Skip to main content

Satellite Observations of Oceanic Eddies Around Africa

  • Chapter
  • First Online:
Remote Sensing of the African Seas

Abstract

Oceanic eddies having scales from several hundred meters to several hundred kilometers are ubiquitous phenomena in the World’s ocean. This became evident only after they could be observed from satellites and space shuttles. Here we present several images taken in different spectral bands which show signatures of eddies of different spatial scales in sea areas around Africa. In particular, we present a series of satellite images showing the propagation of a small-scale cyclonic (cold) eddy generated at Cap-Vert at the coast of Senegal into the open ocean. We show that this small-scale eddy transported nutrients from the Senegal upwelling region westward into the oligotrophic North Atlantic thus giving rise to enhanced chlorophyll-a concentration there. Since eddies are also areas of high fish population, knowledge of their position and properties is of great importance for fishery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also http://swot.jpl.nasa.gov/

References

  • Alpers W, Brandt P, Lazar A, Dagorne D, Sow B, Faye S, Hansen MW, Rubino A, Poulain PM, Brehmer P (2013) A small-scale oceanic eddy off the coast of West Africa studied by multi-sensor satellite and surface drifter data. Remote Sens Environ 129:132–143. doi: 10.1016/j.rse.2012.10.032

    Article  Google Scholar 

  • Alpers W, Espedal H (2004) Oils and Surfactants. In: Jackson CR, Apel JR (eds) Synthetic aperture radar marine user’s manual, chapter 11. NOAA/NESDIS, Washington, DC, pp 263–276. http://www.sarusersmanual.com/ManualPDF/NOAASARManual_CH11_pg263-276.pdf

    Google Scholar 

  • Alpers W, Hennings I (1984) A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. J Geophys Res 89:10529–10546

    Article  Google Scholar 

  • Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF (2008) Mesoscale to submesoscale transition in the California Current System: I. Flow structure, eddy flux, and observational tests. J Phys Oceanogr 38:2256–2269

    Article  Google Scholar 

  • Chaigneau A, Eldin G, Dewitte B (2008) Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Prog Oceanogr 83:117–123

    Article  Google Scholar 

  • Chelton DB, de Szoeke RA, Schlax MG, Naggar KE, Siwertz N (1998) Geographical variability of the first-baroclinic Rossby radius of deformation. J Phys Oceanogr 28:433–460

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Prog Oceanogr 91:167–216

    Article  Google Scholar 

  • Cox CC, Munk WH (1954) Measurement of the roughness of the sea surface from photography of the Sun’s glitter. J Opt Soc Am 44(11):838–850

    Article  Google Scholar 

  • Cresswell GR, Legeckis R (1986) Eddies off southeastern Australia. Deep-Sea Res 33:1527–1562

    Article  Google Scholar 

  • Davies PA, Dakin JM, Falconer RA (1995) Eddy formation behind a coastal headland. J Coastal Res 11:154–167

    Google Scholar 

  • Demarcq H (1998) Spatial and temporal dynamics of the upwelling off Senegal and Mauritania: local change and trend. In: Durand MH, Cury P, Mendelssohn R, Roy C, Bakun A, Pauly D (eds) Global versus local changes in upwelling systems: a report from the CEOS Workshop, Monterey, California, September 1994. ORSTOM Editions, Paris, pp 149–166. http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_7/divers2/010015307.pdf

    Google Scholar 

  • DiGiacomo PM, Holt B (2001) Satellite observations of small coastal ocean eddies in the Southern California Bight. J Geophys Res 106(C10):22521–22543

    Article  Google Scholar 

  • Eldevik T, Dysthe KB (2002) Spiral eddies. J Phys Oceanogr 32:851–869. doi: http://dx.doi.org/10.1175/1520-0485

    Article  Google Scholar 

  • Espedal H, Johannessen OM, Johannessen JA, Dano E, Lyzenga D, Knulst JC (1998) COASTWATCH ’95: a tandem ERS-1/2 SAR detection experiment of natural film on the ocean surface. J Geophys Res 103:24969–24982

