Skip to main content

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 1931 Accesses

Abstract

This chapter presents three more complex equations with specific properties: The linearized Euler equations (LEE) which model acoustics in flow and contains a convective term, the Cauchy-Poisson problem which models gravity waves and whose evolution equation is on a boundary and two models of wave propagation in thin plates which are dispersive equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We recall that the acoustics equation is their 0th order approximation.

  2. 2.

    Which was proven (in an unpublished paper) to be equivalent to LEE.

  3. 3.

    For tetrahedra or triangles, \(Q_r\) is replaced by \(P_r\).

  4. 4.

    A “hypermixed”, i.e. a mixed formulation in two steps, was constructed, but it was not stable.

  5. 5.

    This approach is a common work of G. Cohen, A. Hüppe, S. Imperiale and M. Kaltenbacher. An article entitled “Construction and analysis of an adapted spectral finite element method to convective acoustic equations” has been accepted by the Communications in Computational Physics Journal and should be published in 2016.

  6. 6.

    p being in \(H^1(\varOmega )\), \({\underline{u}}_0\) can no longer be piecewise constant.

  7. 7.

    Although, from a chronological point of view, the Reissner–Mindlin model is a generalization of the Kirchhoff–Love model.

References

  1. Bernacki, M., Piperno, S.: A dissipation-free time-domain discontinuous Galerkin method applied to three dimensional linearized Euler equations around a steady-state non-uniform inviscid flow. J. Comput. Acoust. 14(4), 445–467 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Delorme, P., Mazet, P.A., Peyret, C., Ventribout, Y.: Computational aeroacoustics applications based on a discontinuous Galerkin method. C. R. Acad. Sci. Paris Ser. IIb - Mechanics 333(9), 676–682 (2005)

    MATH  Google Scholar 

  3. Bécache, E., Derveaux, G., Joly, P.: An efficient numerical method for the resolution of the Kirchhoff-Love dynamic plate equation. Numer. Methods Partial Differ. Equ. 21(2), 323–348 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lighthill, M.J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. 211, 564–587 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  5. Galbrun, H.: Propagation d’une onde sonore dans l’atmosph terrestre et thorie des zones de silence, vol. 2, no. 2. Gauthier-Villars, Paris (1931)

    Google Scholar 

  6. Kaltenbacher, M.: Numerical Simulation of Mechatronic Sensors and Actuators. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  7. Castel, N., Cohen, G., Duruflé, M.: Application of discontinuous Galerkin spectral method on hexahedral elements for aeroacoustic. J. Comput. Acoust. 17(2), 175–196 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogey, C., Bailly, C., Juvé, D.: Computation of flow noise using source terms in linearized Euler’s equations. AIAA J. 40(2), 225–243 (2002)

    Article  Google Scholar 

  9. Bonnet-BenDhia, A.S., Legendre, G., Luneville, E.: Analyse mathématique de l’équation de Galbrun en écoulement uniforme. C. R. Acad. Sci. Paris Ser. IIb - Mechanics 329(8), 601–606 (2001)

    Google Scholar 

  10. Assous, F., Degond, P., Heintze, E., Raviart, P.-A., Segre, J.: On a finite-element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109(2), 222–237 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Morinishi, Y.: Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows. J. Comput. Phys. 229(2), 276–300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldstein, M.E.: Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89(3), 433–468 (1978)

    Article  MATH  Google Scholar 

  13. Cohen, G., Imperiale, S.: Perfectly matched layer with mixed spectral elements for the propagation of linearized water waves. Commun. Comput. Phys. 11(2), 285–302 (2012)

    Article  MathSciNet  Google Scholar 

  14. Cohen, G., Duruflé, M.: Non spurious spectral-like element methods for Maxwell’s equations. J. Comput. Math. 25(3), 282–304 (2007)

    MathSciNet  Google Scholar 

  15. Duruflé, M.: Intégration numérique et éléments finis d’ordre élevé appliqués aux équations de Maxwell en régime harmonique, thèse de doctorat, U. de Paris-Dauphine (2006)

    Google Scholar 

  16. Dgayguy, K., Joly, P.: Absorbing boundary conditions for linear gravity waves. SIAM J. Appl. Math. 54(1), 93–131 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bécache, E., Fauqueux, S., Joly, P.: Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comput. Phys. 188(2), 399–433 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kreiss, H.-O., Lorenz, J.: Initial-boundary value problems and the Navier-Stokes equations. Commun. Pure Appl. Math. 136 (1989)

    Google Scholar 

  19. Chapelle, D., Bathe, K.-J.: The Finite Element Analysis of Shells-Fundamentals. Computational Fluid and Solid Mechanics, 2nd edn. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  20. Love, A.E.H.: On the small free vibrations and deformations of elastic shells. Philos. Trans. R. Soc. (Lond.) Ser. A 179, 491–546 (1888)

    Article  MATH  Google Scholar 

  21. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  22. Reissner, E., Stein, M.: Torsion and transverse bending of cantilever plates, Technical Note 2369. National Advisory Committee for Aeronautics, Washington (1951)

    Google Scholar 

  23. Cohen, G., Grob, P.: Mixed higher order spectral finite elements for Reissner-Mindlin equations. SIAM J. Sci. Comput. 29(3), 986–1005 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grob, P.: Méthodes numériques de couplage pour la vibroacoustique instationnaire: Eléments finis spectraux d’ordre élevé et potentiels retardés, thèse de doctorat, U. de Paris-Dauphine (2006)

    Google Scholar 

  25. Arnold, D.N., Brezzi, F.: Locking-free finite element methods for shells. Math. Comput. 66(217), 1–14 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Brezzi, F., Fortin, M., Stenberg, R.: Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Math. Models Methods Appl. Sci. 1(2), 125–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chapelle, D., Stenberg, R.: An optimal low-order locking-free finite element method for Reissner-Mindlin plates. Math. Models Methods Appl. Sci. 8(3), 407–430 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (2002)

    Book  MATH  Google Scholar 

  29. Ciarlet, P.G., Glowinski, R.: Dual iterative techniques for solving a finite element approximation of the biharmonic equation. Comput. Methods Appl. Mech. Eng. 5(3), 277–295 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Cohen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cohen, G., Pernet, S. (2017). Some Complex Models. In: Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7761-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7761-2_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7759-9

  • Online ISBN: 978-94-017-7761-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics