Skip to main content

Phytohormonal Responses to Soil Acidity in Plants

  • Chapter
  • First Online:
  • 1469 Accesses

Abstract

Phytohormones play an important role in plant growth and adaptation to various environmental stresses. Acid soils are recognized as one of the most important abiotic stresses, limiting plant growth and reducing crop yield. Furthermore, acid soils can cause changes in phytohormone metabolism such as biosynthesis and action. Thus, in this chapter, we provide a critical overview focused on phytohormone responses, plant hormone balance, and cross-interactions to nutrients and acid soils, including low pH stress (or high H+ toxicity) and low pH-induced aluminum toxicity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit ME. Ethylene in plant biology. 2nd ed. New York: Academic; 1992.

    Google Scholar 

  • Ahammed GJ, Xia XJ, Li X, Shi K, Yu JQ, Zhou YH. Role of brassinosteroid in plant adaptation to abiotic stresses and its interplay with other hormones. Curr Protein Pept Sci. 2015;16:462–73.

    Article  CAS  PubMed  Google Scholar 

  • Aloni B, Cohen R, Karni L, et al. Hormonal signaling in rootstock–scion interactions. Sci Hort. 2010;127:119–26.

    Article  CAS  Google Scholar 

  • Altieri MA. Applying agroecology to enhance productivity of peasant farming systems in Latin America. Environ Dev Sustain. 1999;1:197–217.

    Article  Google Scholar 

  • Barceló J, Poschenrieder C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: a review. Environ Exp Bot. 2002;48:75–92.

    Article  Google Scholar 

  • Besoain E (1985) Mineralogía de arcillas de suelos. In: IICA, editor. Costa Rica, 1985. p 1205

    Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, et al. Identification of gibberellins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol. 1989;90:45–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran D, Sharopova N, VandenBosch K, et al. Physiological and molecular characterization of aluminum resistance in Medicago truncatula. BMC Plant Biol. 2008;8:89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho SH, von Schwartzenberg K, Quatrano R. The role of abscisic acid in stress tolerance. In: Knight CD, Perroud P-F, Cove DJ, editors. Annual plant reviews, vol 36. The Moss, Oxford: Wiley-Blackwell. 2009.

    Google Scholar 

  • Ĉĺžková R. Acidification stress of root environment as related to endogenous cytokinins and gibberellins in oak seedlings. Biol Plant. 1990;32:97–103.

    Article  Google Scholar 

  • Davies PJ. The plant hormones: their nature, occurrence, and functions. In: Davies PJ, editors. Plant hormones: biosynthesis, signal transduction and action, 3rd ed. Dordrecht: Springer. 2010. p. 1–15.

    Google Scholar 

  • Delhaize E, Ryan P. Aluminum toxicity and tolerance in plants. Plat Physiol. 1995;107:315–21.

    CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, et al. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci U S A. 2004;101:15249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd IC, Davies WJ. Hormones and the regulation of water balance. In: Davies PJ, editors. Plant hormones: biosynthesis, signal transduction and action. 3rd ed. Dordrecht: Springer. 2010. p. 241–61.

    Google Scholar 

  • Fageria NK, Santos AB, Cutrim VA. Nitrogen uptake and its association with grain yield in lowland rice genotypes. J Plant Nutr. 2010;32:1965–74.

    Article  CAS  Google Scholar 

  • Francis AJ. Effects of acidic precipitation and acidity on soil microbial processes. Water Air Soil Pollut. 1982;18:375–94.

    Article  CAS  Google Scholar 

  • Galuszka P, Frebort I, Sebela M, et al. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals. Eur J Biochem. 2001;268:450–61.

    Article  CAS  PubMed  Google Scholar 

  • Gamble PE, Mullet JE. Inhibition of carotenoid accumulation and abscisic acid biosynthesis in fluridone-treated dark-grown barley. Eur J Biochem. 1986;160:117–21.

    Article  CAS  PubMed  Google Scholar 

  • Garay-Arroyo A, Ortiz-Moreno E, de la Paz SM, et al. The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. EMBO J. 2013;32:2884–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnica M, Houdusse F, Yvin JC. Nitrate supply induces changes in polyamine content and ethylene production in wheat plants grown with ammonium. J Plant Physiol. 2009;166:363–74.

