Skip to main content

Observing the Agulhas Current With Sea Surface Temperature and Altimetry Data: Challenges and Perspectives

  • Chapter
  • First Online:
Remote Sensing of the African Seas

Abstract

The Agulhas Current is a challenging region for satellite remote sensing observations. Strong evaporation rates above the current core and the Retroflection reduce the number of cloud-free observations from Infra-Red sensors, while microwave radiometers and altimeters measurements suffer from the proximity of the current to the coast in the northern region. Infra-Red observations of the Agulhas Current significantly improved with the launch of the Meteosat Second Generation satellite, but Infra-Red Sea Surface Temperature datasets still suffer from inadequate cloud masking algorithms, particularly in regions of strong temperature gradient. Despite both Sea Surface Height and Sea Surface Temperature observations being severely compromised in the northern Agulhas current, a synergetic use of merged altimetry and high frequency Infra-Red Sea Surface Temperature imagery provides a means to track deep-sea eddies, document their influence on the Agulhas Current and helps us improve our understanding of the Agulhas Current variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See www.osi-saf.org

  2. 2.

    At http://oceancolor.gsfc.nasa.gov

  3. 3.

    For details see http://seadas.gsfc.nasa.gov

  4. 4.

    See http://www.remss.com/

  5. 5.

    At http://www.aviso.oceanobs.com/duacs

References

  • Beal LM, de Ruijter WPM, Biastoch A, Zahn R (2011) On the role of the Agulhas system in ocean circulation and climate. Nature 472(7344):429–436. doi:dx.doi.org/10.1038/nature 09983

    Article  Google Scholar 

  • Biastoch A, Reason CJC, Lutjeharms JRE, Boebel O (1999) The importance of flow in the Mozambique channel to seasonality in the greater Agulhas current system. Geophys Res Lett 26(21):3321–3324. doi:dx.doi.org/10.1029/1999GL002349

    Article  Google Scholar 

  • Bryden HL, Beal LM, Duncan LM (2005) Structure and transport of the Agulhas current and its temporal variability. J Oceanogr 61:479–492

    Article  Google Scholar 

  • Byrne DA, McClean JL (2008) Sea level anomaly signals in the Agulhas Current region. Geophys Res Lett 35(13):L13601. doi:dx.doi.org/10.1029/2008GL034087

    Article  Google Scholar 

  • Casal TGD, Beal LM, Lumpkin R, Johns WE (2009) Structure and downstream evolution of the Agulhas current system during a quasi-synoptic survey in february—march 2003. J Geophys Res 114:C03001. doi:10.1029/2008JC004954

    Google Scholar 

  • Casey KS, Brandon TB, Cornillon P, Evans R (2010) The past, present, and future of the AVHRR pathfinder SST program. In: Barale V, Gower J, Alberotanza (eds) Oceanography from space: revisited. Springer, pp 273–287. http://dx.doi.org/10.1007/978-90-481-8681-5_16

  • Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Progrogr Oceanogr 91(2):167–216. doi:10.1016/j.pocean.2011.01.002

    Article  Google Scholar 

  • Chelton DB, Walsh EJ, MacArthur JL (1989) Pulse compression and sea level tracking in satellite altimetry. J Atmos Oceanic Technol 6:407–438

    Article  Google Scholar 

  • Collard F, Mouche A, Chapron B, Danilo C, Johannessen JA (2008) Routine high resolution observation of selected major surface currents from space. Proceedings of the Workshop SEASAR 2008, ESA SP-656

    Google Scholar 

  • de Ruijter WPM, Ridderinkhof H, Lutjeharms JRE, Schouten MW, Veth C (2002) Observations of the flow in the Mozambique channel. Geophys Res Lett 29:1401–1403

    Article  Google Scholar 

  • de Ruijter WPM, van Aken HM, Beier EJ, Lutjeharms JRE, Matano RP, Schouten MW (2004) Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact. Deep-Sea Res Part I 51(3):383–400. doi:10.1016/j.dsr.2003.10.011

    Article  Google Scholar 

  • Dufois F, Penven P, Whittle C, Veitch, J (2012) On the warm nearshore bias in Pathfinder monthly SST products over Eastern Boundary Upwelling Systems. Ocean Modelling, 47:13–118.

