M, Nishioka J et al (2007) Notch ligand Delta-1 differentially modulates the effects of gp130 activation on interleukin-6 receptor alpha-positive and -negative human hematopoietic progenitors. Cancer Sci 98:1597–1603

    Article  CAS  PubMed  Google Scholar 

  • Yan XQ, Sarmiento U, Sun Y, Huang G, Guo J, Juan T, Van G, Qi MY, Scully S, Senaldi G, Fletcher FA (2001) A novel Notch ligand, Dll4, induces T-cell leukemia/lymphoma when overexpressed in mice by retroviral-mediated gene transfer. Blood 98:3793–3799

    Article  CAS  PubMed  Google Scholar 

  • Yang LT, Nichols JT, Yao C, Manilay JO, Robey EA, Weinmaster G (2005) Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell 16:927–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T et al (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407:48–54

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Tang H, Guo Z, An H, Zhu X, Song W, Guo J, Huang X, Chen T, Wang J, Cao X (2004) Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol 5:1124–1133

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Cheng P, Youn JI, Cotter MJ, Gabrilovich DI (2009) Notch and wingless signaling cooperate in regulation of dendritic cell differentiation. Immunity 30:845–859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Gabrilovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cheng, P., Liu, H., Gabrilovich, D. (2014). Notch Signaling in Differentiation and Function of Dendritic Cells. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 12. Stem Cells and Cancer Stem Cells, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8032-2_7

Download citation

Publish with us

Policies and ethics