Skip to main content

Pesticide Toxicity to Microorganisms: Exposure, Toxicity and Risk Assessment Methodologies

  • Chapter
  • First Online:
Pesticide Toxicity to Non-target Organisms

Abstract

Microbes play a major role in medical technology, food processing, biotechnology, agriculture and many other fields. The major route of pesticide exposure to microbes in the environment is through soil application, spray drifts and dumping of pesticides in soil. Pesticides affecting microbial biomass, growth and respiration affecting the microbial community and diversity are well studied. The estimation of total biomass directly, perhaps includes the active and dormant microbes. Indirect biomass assessments by measuring microbial biomass carbon/nitrogen by fumigation method or through the estimation of ATP, phospholipid fatty acids are being explained. Estimation of soil respiration is the oldest but extensively used technique being done as basal and as substrate induced respiration. Pesticide toxicity on microbial activities especially of enzyme activities is well documented. Determination of soil enzymes through fluorescein diacetate hydrolysis, functional richness as determined by carbon utilization pattern, structural diversity through phospholipid fatty acid profiling, genetic diversity through 16s rDNA analysis are commonly used to test the pesticide toxicity. Cultivation independent methods mostly relay on DNA sequencing, proteomics and metabolomics studies. Methodologies for mesocosm or semifield and field experiments are also explained and discussed. Though microbes are responsible for many ecosystem services, soil ecotoxicological risk assessment guidelines do not consider microbes as assessment end points. Unlike other groups, risk assessment procedures for microbes are neither extensively used nor well developed. Risk assessment by studying the microbial activities by giving weightage to important activities, multi-tiered risk assessment approach, comparison with beneficial and harmful microbial susceptibility to pesticides and assessing hazardous concentration are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • C. Accinelli, C. Screpanti, G. Dinelli, A. Vicari, Short-time effects of pure and formulated herbicides on soil microbial activity and biomass. Intl. J. Environ. Anal. Chem. 82, 519–527 (2002)

    Article  CAS  Google Scholar 

  • A.O. Adesemoye, J.W. Kloepper, Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 85, 1–12 (2009)

    Article  CAS  PubMed  Google Scholar 

  • M. Ahemad, M.S. Khan, Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. Strain PS19. Curr. Microbiol. 62, 532–538 (2011)

    Article  CAS  PubMed  Google Scholar 

  • M. Ahemad, M.S. Khan, Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J. Saudi Soc. Agric. Sci. 11(1), 63–71 (2012)

    CAS  Google Scholar 

  • S. Ahmed, M.S. Ahmad, Effect of insecticides on the total number of soil bacteria under laboratory and field conditions. Pak. Entomol. 28(2), 63–68 (2006)

    Google Scholar 

  • A. Alamdara, J.H. Syeda, R.N. Malik, A. Katsoyiannis, J. Liu, J. Li, G. Zhang, K.C. Jones, Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air–soil exchange. Sci. Total Environ. 470&471, 733–741 (2014)

    Article  CAS  Google Scholar 

  • K. Alef, P. Nannipieri, Enzyme activities, in Methods in Applied Soil Microbiology and Biochemistry, ed. by K. Alef, P. Nannipieri (Academic, San Diego, 1995), pp. 311–373

    Google Scholar 

  • L. Alletto, Y. Coquet, P. Benoit, D. Heddadj, E. Barriuso, Tillage management effects on pesticide fate in soils- a review. Agron. Sustain. Dev. 30, 367–400 (2010)

    Article  CAS  Google Scholar 

  • R.I. Amann, W. Ludwig, K.H. Schleifer, Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiol. Rev. 59, 143–169 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  • M. Amato, J.N. Ladd, Assay for microbial biomass based on ninhydrin-reactive nitrogen in extracts of fumigated soils. Soil Biol. Biochem. 20(1), 107–114 (1988)

    Article  CAS  Google Scholar 

  • N.D. Ananyeva, T.S. Demkina, U.C. Stin, The stability of microbial communities in pesticide-treated soils. Pochvovedenic 1, 69–74 (1997)

    Google Scholar 

  • P. Ander, K.E. Eriksson, Selective degradation of wood components by white-rot fungi. Physiol. Plant. 41, 239–248 (1977)

    Article  CAS  Google Scholar 

  • J.P.E. Anderson, Methods to evaluate pesticide damage to the biomass of the soil microflora. Soil Biol. Biochem. 13, 149–153 (1981)

    Article  CAS  Google Scholar 

  • J.P.E. Anderson, K.H. Domsch, A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978)

    Article  CAS  Google Scholar 

  • J.P.E. Anderson, K.H. Domsch, Maintenance carbon requirements of actively metabolizing microbial populations under in situ situations. Soil Biol. Biochem. 17, 197–203 (1985)

    Article  CAS  Google Scholar 

  • T.H. Anderson, K.H. Domsch, Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem. 22, 251–255 (1990)

    Article  Google Scholar 

  • J.H. Andrews, R.F. Harris, The ecology and biogeography of microorganisms on plant surfaces. Annu. Rev. Phytopathol. 38, 145–180 (2000)

    Article  PubMed  Google Scholar 

  • A.S.F. Araujo, R.T.R. Monterio, R.B. Abarkeli, Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52, 799–804 (2003)

    Article  CAS  PubMed  Google Scholar 

  • T.N. Arkhipova, E. Prinsen, S.U. Veselov, E.V. Martinenko, A.I. Melentiev, G.R. Kudoyarova, Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292, 305–315 (2007)

    Article  CAS  Google Scholar 

  • J. Artigas, J. Majerholc, A. Foulquier, C. Margoum, B. Volat, M. Neyra, S. Pesce, Effects of the fungicide tebuconazole on microbial capacities for litter breakdown in streams. Aquat. Toxicol. 122&123, 197–205 (2012)

    Article  CAS  Google Scholar 

  • F. Asch, J.L. Padham, Root associated bacteria suppress symptoms of iron toxicity in lowland rice, in The Global Food and Product Chain – Dynamics, Innovations, Conflicts, Strategies, ed. by E. Tielkes, C. Hulsebusch, I. Hauser, A. Deininger, K. Becker (MDD GmbH, Stuttgart, 2005). 276 p

    Google Scholar 

  • G.K. Aseri, N. Jain, J. Panwar, A.V. Rao, P.R. Meghwal, Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci. Horticult. 117, 130–135 (2008)

    Article  Google Scholar 

  • M. Ashraf, S. Hasnain, O. Berge, T. Mahmood, Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol. Fert. Soils 40, 157–162 (2004)

    CAS  Google Scholar 

  • L. Avidano, E. Gamalero, G.P. Cossa, E. Carraro, Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl. Soil Ecol. 30, 21–33 (2005)

    Article  Google Scholar 

  • V.L. Bailey, C.L. Bilskis, S.J. Fansler, L.A. McCue, J.L. Smith, A. Konopka, Measurements of microbial community activities in individual soil macroaggregates. Soil Biol. Biochem. 48, 192–195 (2012)

    Article  CAS  Google Scholar 

  • L.E. Bairamov, L.V. Vinogradova, A.A. Zavalin, Nitrogen nutrition and productivity of barley as conditioned by the application of associative diazotrophs. Appl. Biol. 63, 135–139 (2001)

    Google Scholar 

  • A. Ball, W. Betts, A. McCarthy, Degradation of lignin related compounds by Actinomycetes. Appl. Environ. Microbiol. 55, 1642–1644 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  • M. Banerjee, L. Yesmin, Sulfur oxidizing plant growth promoting rhizobacteria for enhanced canola performance (2002). Retrieved from http://www.google.com/patents/US7517687

  • E.A. Barka, J. Nowak, C. Clement, Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol. 72, 7246–7252 (2006)

    Article  CAS  Google Scholar 

  • E. Barrios, Soil biota, ecosystem services and land productivity. Ecol. Econ. 64, 269–285 (2007)

    Article  Google Scholar 

  • F. Bastida, J.L. Moreno, C. Nicolas, T. Hernandez, C. Garcia, Soil metaproteomics: a review of an emerging environmental science -significance, methodology and perspectives. Eur. J. Soil Sci. 60, 845–859 (2009)