    Article  CAS  PubMed  Google Scholar 

  • Garnica M, Houdusse F, Angel M, et al. The signal effect of nitrate supply enhances active forms of cytokinins and indole acetic content and reduces abscisic acid in wheat plants grown with ammonium. J Plant Physiol. 2010;167:1264–72.

    Article  CAS  PubMed  Google Scholar 

  • Geoghegan IE, Sprent JI. Aluminum and nutrient concentrations in species native to central Brazil. Commun Soil Sci Plant Anal. 1996;27:2925–34.

    Article  CAS  Google Scholar 

  • Gunse B, Poschenrieder C, Barcelo J. The role of ethylene metabolism in the short-term responses to aluminium by roots of two maize cultivars different in Al-resistance. Environ Exp Bot. 2000;43:73–81.

    Article  CAS  Google Scholar 

  • Haridasan M. Aluminium accumulation by some cerrado native species of central Brazil. Plant Soil. 1982;65:265–73.

    Article  CAS  Google Scholar 

  • Hayat S, Hasan SA, Fariduddin Q, et al. Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J Plant Interact. 2008;3:297–304.

    Article  CAS  Google Scholar 

  • He H, He L, Gu M. Interactions between nitric oxide and plant hormones in aluminum tolerance. Plant Signal Behav. 2012;7:469–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hede AR, Skovmand B, López-Cesati J. Acid soils and aluminum toxicity. In: Application of physiology in wheat breeding, Reynolds, editors, México, D.F, CIMMYT. 2001. p. 172–182.

    Google Scholar 

  • Hede AR, Skovmand B, Lopéz J. Acid soil and aluminum toxicity. Chapter 15, Program wheat. CIMMYT, México. 2003. p. 172–82

    Google Scholar 

  • Hiltner L. Uber neue erfahrungen und probleme auf dem gebiete der bodenbakteriologie. Arbeiten der Deutschen Landwirtschaft Gesellschaft. 1904;98:59–78.

    Google Scholar 

  • Hossain MA, Munemasa S, Nakamura Y, et al. K252a-sensitive protein kinases but not okadaic acid-sensitive protein phosphatases regulate methyl jasmonate-induced cytosolic Ca2+ oscillation in guard cells of Arabidopsis thaliana. J Plant Physiol. 2011;1:1901–8.

    Article  CAS  Google Scholar 

  • Hou N, You J, Pang J, et al. The accumulation and transport of abscisic acid in soybean (Glycine max L.) under aluminum stress. Plant Soil. 2010;330:127–37.

    Article  CAS  Google Scholar 

  • Howe GA. Jasmonates. In: Plant hormones: biosynthesis, signal transduction and action (revised third edition); edited by PJ Davies; published by Springer Dordrecht Heidelberg London New York. 2010. p. 646–80.

    Google Scholar 

  • Hue NV, Craddock GR, Adams F. Effect of organic acids on aluminum toxicity in subsoils. Soil Sei Soc Am J. 1986;50:28–34.

    Article  CAS  Google Scholar 

  • Hüner NPA, Dahal K, Kurepin LV, et al. Potential for increased photosynthetic performance and crop productivity in response to climate change: role of CBFs and gibberellic acid. Front Chem. 2014;2:18.

    PubMed  PubMed Central  Google Scholar 

  • Inostroza-Blancheteau C, Reyes-Diaz M, Aquea F, et al. Biochemical and molecular changes in response to aluminium-stress in highbush blueberry (Vaccinium corymbosum L.). Plant Physiol Biochem. 2011;49:1005–12.

    Article  CAS  PubMed  Google Scholar 

  • Inostroza-Blancheteau C, Rengel Z, Alberdi M, et al. Molecular and physiological strategies to increase aluminum resistance in plants. Mol Biol Rep. 2012;39:2069–79.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Trivellini A, Masood A, et al. Current understanding on ethylene signaling in plants: the influence of nutrient availability. Plant Physiol Biochem. 2013;73:128–38.

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AG, Kitcheva MI. Chlorophyll fluorescence properties of chloroplast membranes isolated from jasmonic acid-treated barley seedlings. J Plant Physiol. 1993;141:410–14.

    Article  CAS  Google Scholar 

  • Ivanov AG, Kitcheva MI, Christov AM, et al. Effects of abscisic acid treatment on the thermostability of the photosynthetic apparatus in barley chloroplasts. Plant Physiol. 1992;98:1228–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov AG, Krol M, Maxwell D, et al. Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophyll cycle. FEBS Lett. 1995;371:61–4.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova EG, Doronina NV, Trotsenko YA. Aerobic methylobacteria are capable of synthesizing auxins. Microbiology. 2001;70:392–7.

    Article  CAS  Google Scholar 

  • Jagendorf AT, Takabe T. Inducers of glycinebetaine synthesis in barley. Plant Physiol. 2001;127:1827–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Hwang JU, Lee M, et al. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Plant Biol. 2010;107:2355–60.

    CAS  Google Scholar 

  • Kennedy IR. Acid soil and acid rain: the impact on the environment of nitrogen and sulphur cycling. Letchworth: Research Studies Press; 1986.

    Google Scholar 

  • Keramat B, Kalantari KM, Arvin MJ. Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). Afr J Microbiol Res. 2009;3:240–4.

    CAS  Google Scholar 

  • Khan AL, Waqas M, Hussain J, et al. Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: An example of Penicillium janthinellum LK5 and comparison with exogenous GA3. J Hazard Maters. 2015;295:70–8.

    Article  CAS  Google Scholar 

  • Kiba T, Kudo T, Kojima M, et al. Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot. 2011;62:1399–409.

    Article  CAS  PubMed  Google Scholar 

  • Kinraide TB. Identity of the rhizotoxic aluminum species. Plant Soil. 1991;134:167–78.

    CAS  Google Scholar 

  • Kinraide TB, Parker DR. Cation ameliorate of aluminium toxicity in wheat. Plant Physiol. 1987;83:546–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinraide TB, Ryan PR, Kochian LV. Al3+-Ca2+ interactions in aluminium rhizotoxicity. II. Evaluating the Ca2+- displacement hypothesis. Planta. 1994;192:104–9.

    CAS  Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, et al. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato. Plant Cell. 1991;3:1187–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Kobayashi Y, Sugimoto M, et al. Characterization of the complex regulation of AtALMT1 expression in response to phytohormones and other inducers. Plant Physiol. 2013;162:732–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Ohyama Y, Kobayashi Y, et al. STOP2 activates transcription of several genes for Al- and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Mol Plant. 2014;7:311–22.

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol. 1995;46:237–60.

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA. How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorous efficiency. Annal Rev Plant Biol. 2004;55:459–93.

    Article  CAS  Google Scholar 

  • Kochian LV, Pineros MA, Liu J, et al. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol. 2015;66:571–98.

    Article  CAS  PubMed  Google Scholar 

  • Kollmeier M, Felle HH, Horst WJ. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol. 2000;122:945–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollmeier M, Dietrich P, Bauer CS, et al. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol. 2001;126:397–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopittke PM, Moore KL, Lombi E, et al. Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol. 2015;167:1402–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama H, Toda T, Hara T. Brief exposure to low-pH stress causes irreversible damage to the growing root in Arabidopsis thaliana: pectin-Ca interaction may play an important role in proton rhizotoxicity. J Exp Bot. 2001;52:361–8.

    Article  CAS  PubMed  Google Scholar 

  • Krouk G, Ruffel S, Gutiérrez RA, et al. A framework integrating plant growth with hormones and nutrients. Trends Plant Sci. 2011;4:1360–85.

    Google Scholar 

  • Kumari M, Taylor G, Deyholos MK. Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Mol Genet Genomics. 2008;279:339–57.

    Article  CAS  PubMed  Google Scholar 

  • Kurepin LV, Pharis RP. Light signaling and the phytohormonal regulation of shoot growth. Plant Sci. 2014;229:280–9.

    Article  CAS  PubMed  Google Scholar 

  • Kurepin LV, Shah S, Reid DM. Light quality regulation of endogenous levels of auxin, abscisic acid and ethylene evolution in petioles and leaves of wild type and ACC deaminase transgenic Brassica napus seedlings. Plant Growth Regul. 2007;52:53–60.

    Article  CAS  Google Scholar 

  • Kurepin LV, Emery RJN, Chinnappa CC, et al. Light irradiance differentially regulates endogenous levels of cytokinins and auxin in alpine and prairie genotypes of Stellaria longipes. Physiol Plant. 2008;134:624–35.

    Article  CAS  PubMed  Google Scholar 

  • Kurepin LV, Walton LJ, Reid DM, et al. Light regulation of endogenous salicylic acid levels in hypocotyls of Helianthus annuus seedlings. Botany. 2010;88:668–74.

    Article  CAS  Google Scholar 

  • Kurepin L, Haslam T, Lopez-Villalobos A, et al. Adventitious root formation in ornamental plants: II. The role of plant growth regulators. Prop Ornam Plants. 2011a;11:161–71.

    Google Scholar 

  • Kurepin LV, Walton LJ, Pharis RP, et al. Interactions of temperature and light quality on phytohormone-mediated elongation of Helianthus annuus hypocotyls. Plant Growth Regul. 2011b;64:147e154.

    Article  CAS  Google Scholar 

  • Kurepin LV, Joo S-H, Kim S-K, et al. Interaction of brassinosteroids with light quality and plant hormones in regulating shoot growth of young sunflower and Arabidopsis seedlings. J Plant Growth Regul. 2012a;31:156–64.

    Article  CAS  Google Scholar 

  • Kurepin LV, Walton LJ, Hayward A, et al. Interactions between plant hormones and light quality signaling in regulating the shoot growth of Arabidopsis thaliana seedlings. Botany. 2012b;90:237–46.

    Article  CAS  Google Scholar 

  • Kurepin LV, Farrow S, Walton LJ, et al. Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling: cytokinins. Environ Exp Bot. 2012c;84:25–32.

    Article  Google Scholar 

  • Kurepin LV, Ozga JA, Zaman M, et al. The physiology of plant hormones in cereal, oilseed and pulse crops. Prairie Soils Crops. 2013a;6:7–23.

    Google Scholar 

  • Kurepin LV, Dahal KP, Savitch LV, et al. Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. Int J Mol Sci. 2013b;14:12729–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurepin LV, Dahal KP, Zaman M et al. Interplay between environmental signals and endogenous salicylic acid concentration. In: Hayat S, Ahmad A, Alyemini MN, editors. Salicylic acid: plant growth and development. Dordrecht: Springer. 2013c. p. 61–82.

    Google Scholar 

  • Kurepin LV, Zaman M, Pharis RP. Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators. J Sci Food Agric. 2014;95:1715–22.

    Article  CAS  Google Scholar 

  • Kurepin LV, Ivanov AG, Zaman M, et al. Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynth Res. 2015a;126:221–35.

    Article  CAS  PubMed  Google Scholar 

  • Kurepin LV, Park JM, Lazarovits G, et al. Burkholderia phytofirmans-induced shoot and root growth promotion is associated with endogenous changes in plant growth hormone levels. Plant Growth Regul. 2015b;75:199–207.

    Article  CAS  Google Scholar 

  • Kurepin LV, Park JM, Lazarovits G, et al. Involvement of plant stress hormones in Burkolderia phytofirmans-induced shoot and root growth promotion. Plant Growth Regul. 2015c;77:179–87.

    Article  CAS  Google Scholar 

  • Kurepin LV, Pharis RP, Emery RJN, et al. Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling, gibberellins and auxin. Plant Physiol Biochem. 2015d;94:174–80.

    Article  CAS  PubMed  Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H, et al. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A. 2010;107:2361–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuromori T, Sugimoto E, Shinozaki K. Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J. 2011;67:885–94.

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, ChapinIII FH, Pons TJ. Mineral nutrition, 2nd ed. Plant physiological ecology. Springer. 2008. p. 255–320.

    Google Scholar 

  • Leng P, Yuan B, Guo Y, et al. The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot. 2014;65:4577–88.

    Article  PubMed  Google Scholar 

  • Li XF, Ma JF, Matsumoto H. Aluminum-induced secretion of both citrate and malate in rye. Plant Soil. 2002;242:235–43.

    Article  CAS  Google Scholar 

  • Luchi S, Koyama H, Iuchi A, et al. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci U S A. 2007;104:9900–5.

    Article  CAS  Google Scholar 

  • Ma JF. Role of organic acids in detoxification of Al in higher plants. Plant Cell Physiol. 2000;44:383–90.

    Article  Google Scholar 

  • Ma B, Wan J, Shen Z. H2O2 production and antioxidant responses in seeds and early seedlings of two different rice varieties exposed to aluminum. Plant Growth Regul. 2007;52:91–100.

