Skip to main content

Plant Responses to Light Stress: Oxidative Damages, Photoprotection, and Role of Phytohormones

  • Chapter
  • First Online:
Plant Hormones under Challenging Environmental Factors

Abstract

Light stress is the most uncharacterized and less studied among the various types of abiotic stresses experienced by the plant systems. Plants, being sessile organisms, cannot escape from such stresses, and one of the mechanisms of adaptation under such hostile circumstances is mediated through the altered regulation of phytohormones. In this book chapter, we have presented an exhaustive literature-based study on the different kinds of light stress encompassing light quality and type, the basic mechanism of perception of UV-B (the most harmful) rays by the plant system, the general metabolites which get upregulated under stress, and then a detailed excerpt on the role of phytohormones like auxin, gibberellic acid, cytokinins, ethylene, and abscisic acid under such conditions. Based on this account, our chapter also aims at integrating the perception of light stress-signaling pathway with the phytohormone-signaling networks, thus providing the idea of a universal cross talk occurring in plant cells, exposed to a variety of light stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M. Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem. 2013;72:35–45.

    Article  CAS  PubMed  Google Scholar 

  • Allen JF. State transitions-a question of balance. Science. 2003;299:1530–2.

    Article  CAS  PubMed  Google Scholar 

  • Alyabyev AJ, Loseva NL, Jakushenkova TP, Rachimova GG, Tribunskih VI, et al. Comparative effects of blue light and red light on the rates of oxygen metabolism and heat production in wheat seedlings stressed by heat shock. Thermochim Acta. 2002;394:227–31.

    Article  CAS  Google Scholar 

  • Arróniz-Crespo M, Núñez-Olivera E, Martínez-Abaigar J, Tomás R. A survey of the distribution of UV absorbing compounds in aquatic bryophytes from a mountain stream. Bryologist. 2004;107:202–8.

    Article  Google Scholar 

  • Artetxe U, García-Plazaola JI, Hernández A, Becerril JM. Low light grown duckweed plants are more protected against the toxicity induced by Zn and Cd. Plant Physiol Biochem. 2002;40:859–63.

    Article  CAS  Google Scholar 

  • Atanasova L, Pissarska M, Popov G, Georgiev G. Growth and endogenous cytokinins of juniper shoots as affected by high metal concentrations. Biol Plant. 2004;48:157–9.

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A. WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J. 2015;2015:807560.

    Article  Google Scholar 

  • Becatti E, Petroni K, Giuntini D, Castagna A, Calvenzani V, et al. Solar UV-B radiation influences carotenoid accumulation of tomato fruit through both ethylene-dependent and -independent mechanisms. J Agric Food Chem. 2009;57:10979–89.

    Article  CAS  PubMed  Google Scholar 

  • Berli FJ, Fanzone M, Piccoli P, Bottini R. Solar UV-B and ABA are involved in phenol metabolism of Vitis vinifera L. increasing biosynthesis of berry skin polyphenols. J Agric Food Chem. 2011;59:4874–84.

    Article  CAS  PubMed  Google Scholar 

  • Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, et al. Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ. 2010;33:1–10.

    CAS  PubMed  Google Scholar 

  • Bogs J, Jaffé FW, Takos AM, Walker AR, Robinson SP. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol. 2007;143:1347–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boo YC, Lee KP, Jung J. Rice plants with a high protochlorophyllide accumulation show oxidative stress in low light that mimics water stress. J Plant Physiol. 2000;157:405–11.

    Article  CAS  Google Scholar 

  • Bornman JF. UV radiation as an environmental stress in plants. J Photochem Photobiol B Biol. 1991;8:337–42.

    Article  Google Scholar 

  • Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI. A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A. 2005;102:18225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navapour S, et al. The molecular analysis of leaf senescence – a genomic approach. Plant Biotech J. 2003;1:3–22.

    Article  CAS  Google Scholar 

  • Castagna A, Dall’Asta C, Chiavaro E, Galaverna G, Ranieri A. Effect of post harvest UV-B irradiation on polyphenol profile and antioxidant activity in flesh and peel tomato fruits. Food Bioprocess Technol. 2014;7:2241–50.

    Article  CAS  Google Scholar 

  • Chang N, Gao Y, Zhao L, Liu X, Gao H. Arabidopsis FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel. Sci Rep. 2015;5:9612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Zhang J, Neff MM, Hong SW, Zhang H, Deng XW, Xiong L. Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci U S A. 2008;105:4495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A, Kelly SM, et al. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science. 2012;335:1492–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cia P, Pascholati SF, Benato EA, Camili EC, Santos CA. Effects of gamma and UV-C irradiation on the postharvest control of papaya anthracnose. Postharvest Biol Technol. 2007;43:366–73.

    Article  CAS  Google Scholar 

  • Cloix C, Jenkins GI. Interaction of the Arabidopsis UVB-specific signaling component UVR8 with chromatin. Mol Plant. 2008;1:118–28.

    Article  CAS  PubMed  Google Scholar 

  • Crupi P, Pichierri A, Basile T, Antonacci D. Postharvest stilbenes and flavonoids enrichment of tablegrape cv Redglobe (Vitis vinifera L.) as affected by interactive UV-C exposure and storage conditions. Food Chem. 2013;141:802–8.

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams III WE. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Phvsiol Plant Mol Biol. 1992;43:599–626.

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams III WE. Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta. 1996;198:460–70.

    Article  CAS  Google Scholar 

  • Durieux AJB, Kamerbeek GA, Van Meeteren U. On the existence of a non-critical period for blasting of flower buds of Lilium ‘Enchantment’; influence of light and ethylene. Scientia Hortic. 1983;18:287–97.

    Article  CAS  Google Scholar 

  • Effendi Y, Jones AM, Scherer GF. AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-controlled responses. J Exp Bot. 2013;64:5065–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eickmeier WG, Casper C, Osmond CB. Chlorophyll fluorescence in the resurrection plant Selaginella lepidophylla (Hook. & Grey.) Spring during high-light and desiccation stress, and evidence for zeaxanthin-associated photoprotection. Planta. 1993;189:30–8.

    Article  CAS  Google Scholar 

  • Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, et al. Interaction of COP1and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 2009;28:591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feher B, Kozma-Bognar L, Kevei E, Hajdu A, Binkert M, Davis SJ, et al. Functional interaction of the circadian clock and UV RESISTANCE LOCUS 8-controlled UV-B signaling pathways in Arabidopsis thaliana. Plant J. 2011;67:37–48.

    Article  CAS  PubMed  Google Scholar 

  • Finlayson SA, Hays DB, Morgan PW. phyB-1 Sorghum maintains responsiveness to simulated shade, irradiance and red light: far-red light. Plant Cell Environ. 2007;30:952–62.

    Article  CAS  PubMed  Google Scholar 

  • Frohnmeyer H, Staiger D. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol. 2003;133:1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk JL, Virginia AE, Zachary A. Physiological responses to short-term water and light stress in native and invasive plant species in southern California. Biol Invasions. 2010;12:1685–94.

    Article  Google Scholar 

  • Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, et al. The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. Plant Cell. 2009;21:2143–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao HB, Kadirjan-Kalbach D, Froehlich JE, Osteryoung KW. ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc Natl Acad Sci U S A. 2003;100:4328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil M, Pontin M, Berli F, Bottini R, Piccoli P. Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry. 2012;77:89–98.

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Gill R, Jha M, Tuteja N. DNA damage and repair in plants under ultraviolet and ionizing radiations. Sci World J. 2015;2015:250158.

