Skip to main content

Assessing the Impact of Windfarms in Subtidal, Exposed Marine Areas

  • Chapter
  • First Online:
Marine Renewable Energy Technology and Environmental Interactions

Abstract

Marine renewable energy conversion typically takes place at locations characterized by harsh physical parameters that challenge monitoring of the marine environment. These challenges are caused both by the lack of experience on what to expect in terms of impact, but also by a general lack of methods proven suitable for the monitoring of high-energy subtidal marine habitats. Here, the first offshore windfarm to be built in Norwegian waters, a project called Havsul I, is used as a model to provide (i) an overview contrasting the known effects and monitoring methods used at more sheltered offshore windfarms with those expected at a rocky, high energy site; (ii) a description and short assessment of the physical environment (bathymetry, current, wave and wind data) and marine assemblages at the site, (iii) an assessment of five methods used during the baseline study at Havsul I, including sediment grabs, sampling of assemblages from kelp stipes, video mosaics for rocky bottom benthic assemblages, traditional fishing gear for fish community evaluation, and C-PODs for harbour porpoise presence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Axenroth T, Didrikas T, Danielsson C, Hansson S (2004) Diel patterns in pelagic fish behaviour and distribution observed from a stationary, bottom-mounted, and upward-facing transducer. ICES J Mar Sci 61:1100–1104

    Article  Google Scholar 

  • Bergström L, Kautsky L, Malm T, Ohlsson H, Wahlberg M, Rosenberg R, Åstrand Capetillo N (2012a) Vindkraftens effekter på marint liv—en syntesrapport. Naturvårdsverket Rapport 6488, 94 pp. ISBN 978-91-620-6488-4 (in Swedish with English summary)

    Google Scholar 

  • Bergström L, Sundqvist F, Bergström U (2012b) Effekter av en havsbaserad vindkraftpark på fördelningen av bottennära fisk. En studie vid Lillgrunds vindkraftpark i Öresund. Vindval. Naturvårdsverket Rapport 6485, 37 pp. ISBN 978-91-620-6485-3 (in Swedish with English summary)

    Google Scholar 

  • Bjørge A, Bekkby T, Bakkestuen V, Framstad E (2002) Interactions between harbour seals, Phoca vitulina, and fisheries in complex coastal waters explored by combined Geographic Information System (GIS) and energetics modelling. ICES J Mar Sci 59:29–42

    Article  Google Scholar 

  • Bjørge A, Godøy H, Skern-Mauritzen M (2011) Estimated bycatch of harbour porpoise Phocoena phocoena in two coastal gillnet fisheries in Norway. Report of the International Whaling Commission, IWC SC63/SM18

    Google Scholar 

  • Bjørge A, Øien N (1995) Distribution and abundance of harbour porpoise, Phocoena phocoena, in Norwegian waters. Reports of the International Whaling Commission, Special Issue 16:89–98

    Google Scholar 

  • Bjørge A, Øien N, Fagerheim KA (2007) Abundance of harbour seals (Phoca vitulina) in Norway based on aerial surveys and photographic documentation of hauled-out seals during the moulting season, 1996 to 1999. Aquat Mamm 33:269–275

    Article  Google Scholar 

  • Broström G (2008) On the influence of large wind farms on the upper ocean circulation. J Mar Syst 74:585–591

    Article  Google Scholar 

  • Buck BH, Krause G, Michler-Cieluch T, Brenner M, Buchholz CM, Busch JA, Fisch R et al (2008) Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms. Helgoland Mar Res 62:269–281

    Article  Google Scholar 

  • Burkhard B, Opitz S, Lenhart H, Ahrendt K, Garthe S, Mendel B, Windhorst W (2011) Ecosystem based modeling and indication of ecological integrity in the German North Sea—case study offshore wind parks. Ecol Indic 11:168–174

    Article  Google Scholar 

  • Carleton JH, Done TJ (1995) Quantitative video sampling of coral reef benthos: large-scale application. Coral Reefs 14:35–46

    Article  Google Scholar 

  • Christie H, Fredriksen S, Rinde E (1998) Regrowth of kelp and colonization of epiphyte and fauna community after kelp trawling at the coast of Norway. Hydrobiologia 375:49–58

    Article  Google Scholar 

  • Christie H, Jorgensen NM, Norderhaug KM, Waage-Nielsen E (2003) Species distribution and habitat exploitation of fauna associated with kelp (Laminaria hyperborea) along the Norwegian coast. J Mar Biol Assoc UK 83:687–699

    Article  Google Scholar 

  • Degrær S, Brabant R, Rumes B (2011) Offshore wind farms in the Belgian part of the North Sea. Royal Belgian Institute of Natural Sciences Management. Unit of the North Sea Mathematical Models, Marine Ecosystem Management Section