    Article  CAS  Google Scholar 

  • P. Baumann, M.A. Clark, L. Baumann, A.H. Broadwell, Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiol. Mol. Biol. Rev. 55(3), 425–436 (1991)

    CAS  Google Scholar 

  • G.A. Beattie, S.E. Lindow, The secret life of foliar bacterial pathogens on leaves. Annu. Rev. Phytopathol. 33, 145–172 (1995)

    Article  CAS  PubMed  Google Scholar 

  • P.V. Beelen, P. Doelman, Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment. Chemosphere 34, 455–499 (1997)

    Article  Google Scholar 

  • J.M.R. Benayas, A.C. Newton, A. Diaz, J.M. Bullock, Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325, 1121–1124 (2009)

    Article  CAS  Google Scholar 

  • S. Bensalim, J. Nowak, S.K. Asiedu, A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am. J. Potato Res. 75, 145–152 (1998)

    Article  Google Scholar 

  • G. Berg, Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84, 11–18 (2009)

    Article  CAS  PubMed  Google Scholar 

  • U.G. Berninger, B.J. Finlay, P. Kuuppo-Leinikki, Protozoan control of bacterial abundances in fresh waters. Limnol. Oceanogr. 36, 139–147 (1991)

    Article  Google Scholar 

  • S. Bhattacharya, A. Das, Study of physical and cultural parameters on the vacteriocins produced by lactic acid bacteria isolated from traditional Indian fermented foods. Am. J. Food Technol. 5(2), 111–120 (2010)

    Article  CAS  Google Scholar 

  • G.V. Bloemberg, B.J. Lugtenberg, Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4, 343–350 (2001)

    Article  CAS  PubMed  Google Scholar 

  • W.B. Bollen, Interactions between pesticides and soil microorganisms. Annu. Rev. Microbiol. 15, 69–92 (1961)

    Article  CAS  Google Scholar 

  • N.C. Brady, R.R. Weil, The Nature and Properties of Soil, 11th edn. (Prentice Hall, Upper Saddle River, 1996)

    Google Scholar 

  • B.M. Braithwaite, A. Jane, F.G. Swain, Amnemus quadrituberculatus (Bob.), a weevil pest of clover pastures on the north coast of New South Wales. J. Aus. Inst. Agric. Sci. 24, 155–157 (1958)

    Google Scholar 

  • A.A. Brakhage, V. Schroeckh, Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet. Biol. 48, 15–22 (2011)

    Article  CAS  PubMed  Google Scholar 

  • P.C. Brookes, A. Landman, G. Pruden, D.S. Jenkinson, Chloroform fumigation and the release of soil-nitrogen – a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985)

    Article  CAS  Google Scholar 

  • P.C. Brookes, A.A. Newcombe, D.S. Jenkinson, Adenylate energy charge measurement in soil. Soil Biol. Biochem. 19, 211–217 (1987)

    Article  CAS  Google Scholar 

  • L. Brussaard, V.M. Behan-Pelletier, D.E. Bignell et al., Biodiversity and ecosystem functioning in soil. Ambio 26, 563–570 (1997)

    Google Scholar 

  • L. Brussaard, P.C. De-Ruiter, G.G. Brown, Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 121, 233–244 (2007)

    Article  Google Scholar 

  • A. Buczynska, I. Szadkowska-Stanczyk, Identification of health hazards to rural population living near pesticide dump sites in Poland. Intl. J. Occup. Med. Environ. Health 18(4), 331–339 (2005)

    Google Scholar 

  • E.K. Bunemann, G.D. Schwenke, L. Van Zwieten, Impact of agricultural inputs on soil organisms – a review. Aust. J. Soil Res. 44, 379–406 (2006)

    Article  Google Scholar 

  • G.I. Burd, G. Dixon, B.R. Glick, A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol. 64(10), 3663–3668 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  • G.I. Burd, G. Dixon, B.R. Glick, Plant growth promoting bacterium that decreases heavy metal toxicity in plants. Can. J. Microbiol. 46, 237–245 (2000)

    Article  CAS  PubMed  Google Scholar 

  • G. Carrillo-Castaneda, J.J. Munoz, J.R. Peralta-Videa, E. Gomez, J.L. Gardea-Torresdey, Modulation of uptake and translocation of iron and copper from root to shoot in common bean by siderophore-producing microorganisms. J. Plant Nutr. 28, 1853–1865 (2005)

