Skip to main content

Generation of Autologous Multipotent Endothelial-Like Cells from Lipoaspirates of Human Adipose-Derived Stem Cells and Polymer Microarrays Technology: Potential Cardiovascular Regeneration

  • Chapter
  • First Online:
  • 1615 Accesses

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 12))

Abstract

Endothelial progenitor cells (EPCs) are a small population capable of self-renewal which participate actively in vasculogenesis, angiogenesis and arteriogenesis. Blood-derived EPCs or bone marrow (BM)-derived stem cells feature several drawbacks as far as their clinical utility is concerned, such as the extremely small number of circulating EPCs in the bloodstream and the low availability and harvesting difficulties of BM-derived stem cells. In contrast, human adipose-derived stem cells (hASCs) can be isolated in a greater number through a safe non-invasive liposuction procedure. We have developed a new approach of easy-to-derive large number of multipotent endothelial-like cells (ME-LCs) from human adipose tissue in culture for long periods. ME-LCs displayed increased expression levels of endothelial and hematopoietic lineage markers and EPC markers. Moreover, they formed tube-like structures when grown on 2-D coated MatrigelTM surfaces, secreted increased levels of SDF-1 and showed the ability to migrate attracted by cytokines. Importantly, ME-LCs retained the capacity to differentiate into cardiomyocyte-like cells.

An emerging bioengineering research is the development of synthetic biopolymer matrices as defined environments for EPC growth. A family of biopolymers capable of promoting adhesion and differentiation of human EPC was identified and used to coat a 3-D scaffolds for the generation of blood vessels in vitro. We showed a notable difference in the process of vascularization between the scaffolds coated with biopolymers than the gold standard matrix support. These results suggested a possible application of such biopolymers for remedying to ischemic injury allowing the endothelialization of artificial endoluminal vessel of intra-vascular prosthesis devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Kawamoto A, Masuda H (2011) Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 29:1650–1655

    Article  CAS  PubMed  Google Scholar 

  • Ball SG, Shuttleworth CA, Kielty CM (2010) Platelet-derived growth factor receptors regulate mesenchymal stem cell fate: implications for neovascularization. Expert Opin Biol Ther 10:57–71

    Article  CAS  PubMed  Google Scholar 

  • Bautch VL (2011) Stem cells and the vasculature. Nat Med 17:1437–1443

    Article  CAS  PubMed  Google Scholar 

  • Chan G, Mooney DJ (2008) New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol 26:382–392

    Article  CAS  PubMed  Google Scholar 

  • Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B (2012) The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 21:1299–1308

    Article  CAS  PubMed  Google Scholar 

  • Delisser HM, Baldwin HS, Albelda SM (1997) Platelet endothelial cell adhesion molecule 1 (PECAM-1/CD31): a multifunctional vascular cell adhesion molecule. Trends Cardiovasc Med 7:203–210

    Article  CAS  PubMed  Google Scholar 

  • Eschenhagen T, Eder A, Vollert I, Hansen A (2012) Physiological aspects of cardiac tissue engineering. Am J Physiol Heart Circ Physiol 303:133–143

    Article  Google Scholar 

  • Fanelli C, Aronoff R (1990) Restenosis following coronary angioplasty. Am Heart J 119:357–368

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Wang Y, Cao N, Yang H (2012) Progenitor/stem cell transplantation for repair of myocardial infarction: hype or hope? Ann Palliat Med 1:65–77

    PubMed Central  PubMed  Google Scholar 

  • Furuhata S, Ando K, Oki M, Aoki K, Ohnishi S, Aoyagi K, Sasaki H, Sakamoto H, Yoshida T, Ohnami S (2007) Gene expression profiles of endothelial progenitor cells by oligonucleotide microarray analysis. Mol Cell Biochem 298:125–138

    Article  CAS  PubMed  Google Scholar 

  • George AL, Bangalore-Prakash P, Rajoria S, Suriano R, Shanmugam A, Mittelman A, Tiwari RK (2011) Endothelial progenitor cell biology in disease and tissue regeneration. J Hematol Oncol 4:24

    Article  PubMed Central  PubMed  Google Scholar 

  • Gnecchi M, Zhang ZP, Ni AG, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrington LS, Sainson RC, Williams CK, Taylor JM, Shi W, Li JL, Harris AL (2008) Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc Res 75:144–154

    Article  CAS  PubMed  Google Scholar 

  • Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Hirashima M, Ogawa M, Nishikawa S, Matsumura K, Kawasaki K, Shibuya M (2003) A chemically defined culture of VEGFR2+ cells derived from embryonic stem cells reveals the role of VEGFR1 in tuning the threshold for VEGF in developing endothelial cells. Blood 101:2261–2267

    Article  CAS  PubMed  Google Scholar 

  • Igreja C, Fragoso R, Caiado F, Clode N, Henriques A, Camargo L, Reis EM, Dias S (2008) Detailed molecular characterization of cord blood-derived endothelial progenitors. Exp Hematol 36:193–203