    Article  Google Scholar 

  • Falkowski PG, Ziemann DZ, Kolbera Z, Bienfang PK (1991) Role of eddy of pumping in enhancing primary production in the ocean. Nature 352:55–58, re 352:55–58, doi:10.1038/352055a0

    Article  Google Scholar 

  • Fu LL, Ferrari R (2008) Observing oceanic submesoscale processes from space. Eos 89(48):488–489

    Article  Google Scholar 

  • Fu LL, Holt B (1983) Some examples of detection of oceanic mesoscale eddies by the Seasat synthetic aperture radar. J Geophys Res 88:1844–1852

    Article  Google Scholar 

  • Golitsyn GS (2012) On the nature of spiral eddies on the surface of seas and oceans. Izvestiya AN. Fizika Atmosfery i Okeana 48:391–395

    Google Scholar 

  • Gower JFR, Denman KL, Holyer RL (1980) Phytoplankton patchiness indicates the fluctuations spectrum of mesoscale oceanic structure. Nature 288:157–159

    Article  Google Scholar 

  • Huehnerfuss H, Alpers W, Dannhauer H, Gade M, Lange PA, Neumann V, Wismann V (1996) Natural and man-made sea slicks in the North Sea, investigated by a helicopter-borne 5-frequency radar scatterometer. Int J Rem Sens 17:1567–1582

    Article  Google Scholar 

  • Ivanov AY, Ginzburg AI (2002) Oceanic eddies in synthetic aperture radar images. J Earth Syst Sci 111(3):281–295

    Article  Google Scholar 

  • Jackson CR, Alpers W (2010) The role of the critical angle in brightness reversals on sunglint images of the sea surface, J Geophys Res 115:C09019. doi:10.1029/2009JC006037

    Google Scholar 

  • Johannessen JA, Roed LP, Wahl T (1993) Eddies detected in ERS-1 SAR images and simulated in reduced gravity model. Int J Rem Sens 14:2203–2213

    Article  Google Scholar 

  • Johannessen JA, Shuchman RA, Digranes G, Lyzenga D, Wackerman C, Johannessen OM, Vachon PW (1996) Coastal ocean fronts and eddies imaged with ERS-1 synthetic aperture radar. J Geophys Res 101:6651–6667

    Article  Google Scholar 

  • Karimova S (2012) Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data. Adv Space Res 50(8):1107–1124. http://dx.doi.org/10.1016/j.asr.2011.10.027

    Article  Google Scholar 

  • Kudryavtsev V, Akimov D, Johannessen JA, Chapron B (2005) On radar imaging of current features, part 1: model and comparison with observations. J Geophys Res 110:C07016

    Google Scholar 

  • Kusakabe M, Andreev A, Lobanov V, Zhabin I, Kumamoto Y, Murata A (2002) Effects of the anticyclonic eddies on water masses, chemical parameters and chlorophyll distributions in the Oyashio current region. J Oceanogr 58:691–701

    Article  Google Scholar 

  • Le Galloudec O, Bourdalle-Badie R, Drillet Y, Derval YC, Bricaud C (2008) Simulation of meso-scale eddies in the Mercator global ocean high resolution model. Mercator Newsl 3

    Google Scholar 

  • Lellouche JM et al. (2013) Evaluation of global monitoring and forecasting systems at Mercator Océan, Ocean Sci., 9, 57–81, doi:10.5194/os-9-57-2013

    Google Scholar 

  • Levy M, Klein P, Treguier AM (2001) Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J Mar Res 59:535–565

    Article  Google Scholar 

  • Lin II, Lien CC, Wu CR, George TF, Wong GTF, Huang CW, Chiang TL (2010) Enhanced primary production in the oligotrophic South China Sea by eddy injection. Geophys Res Lett 37:L16602. doi:10.1029/2010GL043872

