Advertisement

Molecular Mechanism of Hepatic Metastasis of Colorectal Cancer

  • Shu Zheng
Chapter

Abstract

In the event of distant metastasis of colorectal cancer event, the liver is the main metastatic site, accounting for about 38–60 % [1]. Early-stage hepatic metastasis of colorectal cancer has few clinical manifestations. Only 20 % of patients are suitable for surgical treatment [2], and 5-year survival rate of the patients with hepatic metastasis of colorectal cancer is nearly zero if they do not receive any treatment. Hepatic metastasis is one of the main reasons for the death of colorectal cancer patients. It is a problem that should be solved to probe the mechanism of hepatic metastasis of colorectal cancer and find molecular markers for early diagnosis and treatment targets.

Keywords

Colorectal Cancer Hepatic Metastasis Vascular Endothelial Growth Factor Receptor Colorectal Cancer Cell Metastatic Focus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kemeny N, Seiter K. Colon and rectal carcinoma. In: Handbook of chemotherapy in clinical oncology. SCI ed. 1993:589–94.Google Scholar
  2. 2.
    Stangl R, Altendorf-Hofmann A, Charnley RM, et al. Factors influencing the natural history of colorectal liver metastases. Lancet. 1994;343(8910):1405–10.CrossRefPubMedGoogle Scholar
  3. 3.
    Greenman C, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446(7132):145–6.CrossRefGoogle Scholar
  4. 4.
    Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005;132:3151–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Moody SE, et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell. 2005;8:197–209.CrossRefPubMedGoogle Scholar
  6. 6.
    De Vita VT, Hellman S, Rosenberg S. Principles of oncology. 5th ed. Philadelphia: Lippincott Raven Publisher; 1997. p. 135 [M].Google Scholar
  7. 7.
    Lanier LI. Activating and inhibitory NK cell receptor. Adv Exp Med Biol. 1998;18(2):452.Google Scholar
  8. 8.
    Fidler IJ. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst. 1970;45:773.PubMedGoogle Scholar
  9. 9.
    Reya T, Morrison SJ, Clafke MF, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–511.CrossRefPubMedGoogle Scholar
  10. 10.
    Fidler IJ. Modulation of the organ microenvironment for treatment of cancer metastasis. J Natl Cancer Inst. 1995;87:1588–92.CrossRefPubMedGoogle Scholar
  11. 11.
    Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;1:571.CrossRefGoogle Scholar
  12. 12.
    Kaplan RN, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):750–1.CrossRefGoogle Scholar
  13. 13.
    Liotta LA. Cancer cell invasion and metastasis. Sci Am. 1992;266(2):54–9, 62–3.CrossRefPubMedGoogle Scholar
  14. 14.
    Jorg H, et al. Cell surface molecules and their prognostic values in assessing colorectal carcinomas. Ann Surg. 2000;231:11.CrossRefGoogle Scholar
  15. 15.
    Mohri Y. Prognostic significance of E-cadherin expression in human colorectal cancer tissue. Surg Today. 1997;27:606–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Ilyas M, Novelli M, Wilkinson K, et al. Tumour recurrence is associated with Jass grouping but not with differences in E-cadherin expression in moderately differentiated Dukes’ B colorectal cancers. J Clin Pathol. 1997;50:218–22.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Skoudy A, Gomez S, Fabre M, et al. p120-catenin expression in human colorectal cancer. Int J Cancer. 1996;68:14–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Castells A, Boix L, Bessa X, et al. Detection of colonic cells in peripheral blood of colorectal cancer patients by means of reverse transcriptase polymerase chain reaction. Br J Cancer. 1998;78(10):1368.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gothy DC, Fawcett S, Walsh D, et al. Alternatively spliced variants of cell adhesion molecule CD44 and tumor progression in colorectal cancer. Br J Cancer. 1996;74(3):342.CrossRefGoogle Scholar
  20. 20.
    Takamura H, Endo Y, Ninomiya I, et al. Comparison of the pattern of integrin expression between primary tumors and liver metastasis of gastric and colorectal cancers. Nippon Rinsho. 1995;53(7):1678–82.PubMedGoogle Scholar
  21. 21.
    Fujita S, Sugano K. Expression of c-met proto-oncogene in primary colorectal cancer and liver metastases. Jpn J Clin Oncol. 1997;27:378–83.CrossRefPubMedGoogle Scholar
  22. 22.
    Picon A, Gold LI, Wang J, et al. A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor beta1. Cancer Epidemiol Biomarkers Prev. 1998;7:497–504.PubMedGoogle Scholar
  23. 23.
    Kawano, Osawa T, Ito I, et al. Expression of gelatinase A, tissue inhibitor of metalloproteinases-2, matrilysin, and trypsin(ogen) in lung neoplasms: an immunohistochemical study. Hum Pathol. 1997;28(5):613–22.CrossRefPubMedGoogle Scholar
  24. 24.
