Skip to main content

Remote Sensing of African Lakes: A Review

  • Chapter
  • First Online:
Remote Sensing of the African Seas

Abstract

The optical complexity and small size of inland waters make the application of remote sensing more challenging than for the open ocean. However, in Africa, where in situ monitoring of important water bodies is financially, institutionally and spatially constrained, there is strong demand for remote sensing to fill the critical information gap. Here we review a wide range of applications of both passive and active remote sensing to African lakes. The applications fall into five main categories: (1) visible, NIR, thermal and microwave sensing of lake area; (2) altimetric and gravimetric sensing of lake level; (3) thermal sensing of lake surface temperature; (4) visible, NIR and microwave sensing of macrophytes; and (5) optical sensing of trophic conditions including chlorophyll-a and euphotic depth. Sensors used include Landsat MSS, TM and ETM+, MERIS, MODIS, SeaWiFS, AVHRR, Meteosat, TOPEX/Poseidon, Jason-1, OSTM/Jason-2, ERS-1, ERS-2, Envisat, GFO, ICESat, ALOS-PALSAR and GRACE. The majority of studies have been applied to the “great” lakes such as Chad, Malawi, Tanganyika and Victoria; however, there is a growing body of literature on smaller lakes. We examine the possibilities that remote sensing offers to monitoring and management of African lakes as well as the potential limitations of the technology using Lake Victoria as an illustrative case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Awange JL, Sharifi MA, Ogonda G, Wickert J, Grafarend EW, Omulo MA (2008) The falling lake Victoria water levels: GRACE, TRIMM and CHAMP satellite analysis of the lake Basin. Water Resour Manage 22:775–796. doi:10.1007/s11269-007-9191-y

    Article  Google Scholar 

  • Becker M, Llovel W, Cazenave A, Güntner A, Crétaux J-F (2010) Recent hydrological behavior of the East African great lakes region inferred from GRACE, satellite altimetry and rainfall observations. C.R. Geosci 342:223–233. doi:10.1016/j.crte.2009.12.010

    Article  Google Scholar 

  • Bergamino N, Horion S, Stenuite S, Cornet Y, Loiselle S, Plisner P-D, Descy J-P (2010) Spatio-temporal dynamics of phytoplankton and primary production in lake Tanganyika using a MODIS based bio-optical time series. Remote Sens Environ 114:772–780. doi:10.1016/j.rse.2009.11.013

    Article  Google Scholar 

  • Bergamino N, Loiselle SA, Cózar A, Dattilo AM, Bracchini L, Rossi C (2007) Examining the dynamics of phytoplankton biomass in lake Tanganyika using Empirical Orthogonal Functions. Ecol Modell 204:156–162. doi:10.1016/j.ecolmodel.2006.12.031

    Article  Google Scholar 

  • Birkett CM (1995) The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J Geophys Res 100(C12):25179–25204

    Article  Google Scholar 

  • Birkett CM (2000) Synergistic remote sensing of lake Chad: variability of Basin inundation. Remote Sens Environ 72:218–236

    Article  Google Scholar 

  • Böhme B, Steinbruch F, Gloaguen R, Heilmeier H, Merkel B (2006) Geomorphology, hydrology, and ecology of Lake Urema, central Mozambique, with focus on lake extent changes. Phys Chem Earth 31:745–752. doi:10.1016/j.pce.2006.08.010

    Article  Google Scholar 

  • Booth DJ, Oldfield RB (1988) Estimation of the area of lake Kariba, Zimbabwe, using Landsat MSS imagery. Proceedings of IGRASS ’88 Symposium, Edinburgh, Scotland, 13–16 September 1988:1565–1567

    Google Scholar 

  • Boy J-P, Hinderer J, de Linage C (2012) Retrieval of large-scale hydrological signals in Africa from GRACE time-variable gravity fields. Pure Appl Geophys 169:1373–1390. doi:10.1007/s00024-011-0416-x

    Article  Google Scholar 

  • Bradt SR (2012) Development of bio-optical algorithms to estimate chlorophyll in the Great Salt Lake and New England lakes using in situ hyperspectral measurements. Dissertation, University of New Hampshire

    Google Scholar 

  • Bright EA, Coleman PR, King AL, Rose AN, Urban ML (2009) LandScan 2008. Oak Ridge National Laboratory, Oak Ridge, TN. http://www.ornl.gov/sci/landscan/. Accessed 19 May 2013

  • Cavalli RM, Laneve G, Fusilli L, Pignatti S, Santini F (2009a) Remote sensing water observation for supporting lake Victoria weed management. J Environ Manage 90:2199–2211. doi:10.1016/j.jenvman.2007.07.036