    Google Scholar 

  • Maltrud ME, McClean JL (2005) An eddy resolving global 1/10° ocean simulation. Ocean Model 8(1–2):31–54

    Article  Google Scholar 

  • McWilliams JC (1985) Submesoscale, coherent vortices in the ocean. Rev Geophys 23:165–182

    Article  Google Scholar 

  • Morrow R, Fang F, Fieux M, Molcard R (2003) Anatomy of three warm-core Leeuwin current eddies. Deep-Sea Res Pt II 50:2229–2243

    Article  Google Scholar 

  • Munk W, Armi I, Fischer K, Zachariasen F (2000) Spirals on the sea. Proc R Soc Lon Ser-A 456:1217–1280

    Article  Google Scholar 

  • Olson DB (1991) Rings in the ocean. Annu Rev Earth Planet Sci 19:283–311

    Article  Google Scholar 

  • Pattiaratchi C, James A, Collins M (1987) Island wakes and headland eddies: a comparison between remotely sensed data and laboratory experiments. J Geophys Res 92:783–794

    Article  Google Scholar 

  • Scully-Power P (1986) Navy oceanographer shuttle observations, STS 41-G, mission report. Naval Underwater Systems Center Tech. Rep. NUSC TD 7611

    Google Scholar 

  • Siegel A, Weiss JB, Toomre J, McWilliams JC, Berloff PS, Yavneh I (2001) Eddies and vortices in ocean basin dynamics. Geophys Res Lett 28:3183–3186

    Article  Google Scholar 

  • Signell RP, Geyer WR (1991) Transient eddy formation around headlands. J Geophys Res 96:2561–2575

    Article  Google Scholar 

  • Siokou-Frangou J et al (2010) Plankton in the open Mediterranean Sea: a review. Biogeosciences 7:1543–1586

    Article  Google Scholar 

  • Soules SD (1970) Sun glitter viewed from space. Deep-Sea Res 17:191–195

    Google Scholar 

  • Stevenson RE (1998) Spiral eddies: the discovery that changed the face of the oceans. 21st Cent Sci Technol 11:58–71

    Google Scholar 

  • Thomas, LN, Tandon A, Mahadevan A (2008) Submesoscale processes and dynamics. In Hecht M. and Hasumi H., editors, Ocean Modeling in an Eddying Regime, (AGU Monograph), American Geophysical Union, Washington DC, pages 17–38, 2008

    Google Scholar 

  • Valenzuela GR (1978) Theories for the interaction of electromagnetic and ocean waves—a review. Bound Lay Meteorol 13:61–85

    Article  Google Scholar 

  • Wang S, Tang D (2010) Remote sensing of day/night sea surface temperature difference related to phytoplankton bloom. Int J Rem Sens 31:4569–4578

    Article  Google Scholar 

  • Williams RG (2011) Ocean eddies and plankton blooms. Nat Geosci 4:739–740

    Article  Google Scholar 

  • Yamaguchi S, Kawamura H (2009) SAR-imaged spiral eddies in Mutsu Bay and their dynamic and kinematic models. J Phys Oceanogr 65(4):525–539

    Article  Google Scholar 

Download references

Acknowledgements

We thank NASA and ESA for providing the data and Sergey Stanichny for calling our attention to the NASA source of the MODIS reflectance map at 555 nm shown in Fig. 11.6. This study was supported by BMBF-Ib and AIRD grants obtained to build the Trilateral German–French–African Environmental research initiatives in Sub-Sahara Africa entitled AWA “Ecosystem Approach to the management of fisheries and the marine environment in West African waters”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Alpers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alpers, W., Dagorne, D., Brandt, P. (2014). Satellite Observations of Oceanic Eddies Around Africa. In: Barale, V., Gade, M. (eds) Remote Sensing of the African Seas. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8008-7_11

Download citation

Publish with us

Policies and ethics