    Article  Google Scholar 

  • Gorecka M, Alvarez-Fernandez R, Slattery K, McAusland L, Davey PA, et al. Abscisic acid signalling determines susceptibility of bundle sheath cells to photoinhibition in high light-exposed Arabidopsis leaves. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greenberg BM, Gaba V, Canaani O, Malkin S, Mattoo AK, Edelman M. Separate photosensitizers mediate degradation of the 32 kDa photosystem II reaction center protein in the visible and W spectral regions. Proc Natl Acad Sci U S A. 1989;86:6617–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber H, Heijde M, Heller W, Albert A, Seidlitz HK, Ulm R. Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Proc Natl Acad Sci U S A. 2010;107:20132–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Mockler T, Duong H, et al. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science. 2001;19:487–90.

    Article  Google Scholar 

  • Hanelt D, Wiencke C, Karsten U, Nultsch W. Photoinhibition and recovery after high light stress in different developmental and life-history stages of Laminaria saccharina (phaeophyta). J Phycol. 1997;33:387–95.

    Article  Google Scholar 

  • Hayes S, Velanis CN, Jenkins GI, Franklin KA. UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. Proc Natl Acad Sci U S A. 2014;111:11894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Giusti M. Anthocyanins: natural colorants with health- promoting properties. Annu Rev Food Sci Technol. 2010;1:163–87.

    Article  CAS  PubMed  Google Scholar 

  • He J, Yue X, Wang R, Zhang Y. Ethylene mediates UV-B-induced stomatal closure via peroxidase-dependent hydrogen peroxide synthesis in Vicia faba L. J Exp Bot. 2011;62:2657–66.

    Article  CAS  PubMed  Google Scholar 

  • Hectors K, van Oevelen S, Guisez Y, Prinsen E, Jansen MA. The phytohormones auxin is a component of the regulatory system that controls UV mediated accumulation of flavonoids and UV-induced morphogenesis. Physiol Plant. 2012;145:594–603.

    Article  CAS  PubMed  Google Scholar 

  • Heijde M, Ulm R. Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc Natl Acad Sci U S A. 2013;110:1113–18.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann RW, Campbell BD, Fountain DW, Jordan BR, Greer DH, et al. Multivariate analysis of intraspecific responses to UV-B radiation in white clover (Trifolium repens L.). Plant Cell Environ. 2001;24:917–27.

    Article  Google Scholar 

  • Hollosy F. Effects of ultraviolet radiation on plant cells. Micron. 2002;33:179–97.

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Ouyang X, Yang P, Lau OS, Li G, Li J, Chen H, Deng XW. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell. 2012;24:4590–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imaizumi T, Kadota A, Hasebe M, Wada M. Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. Plant Cell. 2002;14:373–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irina VG, David L, Vera A, Emanuil K. Cytokinin oxidase/dehydrogenase in Pisum sativum plants during vegetative development. Influence of UV-B irradiation and high temperature on enzymatic activity. Plant Growth Regul. 2004;42:1–5.

    Article  Google Scholar 

  • Jang IC, Henriques R, Seo HS, Nagatani A, Chua NH. Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus. Plant Cell. 2010;22:2370–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Wang Y, Li QF, Bjorn LO, Hi JX, Li S. Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity. Cell Res. 2012;22:1046–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao S, Hilaire E, Guikema JA. Identification and differential accumulation of two isoforms of the CF1-b subunit under high light stress in Brassica rapa. Plant Physiol Biochem. 2004;42:883–90.

    Article  CAS  PubMed  Google Scholar 

  • Kaiserli E, Jenkins GI. UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B specific signaling component UVR8 and activates its function in the nucleus. Plant Cell. 2007;19:2662–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kegge W, Ninkovic V, Glinwood R, Welschen RA, Voesenek LA, Pierik R. Red: far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Ann Bot. 2015;115:961–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, et al. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature. 2007;449:356–60.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Doi M, Suetsuga N, Kagawa T, Wada M, Shimazaki K. Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature. 2001;414:656–60.

    Article  CAS  PubMed  Google Scholar 

  • Kovacs E, Keresztes A. Effect of gamma and UV-B/C radiation on plant cells. Micron. 2002;33:199–210.

    Article  CAS  PubMed  Google Scholar 

  • Koyama K, Ikeda H, Poudel PR, Goto-Yamamoto N. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry. 2012;78:54–64.