    Article  Google Scholar 

  • Cavalli RM, Fusilli L, Laneve G, Pascucci S, Palombo A, Pignatti S, Santini F (2009b) Lake Victoria aquatic weeds monitoring by high spatial and spectral resolution satellite imagery. Proceedings of IGARSS 2009 Symposium, Cape Town, South Africa, 12–17 July 2009:II-1048-II–1051. doi:10.1109/IGARSS.2009.5418284

    Google Scholar 

  • Chavula G, Brezonik P, Thenkabail P, Johnson T, Bauer M (2009a) Estimating the surface temperature of Lake Malawi using AVHRR and MODIS satellite imagery. Phys Chem Earth 34:749–754. doi:10.1016/j.pce.2009.08.001

    Article  Google Scholar 

  • Chavula G, Brezonik P, Thenkabail P, Johnson T, Bauer M (2009b) Estimating chlorophyll concentration in Lake Malawi from MODIS satelitte imagery. Phys Chem Earth 34:755–760. doi:10.1016/j.pce.2009.07.015f

    Article  Google Scholar 

  • Chipman JW, Olmanson LG, Gitelson AA (2009) Remote sensing methods for Lake management: a guide of resource managers and decision-makers. Developed by the North American lake management society in collaboration with Dartmouth College, University of Minnesota and University of Nebraska for the United States Environmental Protection Agency

    Google Scholar 

  • Coe M, Birkett C (2004) Calculation of river discharge and prediction of lake height from satellite radar altimetry: Example for the Lake Chad basin. Water Resour Res 40(10). doi: 10.1029/2003WR002543

    Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20(1):37–46

    Article  Google Scholar 

  • Cózar A, Bruno M, Bergamino N, Übeda B, Bracchini L, Dattilo AM, Loiselle SA (2012) Basin-scale control on the Phytoplankton Biomass in lake Victoria, Africa. PLoS ONE 7(1):e29962. doi:10.1371/journal.pone.0029962

    Article  Google Scholar 

  • Crétaux J-F, Bickett C (2006) Lake studies from satellite radar altimetry. C.R. Geosci 338:1098–1112. doi:10.1016/j.crte.2006.08.002

    Article  Google Scholar 

  • Crétaux J-F, Jelinski W, Calmant S, Kouraev A, Vuglinski V, Bergé-Nguyen M, Gennero M-C, Nino F, Abarca Del Rio R, Cazenave A, Maisongrande P (2011) SOLS: a lake database to monitor in the near real time water level and storage variations from remote sensing data. Adv Space Res 47:1497–1507. doi:10.1016/j.asr.2011.01.004

    Article  Google Scholar 

  • ESA (European Space Agency) (2013) River and lake website http://tethys.eaprs.cse.dmu.ac.uk/RiverLake/shared/main. Accessed 19 May 2013

  • Fusilli L, Collins MO, Laneve G, Palombo A, Pignatti S, Santini F (2011) Assessment of the abnormal growth of floating macrophytes in Winam Gulf (Kenya) by using MODIS imagery time series. Int J Appl Earth Obs Geoinf doi:10.1016/j.jag.2011.09.002

    Google Scholar 

  • Gitelson A, Gurlin D, Moses W, Yacobi Y (2011) Remote estimation of Chlorophyll-a concentration in Inland, Estuarine, and Coastal waters. In: Weng Q (ed) Advances in environmental remote sensing: sensors, algorithms, and applications. CRC Press, Boca Raton

    Google Scholar 

  • Gower J, King S, Borstad G, Brown L (2005) Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Int J Remote Sens 26:2005–2012

    Article  Google Scholar 

  • Harris AR (1994) Time series remote sensing of a climatically sensitive lake. Remote Sens Environ 50:83–94

    Article  Google Scholar 

  • Hecky RE, Mugidde R, Ramlal PS, Talbot MR, Kling GW (2010) Multiple stressors cause rapid ecosystem change in lake Victoria. Freshwater Biol. 55(Suppl. 1):19–42. doi:10.1111/j.1365-2427.2009.02374.x

    Google Scholar 

  • Hinderer J, Pfeffer J, Boucher M, Nahmani S, de Linage C, Boy J-P, Genthon P, Seguis L, Favreau G, Bock O, Descloitres M, GHYRAF Team (2012) Land Water storage changes from ground and space Geodesy: first results from the GHYRAF (Gravity and Hydrology in Africa) Experiment. Pure Appl Geophys 169:1391–1410. doi:10.1007/s00024-011-0417-9