    Article  CAS  PubMed  Google Scholar 

  • Imamura H, Ohta T, Tsunetoshi K, Doi K, Nozaki K, Takagi Y, Kikuta K (2010) Transdifferentiation of bone marrow-derived endothelial progenitor cells into the smooth muscle cell lineage mediated by transforming growth factor-beta1. Atherosclerosis 211:114–121

    Article  CAS  PubMed  Google Scholar 

  • Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216

    Article  CAS  PubMed  Google Scholar 

  • Kim S, von Recum H (2008) Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application. Tissue Eng Part B Rev 14:133–147

    Article  CAS  PubMed  Google Scholar 

  • Kuraitis D, Ruel M, Suuronen EJ (2011) Mesenchymal stem cells for cardiovascular regeneration. Cardiovasc Drugs Ther 25:349–362

    Article  PubMed  Google Scholar 

  • Labovsky V, Hofer EL, Feldman L, Fernandez Vallone V, Garcia Rivello H, Bayes-Genis A, Hernando Insua A, Levin MJ, Chasseing NA (2010) Cardiomyogenic differentiation of human bone marrow mesenchymal cells: role of cardiac extract from neonatal rat cardiomyocytes. Differentiation 79:93–101

    Article  CAS  PubMed  Google Scholar 

  • Marchal JA, Picon M, Peran M, Bueno C, Jimenez-Navarro M, Carrillo E, Boulaiz H, Rodriguez N, Alvarez P, Menendez P et al (2012) Purification and long-term expansion of multipotent endothelial-like cells with potential cardiovascular regeneration. Stem Cells Dev 21:562–574

    Article  CAS  PubMed  Google Scholar 

  • Mendis S, Puska P, Norrving B (2011) Global atlas on cardiovascular disease prevention and control. World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization, Geneva

    Google Scholar 

  • Mooney DJ, Vandenburgh H (2008) Cell delivery mechanisms for tissue repair. Cell Stem Cell 2:205–213

    Article  CAS  PubMed  Google Scholar 

  • Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    CAS  PubMed  Google Scholar 

  • Peran M, Marchal JA, Rodriguez-Serrano F, Alvarez P, Aranega A (2011) Transdifferentiation: why and how? Cell Biol Int 35:373–379

    Article  PubMed  Google Scholar 

  • Pernagallo S, Diaz-Mochon JJ (2011) Polymer microarrays for cellular high-content screening. Methods Mol Biol 706:171–180

    Article  PubMed  Google Scholar 

  • Pernagallo S, Tura O, Wu M, Samuel K, Diaz-Mochon JJ, Hansen A, Zhang R, Jackson M, Padfield GJ, Hadoke PWF, Mills NL, Turner ML, Iredale JP, Hay DC, Bradley M (2012) Novel biopolymers to enhance endothelialisation of intra-vascular devices. Adv Healthc Mater 1:646–656

    Article  CAS  PubMed  Google Scholar 

  • Pinter E, Barreuther M, Lu T, Imhof BA, Madri JA (1997) Platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) tyrosine phosphorylation state changes during vasculogenesis in the murine conceptus. Am J Pathol 150:1523–1530

    CAS  PubMed  Google Scholar 

  • Schatteman GC, Dunnwald M, Jiao C (2007) Biology of bone marrow-derived endothelial cell precursors. Am J Physiol Heart Circ Physiol 292:H1–H18

    Article  CAS  PubMed  Google Scholar 

  • Sen S, McDonald SP, Coates PT, Bonder CS (2011) Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease. Clin Sci (Lond) 120:263–283

    CAS  Google Scholar 

  • Skovseth DK, Kuchler AM, Haraldsen G (2007) The HUVEC/Matrigel assay: an in vivo assay of human angiogenesis suitable for drug validation. Methods Mol Biol 360:253–268

    CAS  PubMed  Google Scholar 

  • Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J (2012) Same or not the same? comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 21:2724–2752

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Yamamoto K, Ando J, Matsumoto K, Matsuda T (2012) Arterial shear stress augments the differentiation of endothelial progenitor cells adhered to VEGF-bound surfaces. Biochem Biophys Res Commun 423:91–97

    Article  CAS  PubMed  Google Scholar 

  • Tepe G, Schmehl J, Wendel HP, Schaffner S, Heller S, Gianotti M, Claussen CD, Duda SH (2006) Reduced thrombogenicity of nitinol stents–in vitro evaluation of different surface modifications and coatings. Biomaterials 27:643–650

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Antonio Marchal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Picón-Ruiz, M., Pernagallo, S., Díaz-Mochón, J.J., Morata, C., Perán, M., Marchal, J.A. (2014). Generation of Autologous Multipotent Endothelial-Like Cells from Lipoaspirates of Human Adipose-Derived Stem Cells and Polymer Microarrays Technology: Potential Cardiovascular Regeneration. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 12. Stem Cells and Cancer Stem Cells, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8032-2_14

Download citation

Publish with us

Policies and ethics