    Google Scholar 

  • Emery WJ (2001) Estimating sea surface temperature from infrared satellite and in Situ temperature data. B Am Meteorol Soc 82(12):2773–2786

    Article  Google Scholar 

  • Goschen WS, Schumann EH (1990) Agulhas current variability and inshore structures off the Cape Province, South Africa. J Geophys Res 95:667–678

    Article  Google Scholar 

  • Gründlingh ML (1983) On the course of the Agulhas Current. S Afr Geogr J 65(1):49–57

    Article  Google Scholar 

  • Heidinger AK, Anne VR, Dean C (2002). Using MODIS to estimate cloud contamination of the AVHRR data record. J Atmos Ocean Tech 19(5):586–601. doi:10.1175/1520–0426 (2002) 019 <0586:UMTECC> 2.0.CO;2

    Article  Google Scholar 

  • Hickox R, Belkin I, Cornillon P, Shan Z (2000) Climatology and seasonal variability of ocean fronts in the East China, Yellow and Bohai seas from satellite SST data. Geophys Res Lett 27(18):2945. doi:10.1029/1999GL011223

    Article  Google Scholar 

  • Hutchings L, van der Lingen CD, Shannon LJ, Crawford RJM, Verheye HMS, Bartholomae CH, van der Plas AK, Louw D, Kreiner A, Ostrowski M, Fidel Q, Barlow RG, Lamont T, Coetzee J, Shillington F, Veitch J, Currie JC, Monteiro PMS (2009) The Benguela current: an ecosystem of four components. Prog Oceanogr 83(1–4):15–32. doi:10.1016/j.pocean.2009.07.046

    Article  Google Scholar 

  • Janjić T, Schröter J, Savcenko R, Bosch W, Albertella A, Rummel R, Klatt O (2012) Impact of combining GRACE and GOCE gravity data on ocean circulation estimates. Ocean Sci 8:65–79. doi:10.5194/os-8–65-2012

    Article  Google Scholar 

  • Johannessen JA, Chapron B, Collard F, Kudryavtsev V, Mouche A, Akimov D, Dagestad KF (2008) Direct ocean surface velocity measurements from space: improved quantitative interpretation of Envisat ASAR observations. Geophys Res Lett 35:L22608. doi: 10.1029/2008GL035709

    Article  Google Scholar 

  • Kilpatrick KA, Podesta GP, Evans R (2001) Overview of the NOAA/NASA Advanced very high resolution radiometer pathfinder algorithm for sea surface temperature and associated matchup database. J Geophys Res 106(C5):9179–9197. doi:10.1029/1999JC000065

    Article  Google Scholar 

  • Le Borgne P, Legendre G, Marsouin A (2006) Operational SST retrieval from MSG/SEVIRI data. 2006 EUMETSAT Meteorological Satellite Conference.

    Google Scholar 

  • Le Traon PY, Dibarboure G (2002) Velocity mapping capabilities of present and future altimeter missions: The role of high-frequency signals. J Atmos Ocean Tech 19(12):2077–2087. doi: abs/10.1175/1520–0426 (2002) 019 <2077:VMCOPA> 2.0.CO;2

    Article  Google Scholar 

  • Lutjeharms JRE (2006) The Agulhas current. Springer, Berlin

    Google Scholar 

  • Lutjeharms JRE, Roberts HR (1988) The natal pulse: an extreme transient on the Agulhas current. J Geophys Res 93:631–645

    Article  Google Scholar 

  • Minnett PJ, Evans RH, Kearns EJ, Brown OB (2002) Sea-surface temperature measured by the Moderate Resolution Imaging Spectrometer (MODIS). Proceedings IGARSS 1177–1179