    Article  CAS  Google Scholar 

  • Maslenkova LT, Miteva TS, Ppopova LP. Changes in the polypeptide patterns of barley seedlings exposed to jasmonic acid and salinity. Plant Physiol. 1992;98:700–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massot N, Nicander B, Barceló J, et al. A rapid increase in cytokinin levels and enhanced ethylene evolution precede Al3+-induced inhibition of root growth in bean seedlings (Phaseolus vulgaris L.). Plant Growth Regul. 2002;37:105–12.

    Article  CAS  Google Scholar 

  • Masucci JD, Schiefelbein JW. The rhd6 mutation of Arabidopsis thaliana alters root hair initiation through an auxin and ethylene associated process. Plant Physiol. 1994;106:1335–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol. 2000;200:1–46.

    Article  CAS  PubMed  Google Scholar 

  • Mattiello L, Kirst M, da Silva F, et al. Transcriptional profile of maize roots under acid soil growth. BMC Plant Biol. 2010;10:196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Millaleo R, Reyes-Diaz M, Ivanov AG, et al. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr. 2010;10:470–81.

    Article  Google Scholar 

  • Mitscherlich EA. Das gesetz des minimums und das Gesetz des abnehmenden Bodenertrages Landwirtschaftliche Jahrbücher. 1909;38:537–52.

    Google Scholar 

  • Mora ML, Cartes P, Demanet R, et al. Effects of lime and gypsum on pasture growth and composition on an acid Andisol in Chile, South America. Commun Soil Sci Plant Anal. 2002;33:2069–81.

    Article  CAS  Google Scholar 

  • Mora ML, Demanet R, Vistoso E, et al. Influence of sulfate concentration in mineral solution on ryegrass grown at different pH and aluminum levels. J Plant Nutr. 2005;28:1–16.

    Article  CAS  Google Scholar 

  • Mora ML, Alfaro MA, Jarvis SC, et al. Soil aluminum availability in Andisols of Southern Chile and its effect on forage production and animal metabolism. Soil Use Manage. 2006;22:95–101.

    Article  Google Scholar 

  • Normanly J, Slovin JP, Cohen JD. Auxin biosynthesis and metabolism. In: Davies PJ, editor. Plant hormones: biosynthesis, signal transduction and action. 3rd ed. Dordrecht: Kluwer Academic Publishers; 2010. p. 36–62.

    Chapter  Google Scholar 

  • O'Neill DP, Ross JJ. Auxin regulation of the gibberellin pathway in pea. Plant Physiol. 2002;130:1974–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panda SK, Patra HK. Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa leaves. Acta Physiol Plant. 2007;29:567–75.

    Article  CAS  Google Scholar 

  • Pansu M, Gautheyrou J. Handbook of soil analysis: mineralogical, organic and inorganic methods. Berlin/Heidelberg: Springer. 2006. 995 p.

    Google Scholar 

  • Park J, Nguyen KT, Park E, et al. DELLA proteins and their interacting RING finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis. Plant Cell. 2013;25:927–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park EJ, Lee WY, Kurepin LV, et al. Plant hormone-assisted early family selection in Pinus densiflora via a retrospective approach. Tree Physiol. 2015;35:86–94.

    Article  PubMed  Google Scholar 

  • Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr Biol. 2011;14:290–5.

    CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, et al. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 2002;32:539–48.

    Article  CAS  PubMed  Google Scholar 

  • Piñeros MA, Shaff JE, Manslank S, et al. Aluminum resistance in maize cannot be solely explained by root organic exudation: A comparative physiological study. Plant Physiol. 2005;137:231–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Popova LP, Tsonev TD, Vaklinova SG. Changes in some photosynthetic and photo respiratory properties in barley leaves after treatment with jasmonic acid. J Plant Physiol. 1988;132:257–61.

    Article  CAS  Google Scholar 

  • Puga-Freitas R, Blouin M. A review of the effects of soil organisms on plant hormone signaling pathways. Environ Exp Bot. 2015;114:104–16.

    Article  CAS  Google Scholar 

  • Qiguang Q, Lizhong R, Guohua D. Effects of ethephon, GA3 and nutrient elements on sex expression of Chinese chestnut. Sci Hort. 1985;26:209–15.

    Article  Google Scholar 

  • Quinteiro MA, Furtado de Almeida A, Schramm M, et al. Aluminum effects on growth, photosynthesis, and mineral nutrition of cacao genotypes. J Plant Nutr. 2013;36:1161–79.

    Article  CAS  Google Scholar 

  • Raman A, Hosokawa S, Oono Y, et al. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol. 2002;130:1908–17.