    Article  Google Scholar 

  • Horion S, Bergamino N, Stenuite S, Descy J-P, Plisnier P-D, Loiselle SA, Cornet Y (2010) Optimized extraction of daily bio-optical time series derived from MODIS/Aqua imagery for Lake Tanganyika, Africa. Remote Sens. Environ 114:781–791. doi:10.1016/j.rse.2009.11.012

    Article  Google Scholar 

  • Jensen JR (2007) Remote sensing of the environment: an earth resource perspective, 2nd edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kneubühler M, Frank T, Kellenberger TW, Pasche N, Schmid M (2007) Mapping chlorophyll-a in Lake Kivu with remote sensing methods. Proceedings of Envisat Symposium 2007, Montreux, Switzerland, 23–27 April 2007. ESA Publications Division, Noordwijk

    Google Scholar 

  • Koponen S, Ruiz-Verdú A, Heege T, Heblinski J, Sorensen K, Kallio K, Pyhälahti T, Doerffer R, Brockmann C, Peters M (2008) Development of MERIS lake water algorithms: validation report. ESRIN contract No. 20436/06/I–LG

    Google Scholar 

  • Leblanc M, Lemoalle J, Bader J-C, Tweed S, Mofor L (2011) Thermal remote sensing of water under flooded vegetation: new observations of inundation patterns for the ‘Small’ lake Chad. J Hydrol 404:87–98. doi:10.1016/j.jhydrol.2011.04.023

    Article  Google Scholar 

  • Legesse D, Ayenew T (2006) Effect of improper water and land resource utilization on the central main Ethiopian Rift lakes. Quat. Int 148:8–18. doi:10.1016/j.quaint.2005.11.003

    Article  Google Scholar 

  • LEGOS (Laboratoire d’Etudes en Géophysique et Océanographie Spatiales) (2013) Hydroweb: surface monitoring by satellite altimetry. http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb/. Accessed 19 May 2013

  • Lemoalle J, Bader J-C, Leblanc M, Sedick A (2012) Recent changes in lake Chad: observations, simulations and management options (1973–2011). Glob Planet Change 80–81:247–254. doi:10.1016/j.gloplacha.2011.07.004

    Article  Google Scholar 

  • Loiselle SA, Azza N, Cózar A, Bracchini L, Tognazzi A, Dattilo AM, Rossi C (2008) Variability in factors causing light attenuation in lake Victoria. Freshwater Biol 53:535–545. doi:10.1111/j.1365-2427.2007.01918.x

    Article  Google Scholar 

  • Loiselle S, Cózar A, van Dam A, Kansiime F, Kelderman P, Saunders M, Simonit S (2006) Tools for wetland ecosystem resource management in East Africa: focus on the lake Victoria Papyrus wetlands. In Verhoeven JTA, Beltman B, Bobbink R, Whigham DF (eds) Wetlands and Natural Resource Management. Ecol Stud 190:97–121. doi:10.1007/978-3-540-33187-2_6

    Google Scholar 

  • Majozi NP (2011) Remote sensing of euphotic depth in Lake Naivasha. Master’s Thesis, University of Twente

    Google Scholar 

  • Matthews MW, Bernard S, Winter K (2010) Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sens Environ 114(9):2070–2087. doi:10.1016/j.rse.2010.04.013

    Article  Google Scholar 

  • Matthews MW, Bernard S, Robertson L (2012) An algorithm for detecting trophic status (chlorophyll-a) cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens Environ 124:637–652. doi:10.1016/j.rse.2012.05.032

    Article  Google Scholar 

  • McClain EP (1981) Multiple atmospheric-window techniques for satellite-derived sea surface temperatures. In proceedings of symposium on ocean oceanography from Space, Venice, Italy, 26–30 May 1980:73–85

    Google Scholar 

  • Mercier F, Cazenave A, Maheu C (2002) Interannual lake level fluctuations (1993–1999) in Africa from Topex/Poseidon: connections with ocean-atmosphere interactions over the Indian Ocean. Glob Planet Change 32:141–163

    Article  Google Scholar 

  • Mohler RRJ, Helfert MR, Giardino JR (1989) The decrease of lake Chad as documented during twenty years of manned space flight. Geocarto Int 1:75–79

    Article  Google Scholar 

  • Munyaneza O, Wali UG, Uhlenbrook S, Maskey S, Mlotha MJ (2009) Water level monitoring using radar remote sensing data: application to Lake Kivu, central Africa. Phys Chem Earth 34:722–728. doi:10.1016/j.pce.2009.06.008

    Article  Google Scholar 

  • NASA (National Aeronautics and Space Agency) (2013) SRTM water body dataset (SWBD). http://dds.cr.usgs.gov/srtm/version2_1/SWBD. Accessed 19 May 2013.