    Google Scholar 

  • Dvorak MJ, Archer CL, Jacobson MZ (2010) California offshore wind energy potential. Renew Energy 35:1244–1254

    Article  Google Scholar 

  • Esteban MD, Diez JJ, López JS, Negro V (2011) Why offshore wind energy? Renew Energy 36:444–450

    Article  Google Scholar 

  • EWEA (2012) The European offshore wind industry—key 2011 trends and statistics. A report by the European Wind Energy Association. http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA_stats_offshore_2011_02.pdf. Accessed 5 Dec 2012

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND et al (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  Google Scholar 

  • Gill A (2005) Offshore renewable energy: ecological implications of generating electricity in the coastal zone. J Appl Ecol 42:605–615

    Article  Google Scholar 

  • Glover AG, Higgs ND, Bagley PM, Carlsson R, Davies AJ, Kemp KM, Last KS et al (2010) A live video observatory reveals temporal processes at a shelf-depth whale-fall. Cahiers Biologie Mar 51:375–381

    Google Scholar 

  • Golmen LG (2007) Potensiale for havenergiproduksjon i Møre og Romsdal. Runde Miljøsenter, Rapport 04/2007, 53 pp

    Google Scholar 

  • Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodivers Conserv 6:153–175

    Article  Google Scholar 

  • Hammond PS, Berggren P, Benke H, Borchers DL, Collet A, Heide-Jørgensen MP, Heimlich S et al (2002) Abundance of harbour porpoise and other cetaceans in the North Sea and adjacent waters. J Appl Ecol 39:361–376

    Article  Google Scholar 

  • Harvey ES, Cappo M, Butler JJ, Hall N, Kendrick GA (2007) Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Mar Ecol Prog Ser 350:245–254

    Article  Google Scholar 

  • Jones DOB, Hudson IR, Bett BJ (2006) Effects of physical disturbance on the cold-water megafaunal communities of the Faroe–Shetland Channel. Mar Ecol Prog Ser 319:43–54

    Article  Google Scholar 

  • Kain JM, Jones NS (1964) Aspects of the biology of Laminaria hyperborea. 3. Survival and growth of gametophytes. J Mar Biol Assoc UK 44:415–433

    Article  Google Scholar 

  • Kingston PF (1992) Impact of offshore oil production installations on the benthos of the North Sea. ICES J Mar Sci 49:45–53

    Article  Google Scholar 

  • Kongsrud JA (2000) Flora og fauna tilknyttet stortarestipes (Laminaria hyperborea (Gunnerus) Foslie) ved Færøyene. Hovedfagsoppgave i marinbiologi. Institutt for fiskeri- og marinbiologi, Universitetet i Bergen (in Norwegian)

    Google Scholar 

  • Koschinsky S, Culik BM, Henriksen OD, Tregenza N, Ellis G, Jansen C, Kathe G (2003) Behavioural reactions of free-ranging porpoises and seals to the noise of simulated 2 MW windpower generator. Mar Ecol Prog Ser 265:263–273

    Article  Google Scholar 

  • Langhamer O, Wilhelmsson D (2009) Colonisation of fish and crabs of wave energy foundations and the effects of manufactured holes—a field experiment. Mar Environ Res 68:151–157

    Article  CAS  Google Scholar 

  • Leeney RH, Berrow S, McGrath D, O’Brien J, Cosgrove R, Godley BJ (2007) Effects of pingers on the behaviour of bottlenose dolphins. J Mar Biol Assoc UK 87:129–133

    Article  Google Scholar 

  • Lindeboom H, Kouwenhoven H, Bergman M, Bouma S, Brasseur S, Daan R, Fijn R et al (2011) Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a compilation. Environ Res Lett 6:1–13

    Article  Google Scholar 

  • Lorentsen S-H, Sjøtun K, Grémillet D (2010) Multi-trophic consequences of kelp harvest. Biol Conserv 143:2054–2062

    Article  Google Scholar 

  • MacLennan DN, Simmonds EJ (1992) Fisheries acoustics. Chapman and Hall, London

    Google Scholar 

  • Mann KH (1972) Ecological energetics of the sea-weed zone in a marine bay on the Atlantic coast of Canada. 2. Productivity of the seaweeds. Mar Biol 14:199–209

    Google Scholar 

  • Moore PG (1973) The kelp fauna of northeast Britain. 2. Multivariate classification: turbidity as an ecological factor. J Exp Mar Biol Ecol 13:127–154

    Article  Google Scholar 

  • Norsk Standard (2005) NS-EN ISO 16665. Vannundersøkelse—Retningslinjer for kvantitativ prøvetaking og bearbeiding av marin bløtbunnsfauna (ISO 16665:2005)

    Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75

    Article  Google Scholar 

  • Petersen JK, Malm T (2006) Offshore windmill farms: threats to or possibilities for the marine environment. Ambio 35:75–80