    Yasumitsu H, Shofuda K, Nishihashi A, et al. Assignment of human membrane-type matrix metalloproteinase-2 (MT2-MMP) gene to 16q12 by FISH and PCR-based human/rodent cell hybrid mapping panel analysis. DNA Res. 1997;4(1):77–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Ichikawa Y, Ishikawa T, Tanaka K, et al. Extracellular matrix degradation enzymes: important factors in liver metastasis of colorectal cancer and good targets for anticancer metastatic therapy. Nippon Geka Gakkai Zasshi. 2001;102(5):376–80.PubMedGoogle Scholar
  26. 26.
    Takahashi Y, Bucana CD, Liu W, et al. Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells. J Natl Cancer Inst. 1996;88:1146–51.CrossRefPubMedGoogle Scholar
  27. 27.
    Nobuya Y, Yong-Suk C, Kiyoshi M, et al. Increased expression of sialyl Lewis a and sialyl x in liver metastasis of human colorectal carcinoma. Invasion Metastasis. 1995;15:95–102.Google Scholar
  28. 28.
    Shoji N, Masao K, Shingi I, et al. Increased expression of sialyl lewis x antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immuno-histochemical study. Cancer Res. 1993;53(15):3632–7.Google Scholar
  29. 29.
    Ding Ling, Zheng Shu, Cao Jiang. Relation between the expression of mRNA of Osteopontin and protein in large intestinal cancer and hepatic metastasis. Natl Med J China. 2002. 82(14):970–73.Google Scholar
  30. 30.
    Schraml P, et al. cDNA subtraction library construction using a magnet-assisted subtraction technique (MAST). Trends Genet. 1993;9(3):70–1.CrossRefPubMedGoogle Scholar
  31. 31.
    Okamoto OK, et al. Common molecular pathways involved in human CD133+/CD34+ progenitor cell expansion and cancer. Cancer Cell Int. 2007;7:11.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ge Weiting, Zheng Shu, Sun Lifeng, Shi Ying, Hhu Hanguang, Ding Kefeng. Expression and purification of ST14, a tumor metastasis-associated protein, and its activity assay. J Biochem Mol Biol. 2004. 20(5):685–89.Google Scholar
  33. 33.
    Lin CY, Wang JK, Torri J, Dou L, Sang QA, Dickson RB. Characterization of a novel, membrane-bound, 80-kDa matrix-degrading protease from human breast cancer cells. Monoclonal antibody production, isolation, and localization. J Biol Chem. 1997;272(14):9147–52.CrossRefPubMedGoogle Scholar
  34. 34.
    Lin CY, Anders J, Johnson M, Sang QA, Dickson RB. Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem. 1999;274(26):18231–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Takeuchi T, Shuman MA, Craik CS. Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci U S A. 1999;96(20):11054–61.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Saha S, VogelsteinSaha B, et al. A phosphatase associated with metastasis of colorectal cancer. Science. 2001;294:1343–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Kato H, Semba S, Miskad UA, Seo Y, Kasuga M, Yokozaki H. High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: a predictive molecular marker of metachronous liver and lung metastases. Clin Cancer Res. 2004;10:7318–28.CrossRefPubMedGoogle Scholar
  38. 38.
    Peng L, Ning J, Meng L, Shou C. The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. J Cancer Res Clin Oncol. 2004;130:521–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang Y, Li ZF, He J, Li YL, Zhu GB, Zhang LH. Expression of the human phosphatases of regenerating liver (PRLs) in colonic adenocarcinoma and its correlation with lymph node metastasis. Int J Colorectal Dis. 2007;22:1179–84.CrossRefPubMedGoogle Scholar
  40. 40.
    St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, et al. Genes expressed in human tumor endothelium. Science. 2000;289:1197–202.CrossRefPubMedGoogle Scholar
  41. 41.
    Bardelli A, Saha S, Sager JA, Romans KE, Xin B, Markowitz SD, et al. PRL-3 expression in metastatic cancers. Clin Cancer Res. 2003;9:5607–15.PubMedGoogle Scholar
  42. 42.
    Guo K, Li J, Tang JP, Koh V, Gan BQ, Zeng Q. Catalytic domain of PRL-3 plays an essential role in tumor metastasis: formation of PRL-3 tumors inside the blood vessels. Cancer Biol Ther. 2004;3:945–51.CrossRefPubMedGoogle Scholar
  43. 43.
    Guo K, Li J, Wang H, Osato M, Tang JP, Quah SY, et al. PRL-3 initiates tumor angiogenesis by recruiting endothelial cells in vitro and in vivo. Cancer Res. 2006;66:9625–35.CrossRefPubMedGoogle Scholar
  44. 44.
    Rouleau C, Roy A, St Martin T, Dufault MR, Boutin P, Liu D, et al. Protein tyrosine phosphatase PRL-3 in malignant cells and endothelial cells: expression and function. Mol Cancer Ther. 2006;5:219–29.CrossRefPubMedGoogle Scholar
  45. 45.
    Wang H, Quah SY, Dong JM, et al. PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res. 2007;67:2922–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Fiordalisi JJ, Keller, et al. PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Res. 2006;66:3153–61.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht and People's Medical Publishing House 2017

Authors and Affiliations

  1. 1.Cancer InstituteThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina

Personalised recommendations