Skip to main content

The Physics and Hydrodynamic Setting of Marine Renewable Energy

  • Chapter
  • First Online:
Marine Renewable Energy Technology and Environmental Interactions

Part of the book series: Humanity and the Sea ((HUMSEA))

  • 2430 Accesses

Abstract

Increasing interest is apparent in marine energy resources, particularly tidal and wave. Some TeraWatts of energy propagate from the world’s oceans to its marginal seas in the form of surface waves (≈ 2 TW) and tides (≅ 2.6 TW) where that energy is naturally dissipated. The seas and coastlines around the UK and its neighbours are notable for dissipating a significant fraction of the global energy of waves (≈ 50 MW km−1 on the Atlantic coast) and especially tides (> 250 GW north of Brittany). Displacing a significant fraction of the natural dissipation by energy capture is a tempting and reasonable proposition, but it does raise technical and environmental issues. Sustainable exploitation of the energy needs to consider diverse effects on the environment, waves and tides having a role in maintaining the shelf sea, coastal, estuarine and shoreline environment through associated advection, stirring and other processes. Tides are particularly significant in controlling the stratification of shelf seas and their flow characteristics. Surface waves are more important in determining conditions nearshore and in the intertidal zone. Also, the exploitation of wave and tidal resources is only practical economically and technologically at a limited number of energetic and accessible sites, and societal and ecological considerations inevitably narrow the choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Black and Veatch Ltd (2011a) UK tidal current resource and economics. Report CTC799, The Carbon Trust, London

    Google Scholar 

  • Black and Veatch Ltd (2011b) UK tidal current resource and economics—Appendix C. Report CTC802, The Carbon Trust, London

    Google Scholar 

  • Burrows MT (2012) Influences of wave fetch, tidal flow and ocean colour on subtidal rock communities. Mar Ecol Prog Ser 445:193–207

    Article  Google Scholar 

  • Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C et al (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–655

    Article  CAS  Google Scholar 

  • Carbon Trust (2006) Future marine energy. Results of the marine energy challenge: cost competitiveness and growth of wave and tidal stream energy. Report to the Carbon Trust, London

    Google Scholar 

  • Carter DJT (1982) Prediction of wave height and period for a constant wind velocity using the JONSWAP formulae. Ocean Eng 9:17–33

    Article  Google Scholar 

  • Cartwright DE, Edden AC, Spencer R, Vassie JM (1980) The tides of the north-east Atlantic Ocean. Philos Trans Roy Soc A 298:87–139

    Article  Google Scholar 

  • Couch SJ, Bryden I (2006) Tidal current energy extraction: hydrodynamic resource characteristics. Proceedings of the Institution of Mechanical Engineers. Part M. J Eng Maritime Environ 220:185–194

    Google Scholar 

  • Easton MC, Woolf, DK, Bowyer PA (2012) The dynamics of an energetic tidal channel, the Pentland Firth, Scotland. Cont Shelf Res 48:50–60

    Article  Google Scholar 

  • Egbert GD, Ray RD (2001) Estimates of M-2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J Geophys Res 106:22475–22502

    Article  Google Scholar 

  • EPRI (2011) Mapping and assessment of the United States ocean wave energy resource. EPRI, Palo Alto, USA. 176 pp

    Google Scholar 

  • Folley M, Elsaesser B, Whittaker T (2010) Analysis of the wave energy resource at the European Marine Energy Centre. http://www.aquamarinepower.com/resource-library/

  • Garrett C, Cummins P (2005) The power potential of tidal currents in channels. Proc Roy Soc A 461:2563–2572

    Article  Google Scholar 

  • Goddijn-Murphy L, Woolf DK, Easton MC (2013) Current patterns in the Inner Sound (Pentland Firth) from underway ADCP data. J Atmos Ocean Technol 30:96–111

    Article  Google Scholar 

  • Green JAM (2010) Tides and ocean resonance. Ocean Dyn 60:1243–1253

    Article  Google Scholar 

  • Gunn K, Stock-Williams C (2012) Quantifying the global wave power source. Renew Energy 44:296–304