  • Oberholster PJ, Botha AM (2010) Use of remote sensing and molecular markers to detect toxic cyanobacterial hyperscum crust: a case study on lake Hartbeespoort, South Africa. Afr J Biotechnol 9(51):8791–8799. doi:10.5897/ajb10.530

    Google Scholar 

  • Ouma Y, Tateishi R (2006) A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. Int J Remote Sens 27(15):3153–3181. doi:10.1080/01431160500309934

    Article  Google Scholar 

  • Pinker RT, Liu H, Osborne SR, Akoshile C (2010) Radiative effects of aerosols in sub-Sahel Africa: dust and biomass burning. J Geophys Res 115:D15205. doi:10.1029/2009jd013335

    Article  Google Scholar 

  • Rebelo L-M (2010) Eco-hydrological characterization of Inland wetlands in Africa using L-Band SAR. IEEE J Sel Topics Appl Earth Obser 3(4):554–559. doi:10.1109/jstars.2010.2070060

    Google Scholar 

  • Ricko M, Carton JA (2011) Climate effects on lake Basins. Part I: modeling tropical lake levels. J Climate 24:2983–2999. doi:10.1175/2010jcli3602.1

    Article  Google Scholar 

  • Ruiz-Verdú A, Simis SGH, de Hoyos C, Gons HJ, Peña-Martínez R (2008) An evaluation of algorithms for the remote sensing of cyanobacterial biomass. Remote Sens Environ 112:3996–4008

    Article  Google Scholar 

  • Schneider SR, McGinnis DF Jr, Stephens G (1985) Monitoring Africa’s lake Chad basin with LANDSAT and NOAA satellite data. Int J Remote Sens 6(1):59–73

    Article  Google Scholar 

  • Silsbe GM, Hecky RE, Guildford SJ, Mugidde R (2006) Variability of chlorophyll a and photosynthetic parameters in a nutrient saturated tropical great lake. Limnol Oceanogr 51:2052–2063

    Article  Google Scholar 

  • Sørensen K, Folkestad A, Stelzer K, Brockmann C, Doerffer R, Okullo W, Schouten L (2008) Performance of MERIS products in Lake Victoria. Proceedings of the 2nd MERIS I (A) ATSR User Workshop, Frascati, Italy, 22–26 September 2008

    Google Scholar 

  • Swenson S, Whar J (2009) Monitoring the water balance of Lake Victoria, East Africa, from space. J Hydrol 370:163–176

    Article  Google Scholar 

  • Turada IA (2008) The use of MERIS data to detect the impact of flood inundation on land cover changes in the lake Chad basin. Dissertation, The Hong Kong Polytechnic University

    Google Scholar 

  • USDA (United States Department of Agriculture) (2013) Global reservoir and lake Monitor. http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir. Accessed 19 May 2013

  • Velpuri NM, Senay GB, Asante KO (2012) A multi-source satellite data approach for modelling lake Turkana water level: calibration and validation using satellite altimetry data. Hydrol Earth Syst Sci 16:1–18. doi:10.5194/hess-16-1-2012

    Article  Google Scholar 

  • Verschuren D, Johnson TC, Kling HJ, Edgington DN, Leavitt PR, Brown ET, Talbot MR, Hecky RE (2002) History and timing of human impact on Lake Victoria, East Africa. Proc R Soc Lond B 269:289–294. doi: 10.1098/rspb.2001.1850

    Article  Google Scholar 

  • Wald L (1990) Monitoring the decrease of lake Chad from space. Geocarto Int 3:31–36

    Article  Google Scholar 

  • Williams AE, Duthie HC, Hecky RE (2005) Water hyacinth in lake Victoria: why did it vanish so quickly and will it return? Aquat Bot 81:300–314. doi: 10.1016/j.aquabot.2005.01.003

    Article  Google Scholar 

  • Wooster M, Patterson G, Loftie R, Sear C (2001) Derivation and validation of the seasonal thermal structure of lake Malawi using multi-satellite AVHRR observations. Int J Remote Sens 22(15):2953–2972

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Ballatore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ballatore, T., Bradt, S., Olaka, L., Cózar, A., Loiselle, S. (2014). Remote Sensing of African Lakes: A Review. In: Barale, V., Gade, M. (eds) Remote Sensing of the African Seas. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8008-7_20

Download citation

Publish with us

Policies and ethics