    Google Scholar 

  • Pascual A, Faugère Y, Larnicol G, Le Traon P-Y (2006) Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys Res Lett 33(2):L02611. doi:10.1029/2005GL024633

    Google Scholar 

  • Quartly GD, Srokosz MA (2002) SST observations of the Agulhas and East Madagascar retroflections by the TRMM microwave imager. J Phys Oceanogr 32(5):1585–1592

    Article  Google Scholar 

  • Ridderinkhof H, van der Werf PM, Ullgren JE, van Aken HM, van Leeuwen PJ, de Ruijter WPM (2010) Seasonal and interannual variability in the Mozambique channel from moored current observations. J Geophys Res 115:C06010. doi:10.1029/2009JC005619

    Google Scholar 

  • Rio MH, Hernandez F (2004) A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J Geophys Res 109:C12032

    Article  Google Scholar 

  • Rio MH, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res 116(C7):C07018. doi:10.1029/2010JC006505

    Google Scholar 

  • Robinson IS (2004). Measuring the oceans from space: The principles and methods of satellite oceanography. Springer-Praxis books in geophysical science. Springer-Verlag

    Google Scholar 

  • Rouault M, Lee-Thorp AM, Lutjeharms JRE (2000) Observations of the atmospheric boundary layer above the Agulhas current during along-current winds. J Phys Oceanogr 30:70–85

    Article  Google Scholar 

  • Rouault MJ, Mouche A, Collard F, Johannessen JA, Chapron B (2010) Mapping the Agulhas current from space: an assessment of ASAR surface current velocities. J Geophys Res 115:C10026. doi:10.1029/2009JC006050

    Article  Google Scholar 

  • Rouault MJ, Penven P (2011) New perspectives on natal pulses from satellite observations. J Geophys Res 116:C07013. doi:10.1029/2010JC006866

    Google Scholar 

  • Schouten MW, de Ruijter WP, van Leeuwen PJ (2002) Upstream control of Agulhas Ring shedding. J Geophys Res, 107(C8):3109

    Google Scholar 

  • Schouten MW, de Ruijter WPM, van Leeuwen PJ, Ridderinkhof H (2003) Eddies and variability in the Mozambique channel. Deep-Sea Res II: Topical Studies in Oceanography 50(12–13):1987–2003

    Article  Google Scholar 

  • Siedler G, Rouault M, Lutjeharms JRE (2006) Structure and origin of the subtropical South Indian Ocean countercurrent. Geophys Res Lett 33:L24609

    Article  Google Scholar 

  • Thomas SM, Heidinger AK, Pavolonis MJ (2004) Comparison of NOAA’s operational AVHRR-derived cloud amount to other satellite-derived cloud climatologies. J Climate 17(24):4805–4822. doi:10.1175/JCLI-3242.1

    Article  Google Scholar 

  • Tsugawa M, Hasumi H (2010) Generation and growth mechanism of the natal pulse. J Phys Oceanogr 40(7):1597–1612. doi:dx.doi.org/10.1175/2010JPO4347.1

    Article  Google Scholar 

  • van der Werf PM, van Leeuwen PJ, Ridderinkhof H, de Ruijter WPM (2010) Comparison between observations and models of the Mozambique Channel transport: seasonal cycle and eddy frequencies. J Geophys Res 115:C02002. doi:10.1029/2009JC005633

    Google Scholar 

  • van Sebille E, Beal LM, Biastoch A (2010) Sea surface slope as a proxy for Agulhas current strength. Geophys Res Lett 37(9) L09610 doi:10.1029/2010GL042847

    Google Scholar 

  • Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J, eds (2011) Coastal Altimetry. Springer.doi:10.1007/978-3-642-12796-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjolaine Krug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krug, M., Cipollini, P., Dufois, F. (2014). Observing the Agulhas Current With Sea Surface Temperature and Altimetry Data: Challenges and Perspectives. In: Barale, V., Gade, M. (eds) Remote Sensing of the African Seas. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8008-7_12

Download citation

Publish with us

Policies and ethics