    Article  Google Scholar 

  • Harrison ME, Batten WMJ, Myers LE, Bahaj AS (2010) Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renew Power Gener 4:613–627

    Article  Google Scholar 

  • Harrison GP, Wallace AR (2005) Climate sensitivity of wave energy. Renew Energy 30:1801–1817

    Article  Google Scholar 

  • Holthuijsen LH (2007) Waves in oceanic and coastal waters. Cambridge University Press, Cambridge, 387 pp

    Book  Google Scholar 

  • IPCC (2011)IPCC special report on renewable energy sources and climate change mitigation. Prepared by Working Group III of the Intergovernmental Panel on Climate Change In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T et al. Cambridge University Press, Cambridge, 1075 pp

    Google Scholar 

  • Iyer AS, Couch SJ, Harrison GP, Wallace AR (2013) Variability and phasing of tidal current around the United Kingdom. Renew Energy 51:343–357

    Article  Google Scholar 

  • Lu Y, Lueck RG (1999a) Using a broadband ADCP in a tidal channel. 1. Mean flow and shear. J Atmospheric Ocean Technol 16:1556–1567

    Article  Google Scholar 

  • Lu Y, Lueck RG (1999b) Using a broadband ADCP in a tidal channel. 2. Turbulence. J Atmospheric Ocean Technol 16:1568–1579

    Article  Google Scholar 

  • Mackay DJC (2008) Sustainable energy—without the hot air. UIT Cambridge, Cambridge. ISBN 978-0-9544529-3-3, 384 pp. www.withouthotair.com

  • Mackay EBL, Bahaj AS, Challenor PG (2010a) Uncertainty in wave energy resource assessment. 1. Historica data. Renew Energy 35:1792–1808

    Article  Google Scholar 

  • Mackay EBL, Bahaj AS, Challenor PG (2010b) Uncertainty in wave energy resource assessment. 2. Variability and predictability. Renew Energy 35:1809–1819

    Article  Google Scholar 

  • Mollison D (1986) Wave climate and the wave power resource. In: Evans D, de Falcao AFO (eds) Hydrodynamics of ocean wave-energy utilization, IUTAM Symposium, Lisbon, 1985. Springer, Dordrecht, pp 133–156

    Google Scholar 

  • Mollison D (1991) The UK wave power resource. In: Reilly JW (ed) Wave energy. Institution of Mechanical Engineering, London, pp 1–6

    Google Scholar 

  • Munk W, Wunsch C (1998) Abyssal recipes. 2. Energetics of tidal and wind mixing. Deep Sea Res I 45:1977–2010

    Article  Google Scholar 

  • Myers LE, Bahaj AS (2012) An experimental study of flow effects within 1st-generation marine current energy converter arrays. Renew Energy 37:28–36

    Article  Google Scholar 

  • Neill SP, Jordan JR, Couch SJ (2012) Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks. Renew Energy 37:387–397

    Article  Google Scholar 

  • Neill SP, Litt EJ, Couch SJ, Davies AG (2009) The impact of tidal stream turbines on large-scale sediment dynamics. Renew Energy 34 2803–2812

    Article  Google Scholar 

  • Nielsen P (1992) Coastal bottom boundary layers and sediment transport. Advanced Series on Ocean Engineering, 4. World Scientific, Singapore, 324 pp

    Google Scholar 

  • Pugh DT (1987) Tides, surges and mean sea level. Wiley, New York. ISBN 0 471 91505 X

    Google Scholar 

  • Robinson IS (1979) The tidal dynamics of the Irish and Celtic Seas. Geophys J Roy Astron Soc 56:159–197

    Article  Google Scholar 

  • Royal Commission on Environmental Pollution (2000) Energy—the changing climate. Report to Parliament, CM4749, HM Stationery Office, London

    Google Scholar 

  • Scott BE, Sharples J, Ross O, Wang J, Pierce GJ, Camphuysen CJ (2010) Sub-surface hotspots in shallow seas: fine scale limited locations of marine top predator foraging habitat indicated by tidal mixing and sub-surface chlorophyll. Mar Ecol Prog Ser 408:207–226