    Article  CAS  PubMed  Google Scholar 

  • Leivar P, Quail PH. PIFs: Pivotal components in a cellular signaling hub. Trends Plant Sci. 2011;16:19–28.

    Article  CAS  PubMed  Google Scholar 

  • Lau OS, Deng XW. The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci. 2012;17:584–93.

    Article  CAS  PubMed  Google Scholar 

  • Li G, Siddiqui H, Teng Y, Lin R, Wan X, Li J, et al. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol. 2011;13:616–22.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang L, Jin D, Nezames CD, Terzaghi W. UV-B-induced photomorphogenesis in Arabidopsis. Prot Cell. 2013;4:485–92.

    Article  CAS  Google Scholar 

  • Lin W, Wu X, Linag K, Guo Y, He H, Chen F, Liang Y. Effect of enhanced UV-B radiation on polyamine metabolism and endogenous hormone contents in rice (Oryza sativa L.). Ying Yong Sheng Tai Xue Bao. 2002;13:807–13.

    CAS  PubMed  Google Scholar 

  • Liu B, Wang C, Jin J, Liu JD, Zhang QY, Liu XB. Responses of soybean and other plants to enhanced UV-B radiation. Soybean Sci. 2009;28:1097–102.

    Google Scholar 

  • Liu L, Gregan S, Winefield C, Jordan B. From UVR8 to flavonol synthase: UV-B induced gene expression in Sauvignon blanc grape berry. Plant Cell Environ. 2014;38:905–19.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhong C. Interactive effects of α-NAA and UV-B radiation on the endogenous hormone contents and growth of Trichosanthes kirilowii Maxim seedlings. Acta Ecol Sin. 2009;29:244–8.

    Article  Google Scholar 

  • McKenzie RL, Björn LO, Bais A, Ilyasd M. Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Photochem Photobiol Sci. 2003;2:5–15.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Luscher J, Sanchez-Diaz M, Delrot S, Aguirreolea J, Pascual I, Gomes E. Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profiles in grapevine berries through transcriptomic regulation. Plant Cell Physiol. 2014;55:1925–36.

    Article  PubMed  Google Scholar 

  • Namli S, Işıkalan C, Akbaş F, Toker Z, Tilkat EA. Effects of UV-B radiation on total phenolic, flavonoid and hypericin contents in Hypericum retusum Aucher grown under in vitro conditions. Nat Prod Res. 2014;28:2286–92.

    Article  CAS  PubMed  Google Scholar 

  • Oravecz A, Baumann A, Mate Z, Brzezinska A, Molinier J, et al. CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell. 2006;18:1975–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouzounis T, Parjilolaei BR, Frette X, Rosenqvist E, Ottosen CO. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front Plant Sci. 2015;6:19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paradiso R, Meinen E, Snel JFH, de Visser P, van Ieperen W, Hogewoning SW, et al. Spectral dependence of photosynthesis and light absorbance in single leaves and canopy in rose. Sci Hortic. 2011;127:548–54.

    Article  CAS  Google Scholar 

  • Patrícia C, Sérgio PF, Eliane BA, Elisangela CC, Carlos SA. Effects of gamma and UV-C irradiation on the postharvest control of papaya anthracnose. Postharvest Biol Technol. 2007;43:366–73.

    Article  CAS  Google Scholar 

  • Peng T, Saito T, Honda C, Ban Y, Kondo S, Liu JH, et al. Screening of UV-B induced genes from apple peels by SSH: possible involvement of MdCOP1 mediated signaling cascade genes in anthocyanin accumulation. Physiol Plant. 2013;148:432–44.

    Article  CAS  PubMed  Google Scholar 

  • Pfannschmidt T, Nilsson A, Allen JF. Photosynthetic control of chloroplast gene expression. Nature. 1999;397:625–8.