    Article  Google Scholar 

  • Piola RF, Johnston EL (2008) Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Divers Distrib 14:329–342

    Article  Google Scholar 

  • Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA et al (2009) Global multi-resolution topography synthesis. Geochem Geophy Geosys 10:Q03014. doi:10.1029/2008GC002332

    Google Scholar 

  • Rzhanov Y, Mayer L, Fornari D (2004) Deep-sea image processing. Proceedings of Oceans’04, Kobe, pp 647–652

    Google Scholar 

  • Scheidat M, Tougaard J, Brasseur S, Carstensen J, Van Polanen Petel T, Teilmann J, Reijnders P (2011) Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea. Environ Res Lett 6:1–10

    Article  Google Scholar 

  • Sheehan EV, Stevens TF, Attrill MJ (2010) A quantitative, non-destructive methodology for habitat characterisation and benthic monitoring at offshore renewable energy developments. PLoS ONE 5(12):e14461. doi:10.1371/journal.pone.0014461

    Article  CAS  Google Scholar 

  • Shields MA, Dillon LJ, Woolf DK, Ford AT (2009) Strategic priorities for assessing ecological impacts of marine renewable energy devices in the Pentland Firth (Scotland, UK). Mar Policy 33:635–642

    Article  Google Scholar 

  • Shields MA, Woolf DK, Grist EPM, Kerr SA, Jackson AC, Harris RE, Bell MC et al (2011) Marine renewable energy: the ecological implications of altering the hydrodynamics of the marine environment. Ocean Coast Manag 54:2–9

    Article  Google Scholar 

  • Sisson JD, Shimeta J, Zimmer CA, Traykovski P (2002) Mapping epibenthic assemblages and their relations to sedimentary features in shallow-water, high-energy environments. Cont Shelf Res 22:565–583

    Article  Google Scholar 

  • Starr RM, Fox DS, Hixon MA, Tissot BN, Johnson GE, Barss WH (1996) Comparison of submersible-survey and hydroacoustic-survey estimates of fish density on a rocky bank. Fish B-NOAA 94:113–123

    Google Scholar 

  • Stenberg C, van Deurs M, Støttrup J, Mosegaard H, Grome T, Dinesen G, Christensen A et al (2011) Effect of the Horns Rev 1 offshore wind farm on fish communities—Follow-up seven years after construction. In: Leonard SB, Stenberg C, Støttrup J (eds). DTU Aqua Report, 246-2011, 99 pp

    Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Env Conserv 29:1–24

    Article  Google Scholar 

  • Tougaard J, Carstensen J, Wisz MS, Teilmann J, Bech NI, Skov H (2006) Harbour porpoises on Horns Reef—effects of the Horns Reef Wind Farm. Final report to Elsam Engineering A/S. NERI Technical Report, Roskilde, Denmark

    Google Scholar 

  • Tougaard J, Ebbesen I, Tougaard S, Jensen T, Teilmann J (2003) Satellite tracking of harbour seals on Horns Reef. Use of the Horns Reef wind farm area and the North Sea. National Environmental Research Institute, Roskilde, Denmark, 43 pp

    Google Scholar 

  • Vea J, Ask E (2011) Creating a sustainable commercial harvest of Laminaria hyperborea, in Norway. J Appl Phycol 23:489–494

    Article  Google Scholar 

  • Wilhelmsson D, Malm T (2008) Fouling assemblages on offshore wind power plants and adjacent substrata. Estuar Coast Shelf Sci 79:459–466

    Article  Google Scholar 

  • Wilhelmsson D, Malm T, Öhman M (2006) The influence of offshore windpower on demersal fish. ICES J Mar Sci 63:775–784

    Article  Google Scholar 

  • Wilhelmsson D, Malm T, Thompson R, Tchou J, Sarantakos G, McCormick N, Luitjens S et al (2010) Greening blue energy. identifying and managing the biodiversity risks and opportunities of offshore renewable energy. IUCN, Gland, Switzerland, 102 pp

    Google Scholar 

Download references

Acknowledgements

The work was conducted within Work Package 5 of the Norwegian Centre for Offshore Wind Energy (NORCOWE). We acknowledge the support at marine operations provided by Halvor Mohn, Argus AS and the backing of Vestavind Offshore AS and their representative Dag Breistein. Svein Winther, Sergei Olenin and Erling Heggøy initiated parts of the project, and the captain and crew of RV “Hakon Mosby” provided encouragement and support throughout the physical oceanography cruises.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Dahlgren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dahlgren, T., Schläppy, ML., Šaškov, A., Andersson, M., Rzhanov, Y., Fer, I. (2014). Assessing the Impact of Windfarms in Subtidal, Exposed Marine Areas. In: Shields, M., Payne, A. (eds) Marine Renewable Energy Technology and Environmental Interactions. Humanity and the Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8002-5_4

Download citation

Publish with us

Policies and ethics