    Article  CAS  Google Scholar 

  • Rengel Z. Role of calcium in aluminium toxicity. New Phytol. 2006;121:499–513.

    Article  Google Scholar 

  • Reyes-Díaz M, Alberdi M, Mora ML. Short-term aluminum stress differentially affects the photochemical efficiency of photosystem II in highbush blueberry genotypes. J Amer Soc Hort Sci. 2009;134:14–21.

    Google Scholar 

  • Reyes-Díaz M, Inostroza-Blancheteau C, Millaleo R, et al. Long-term aluminum exposure effects on physiological and biochemical features of highbush blueberry cultivars. J Am Soc Hortic Sci. 2010;135:212–22.

    Google Scholar 

  • Reyna-Llorens I, Corrales I, Poschenrieder C, et al. Both aluminum and ABA induce the expression of an ABC-Like transporter gene (FeALS3) in the tolerant species Fagopyrum esculentum. Environ Exp Bot. 2014;111:74–82.

    Article  CAS  Google Scholar 

  • Ross JJ, Weston DE, Davidson SE, et al. Plant hormone interactions: how complex are they? Physiol Plant. 2011;141:299–309.

    Article  CAS  PubMed  Google Scholar 

  • Rousk J, Brookes PC, Bååth E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol. 2009;75:1589–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio-Wilhelmi MM, Sanchez-Rodriguez E, Rosales MA, et al. Effect of cytokinins on oxidative stress in tobacco plants under nitrogen deficiency. J Exp Bot. 2011;72:167–73.

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, et al. A wheat gene encoding an aluminum-activated malate transporter. Plant J. 2004;37:645–53.

    Article  CAS  PubMed  Google Scholar 

  • Sawaki Y, Iuchi S, Kobayashi Y, et al. STOP1 regulates multiple genes which protect Arabidopsis from proton and aluminum toxicities. Plant Physiol. 2009;150:281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz SH, Zeevaart JAD. Abscisic acid biosynthesis and metabolism. In: Davies PJ, editor. Plant hormones: biosynthesis, signal transduction and action, 3 (revised) edn. Dordrecht: Springer; 2010. p. 137–55.

    Chapter  Google Scholar 

  • Shen H, Ligaba A, Yamaguchi M, et al. Effect of K-252a and abscisic acid on the efflux of citrate from soybean roots. J Exp Bot. 2004;55:663–71.

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Hou NY, Schlicht M, et al. Aluminum toxicity targets PIN2 in Arabidopsis root apices: effects on PIN2 endocytosis vesicular recycling, and polar auxin transport. Chinese Sci Bull. 2008;53:2480–7.

    CAS  Google Scholar 

  • Shoji S, Nanzyo M, Dahlgren RA. Volcanic ash soils: genesis, properties and utilization. Dev Soil Sci. 1993;21:1–288.

    Article  Google Scholar 

  • Soon YK. Solubility and retention of phosphate in soils of the North western Canadian prairie. Can Soil Sci J. 1991;71:453–63.

    Article  CAS  Google Scholar 

  • Spollansky T. Effect of jasmonic acid and aluminum on production of tropane alkaloids in hairy root cultures of Brugmansia candida. Elec J Biot. 2000;3:0717–3458.

    Google Scholar 

  • Sun P, Tian QY, Zhao MG, et al. Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicas L. Plant Cell Physiol. 2007;48:1229–35.

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Tian QY, Chen J, et al. Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J Exp Bot. 2010;61:347–56.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H. How do lettuce seedlings adapt to low-pH stress conditions? A mechanism for low-pH induced root hair formation in lettuce seedlings. In: Khan NA et al., editors. Phytohormones and abiotic stress tolerance in plants. Heidelberg/Dordrecht/London: Springer; 2012. p. 125–55.

    Chapter  Google Scholar 

  • Takahashi H, Inoue Y. Stage-specific crosstalk between light, auxin, and ethylene during low-pH-induced root hair formation in lettuce (Lactuca sativa L.) seedlings. Plant Growth Regul. 2008;56:31–41.

    Article  CAS  Google Scholar 

  • Talanova VV, Titov AF, Boeva NP. Effect of increasing concentrations of lead and cadmium on cucumber seedlings. Biol Plant. 2000;43:441–4.