    Article  CAS  Google Scholar 

  • Piskurewicz U, Turecková V, Lacombe E, Lopez-Molina L. Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. EMBO J. 2009;28:2259–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin YZ, Guo M, Xu L, Xiong XY, He Y, et al. Stress responsive gene CIPK14 is involved in phytochrome A-mediated far-red light inhibition of greening in Arabidopsis. Sci China Life Sci. 2010;53:1307–14.

    Article  CAS  PubMed  Google Scholar 

  • Ramiarez-Nina J, Mendoza D, Castana VM. A comparative study on the effect of gamma and UV irradiation on the optical properties of chlorophyll and carotene. Radiat Meas. 1998;29:195–202.

    Article  Google Scholar 

  • Ravaglia D, Espley RV, Henry-Kirk RA, Andreotti C, Ziosi V, Hellens RP, et al. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3MYB transcription factors. BMC Plant Biol. 2013;13:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Retkute R, Smith-Unna SE, Smith RW, Burgess AJ, Jensen OE, Johnson GN, Preston SP, Murchie EH. Exploiting heterogeneous environments: does photosynthetic acclimation optimize carbon gain in fluctuating light? J Exp Bot. 2015;66:2437–47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera-Pastrana DM, Gardea AA, Yahia EM, Martìnez-Tèllez MA, Gonzàles-Aguilar GA. Effect of UV-C irradiation and low temperature storage on bioactive compounds, antioxidant enzymes and radical scavenging of papaya fruit. J Food Sci Technol. 2014;51:3821–9.

    Article  CAS  PubMed  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A, et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science. 2011;332:103–6.

    Article  CAS  PubMed  Google Scholar 

  • Scattino C, Castagna A, Neugart S, Chan HM, Schreiner M, et al. Post-harvest UV-B irradiation induces changes of phenol contents and corresponding biosynthetic gene expression in peaches and nectarines. Food Chem. 2014;163:51–60.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner M, Martínez-Abaigar J, Just G, Jansen M. UV-B induced secondary plant metabolites: potential benefits for plant and human health. Biophotonics. 2014;2:34–7.

    Google Scholar 

  • Seppelt R. Discussion on mosses under rocks. 2005. Bryonetl@mtu.edu.

    Google Scholar 

  • Singla B, Chugh A, Khurana JP, Khurana P. An early auxin-responsive Aux/IAA gene from wheat (Triticum aestivum) is induced by epibrassinolide and differentially regulated by light and calcium. J Exp Bot. 2006;57:4059–70.

    Article  CAS  PubMed  Google Scholar 

  • Sinha RP, Klisch M, Helbling EW, Hader DP. Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet-B radiation. J Photochem Photobiol. 2001;60:129–35.

    Article  CAS  Google Scholar 

  • Staneloni RJ, Rodriguez-Batiller MJ, Casal JJ. Abscisic acid, high-light, and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochrome-mediated transcriptional regulation. Mol Plant. 2008;1:75–83.

    Article  CAS  PubMed  Google Scholar 

  • Stirnberg P, Zhao S, Williamson L, Ward S, Leyser O. FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. Plant J. 2012;71:907–20.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Qian M, Wu R, Niu Q, Teng Y, Zhang D. Postharvest pigmentation in red Chineses and pears (Pyrus pyrifolia Nakai) in response to optimum light and temperature. Postharvest Biol Technol. 2014;91:64–71.

    Article  CAS  Google Scholar 

  • Talbott LD, Shmayevich IJ, Chung Y, Hammad JW, Zeiger E. Blue light and phytochrome-mediated stomatal opening in the npq1 and phot1 phot2 mutants of Arabidopsis. Plant Physiol. 2003;133:1522–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbott LD, Zhu J, Han SW, Zeiger E. Phytochrome and blue light-mediated stomatal opening in the orchid, Paphiopedilum. Plant Cell Physiol. 2002;43:639–46.

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Wang W, Chen D, Ji Q, Jing Y, Wang H, Lin R. Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 during de etiolation in Arabidopsis. Plant Cell. 2012;24:1984–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell. 2008;133:164–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tossi V, Cassia R, Bruzzone S, Zocchi E, Lamattina L. ABA says NO to UV-B: a universal response? Trends Plant Sci. 2012;17:510–17.