    Article  Google Scholar 

  • Shields MA, Dillon LJ, Woolf DK, Ford AT (2009) Strategic priorities for assessing the ecological impact of marine renewable devices in the Pentland Firth (Scotland, UK). Mar Policy 33:635–642

    Article  Google Scholar 

  • Shields MA, Woolf DK, Grist EPM, Kerr SA, Jackson AC, Harris RE, Bell MC et al (2011) Marine renewable energy: the ecological implications of altering the hydrodynamics of the marine environment. Ocean Coast Manag 54:2–9

    Article  Google Scholar 

  • Simpson JH, Allen CM, Norris NCG (1978) Fronts on continental-shelf. J Geophys Res 83:4607–4614

    Article  Google Scholar 

  • Simpson JH, Hunter JR (1974) Fronts in Irish sea. Nature 250:404–406

    Article  Google Scholar 

  • Simpson JH, Sharples J (2012) Introduction to the physical and biological oceanography of shelf seas. Cambridge University Press, Cambridge. ISBN 978-0-521-70148-8

    Book  Google Scholar 

  • Smith HCM, Pearce C, Millar DL (2012) Further analysis of change in nearshore wave climate due to an offshore wave farm: an enhanced case study for the Wave Hub site. Renew Energy 40:51–64

    Article  Google Scholar 

  • Taylor GI (1920) Tidal friction in the Irish Sea. Proc Roy Soc London A 220:1–33

    Google Scholar 

  • Tsimplis MN, Woolf DK, Osborn TJ, Wakelin S, Wolf J, Flather R, Shaw AGP et al (2005) Towards a vulnerability assessment of the UK and northern European coasts: the role of regional climate variability. Philos Trans A Math Phys Eng Sci 363:1329–1358

    Article  CAS  Google Scholar 

  • Vennell R (2012) The energetics of large tidal turbine arrays. Renew Energy 48:210–219

    Article  Google Scholar 

  • Winter AJB (1980) The UK wave energy resource. Nature 287:826–828

    Article  Google Scholar 

  • Wolf J, Walkington IA, Holt J, Burrows R (2009) Environmental impacts of tidal power schemes. Proc Inst Civil Eng Marit Eng 162:165–177

    Google Scholar 

  • Wolf J, Woolf DK (2006) Waves and climate change in the north-east Atlantic. Geophys Res Lett 33:L06604. doi:10.1029/2005GL025113

    Article  Google Scholar 

  • Woolf DK, Challenor PG, Cotton PD (2002) Variability and predictability of the North Atlantic wave climate. J Geophys Res 107:3145. doi:10.1029/2001JC001124

    Article  Google Scholar 

  • Woolf DK, Cotton PD, Challenor PG (2003) Measurements of the offshore wave climate around the British Isles by satellite altimeter. Philos Trans A Math Phys Eng Sci 361:27–31

    Article  Google Scholar 

  • Woolf DK, Gommenginger C, Sykes N, Srokosz MA, Challenor PG (2006) Satellite and other long-term data sets on wave climate; application to the North Atlantic region. Full Proceedings of World Renewable Energy Congress IX, MT11. Elsevier, Amsterdam. ISBN 008 44671 X

    Google Scholar 

  • Yates N, Walkington I, Burrows R, Wolf J (2013) Appraising the extractable tidal energy resource of the UK’s western coastal waters. Philos Trans A Math Phys Eng Sci 371. doi:10.1098/rsta.2012.0181

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support of Highlands and Islands Enterprise, the Scottish Funding Council and the European Regional Development Fund through the Supergen Plus and Marine Renewable Energy and the Environment (MaREE) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Woolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Woolf, D., Easton, M., Bowyer, P., McIlvenny, J. (2014). The Physics and Hydrodynamic Setting of Marine Renewable Energy. In: Shields, M., Payne, A. (eds) Marine Renewable Energy Technology and Environmental Interactions. Humanity and the Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8002-5_2

Download citation

Publish with us

Policies and ethics