    Article  CAS  Google Scholar 

  • Tanada T. Indoleacetic acid and abscisic acid antagonism. Plant Physiol. 1973;51:150–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Garvin DF, Kochian LV, et al. Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Sci. 2002;42:1541–6.

    Article  Google Scholar 

  • Tian Q, Zhang X, Ramesh S, et al. Ethylene negatively regulates aluminium-induced malate efflux from wheat roots and tobacco cells transformed with TaALMT1. J Exp Bot. 2014;65:2415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Uexküll HR, Mutert E. Global extent, development and economic impact of acid soils. Plant Soil. 1995;171:1–15.

    Article  Google Scholar 

  • Vysotskaya LB, Korobova AV, Kudoyarova GR. Abscisic acid accumulation in the roots of nutrient-limited plants: its impact on the differential growth of roots and shoots. J Plant Physiol. 2008;165:1274–9.

    Article  CAS  PubMed  Google Scholar 

  • Wada K. Distinctive properties of Andosols. In: Advances in soil science. New York: Springer; 1985. p. 175–229.

    Google Scholar 

  • Walton LJ, Kurepin LV, Yeung EC, et al. Ethylene involvement in silique and seed development of canola (Brassica napus L.). Plant Physiol Biochem. 2012;58:142–50.

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Irving HR. Developing a model of plant hormone interactions. Plant Signal Behav. 2011;6:494–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Raman H, Zhang G, et al. Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods. J Zhejiang Univ Sci B. 2006;10:769–87.

    Article  CAS  Google Scholar 

  • Waqas M, Khan AL, Kamran M, et al. Endophytic fungi produce gibberellins and indole acetic acid and promotes host-plant growth during stress. Molecules. 2012;17:10754–73.

    Article  CAS  PubMed  Google Scholar 

  • Wei K, Wang X, Chen X, et al. Hormonal changes in grains of cv. Triumph and its mutant TL43 as affected by nitrogen fertilizer at heading time. J Cereal Sci. 2009;49:246–9.

    Article  CAS  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, et al. Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot. 2012;63(9):3499–509.

    Article  CAS  PubMed  Google Scholar 

  • Xue YJ, Tao L, Yang ZM. Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. J Agric Food Chem. 2008;56:9676–84.

    Article  CAS  PubMed  Google Scholar 

  • Yakimova ET, Kapchina-Toteva VM, Weltering EJ. Signal transduction events in aluminum-induced cell death in tomato suspension cells. J Plant Physiol. 2007;164:702–8.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang QL, Geng MJ, et al. Effect of indole-3-acetic acid on aluminum-induced efflux of malic acid from wheat (Triticum aestivum L.). Plant Soil. 2011;346:215–30.

    Article  CAS  Google Scholar 

  • Yuan Y, Liu YJ, Huang LQ, et al. Soil acidity elevates some phytohormone and β-Eudesmol contents in roots of Atractylodes lancea. Russ J Plant Physiol. 2009;56:133–7.

    Article  CAS  Google Scholar 

  • Zaman M, Ghani A, Kurepin LV, et al. Improving ryegrass-clover pasture dry matter yield and urea efficiency with gibberellic acid. J Sci Food Agric. 2014;94:2521–8.

    Article  CAS  PubMed  Google Scholar 

  • Zaman M, Kurepin LV, Catto W, et al. Enhancing crop yield with the use of N-based fertilizers co-applied with plant hormones or growth regulators. J Sci Food Agric. 2015;95:1777–85.

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart JAD, Creelman RA. Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol. 1988;39:439–73.

    Article  CAS  Google Scholar 

  • Zheng SJ. Crop production on acidic soils: overcoming aluminum toxicity and phosphorus deficiency. Ann Bot. 2010;106:183–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou P, Yang F, Ren X, et al. Phytotoxicity of aluminum on root growth and indole-3-acetic acid accumulation and transport in alfalfa roots. Environ Exp Bot. 2014;104:1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Fondecyt N 1120917 project and Conicyt fellowship program both from Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) of the Government of Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjorie Reyes-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reyes-Díaz, M., Ulloa-Inostroza, E.M., González-Villagra, J., Ivanov, A.G., Kurepin, L.V. (2016). Phytohormonal Responses to Soil Acidity in Plants. In: Ahammed, G., Yu, JQ. (eds) Plant Hormones under Challenging Environmental Factors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7758-2_6

Download citation

Publish with us

Policies and ethics