    Article  CAS  PubMed  Google Scholar 

  • Tossi V, Lamattina L, Cassia R. An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytol. 2009;181:871–9.

    Article  CAS  PubMed  Google Scholar 

  • Vantuyl JM, Vangroenestijin JE, Toxopeus SJ. Low light intensity and flower bud abortion in Asiatic hybrid lilies. I. Genetic variation among cultivars and progenies of a DTALLEL cross. Euphytica. 1985;34:83–92.

    Article  Google Scholar 

  • Vaseva I, Todorova D, Malbeck J, Trávníèková A, Machackova I, Karanov E. Two pea varieties differ in cytokinin oxidase/dehydrogenase response to UV-B irradiation. Gen Appl Plant Physiol. 2006;2006:131–8.

    Google Scholar 

  • Wang Z. Plant physiology. Beijing: Chinese Agriculture Press; 2000. p. 271–3 (in Chinese).

    Google Scholar 

  • Wang F, Guo Z, Li H, Wang M, Onac E, Zhou J, et al. Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiol. 2016;170:459–71.

    Article  PubMed  Google Scholar 

  • Wei YZ, Hu FC, Hu GB, Li XJ, Huang XM, Wang HC. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS One. 2011;6:e19455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller JL, Foo E, Hecht VF, Ridge S, Vander Schoor JK, Reid J. Ethylene signalling influences light-regulated development in pea. Plant Physiol. 2015;169:115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitelam G, Halliday K. Light and plant development. Oxford: Blackwell Publishing; 2007. ISBN 9780470988893.

    Book  Google Scholar 

  • Witztum A, Keren O. Factors affecting abscission in Spirodela oligorhiza (Lemnaceae.) I. Ultraviolet radiation. New Phytol. 1978;80:107–10.

    Article  CAS  Google Scholar 

  • Yang T, Law DM, Davies PL. Magnitude and kinetics of stem elongation induced by exogenous indole-3-acetic acid in intact light-grown pea seedlings. Plant Physiol. 1993;102:717–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, He H, Wang X, Wang X, Yang X, Li L, Deng XW. Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and posttranscriptional regulation. Plant J. 2011;65:346–58.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ji R, Li H, Zhao T, Liu J, Lin C, Liu B. CONSTANS-LIKE 7 (COL7) is involved in phytochrome B (phyB)-mediated light-quality regulation of auxin homeostasis. Mol Plant. 2014;7:1429–40.

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZZ, Che XN, Pan QH, Li XX, Duan CQ. Transcriptional activation of flavan-3-ols biosynthesis in grapeberries by UV irradiation depending on developmental stage. Plant Sci. 2013;208:64–74.

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wang YL, Qiao XR, Wang J, Wang LD, Xu CS, Zhang X. Phototropins function in high-intensity blue light-induced hypocotyls phototropism in Arabidopsis by altering cytosolic calcium. Plant Physiol. 2013;162:1539–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou XY, Song L, Xue HW. Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7. Mol Plant. 2013;6:887–904.

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Maier A, Lee JH, Laubinger S, Saijo Y, et al. Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell. 2008;20:2307–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoratti L, Karppinen EAL, Haggman H, Jaakola L. Light controlled flavonoid biosynthesis in fruits. Front Plant Sci. 2014;5:534.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The financial support from Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India through the research grant (SR/FT/LS-65/2010) and from Council of Scientific and Industrial Research (CSIR), Government of India, through the project [38(1387)/14/EMR-II] to Dr. Aryadeep Roychoudhury is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aryadeep Roychoudhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Banerjee, A., Roychoudhury, A. (2016). Plant Responses to Light Stress: Oxidative Damages, Photoprotection, and Role of Phytohormones. In: Ahammed, G., Yu, JQ. (eds) Plant Hormones under Challenging Environmental Factors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7758-2_8

Download citation

Publish with us

Policies and ethics