    Article  CAS  Google Scholar 

  • E.M. Casanovas, C.A. Barassi, R.J. Sueldo, Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res. Commun. 30, 343–350 (2002)

    Google Scholar 

  • L.E. Casida, D.A. Klein, T. Santoro, Soil dehydrogenase activity. Soil Sci. 98, 371–376 (1964)

    Article  CAS  Google Scholar 

  • V.A. Cavalcante, J. Dobereiner, A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108(1), 23–31 (1988)

    Article  Google Scholar 

  • J. Cernohlavkova, Effects of selected environmental pollutants on soil microbial community in laboratory and field studies (2009). Retrieved from http://is.muni.cz/th/40696/prif_d/dis.prace_cernohlavkova.pdf

  • M. Chagnon, D. Kreutzweiser, E.A.D. Mitchell, C.A. Morrissey, D.A. Noome, J.P. Van-der-Sluijs, Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ. Sci. Pollut. Res. 22, 119–134 (2015)

    Article  CAS  Google Scholar 

  • U. Chakraborty, B. Chakraborty, M. Basnet, Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J. Basic Microbiol. 46, 186–195 (2006)

    Article  CAS  PubMed  Google Scholar 

  • J.F. Charles, C. Nielson-LeRoux, A. Delecluse, Bacillus sphaericus toxins: molecular biology and mode of action. Annu. Rev. Entomol. 41, 451–472 (1996)

    Article  CAS  PubMed  Google Scholar 

  • F.A. Chinalia, K.S. Killham, 2,4-Dichlorophenoxyacetic acid (2,4-D) biodegradation in river sediments of Northeast-Scotland and its effect on the microbial communities (PLFA and DGGE). Chemosphere 64, 1675–1683 (2006)

    Article  CAS  PubMed  Google Scholar 

  • A. Chowdhury, S. Pradhan, M. Saha, N. Sanyal, Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J. Microbiol. 48, 114–127 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R. Christen, Global sequencing: a review of current molecular data and new methods available to assess microbial diversity. Microbes Environ. 23, 253–268 (2008)

    Article  PubMed  Google Scholar 

  • X. Chu, H. Fang, X. Pan, X. Wang, M. Shan, B. Feng, Y. Yu, Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations. J. Environ. Sci. 20, 464–469 (2008)

    Article  CAS  Google Scholar 

  • T.E. Cloete, R.M. Atlas, Basic and Applied Microbiology (Van Schalk Publishers, Hatfield, 2006). 544 p

    Google Scholar 

  • S. Compant, B. Duffy, J. Nowak, C. Clement, E.A. Barka, Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl. Environ. Microbiol. 71, 4951–4959 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • U. Conrath, C.M.J. Pieterse, B. Mauch-Mani, Priming in plant–pathogen interactions. Trends Plant Sci. 7, 210–216 (2002)

    Article  CAS  PubMed  Google Scholar 

  • M. Contin, A. Todd, P.C. Brookes, The ATP concentration of the soil microbial biomass. Soil Biol. Biochem. 33, 701–704 (2001)

    Article  CAS  Google Scholar 

  • C.M. Creus, R.J. Sueldo, C.A. Barassi, Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can. J. Bot. 82, 273–281 (2004)

    Article  Google Scholar 

  • C.M. Creus, M. Graziano, E.M. Casanovas, M.A. Pereyra, M. Simontacchi, S. Puntarulo, C.A. Barassi, L. Lamattina, Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221, 297–303 (2005)

    Article  CAS  PubMed  Google Scholar 

  • O. Crouzet, I. Batisson, P. Besse-Hoggan, F. Bonnemoy, C. Bardot, F. Poly, J. Bohatier, C. Mallet, Response of soil microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. Soil Biol. Biochem. 42, 193–202 (2010)

    Article  CAS  Google Scholar 

  • A. Cruz-Hernandez, A. Tomasini-Campocosio, L. Perez-Flores, F. Fernandez-Perrino, M. Gutierrez-Rojas, Inoculation of seed-borne fungus in the rhizosphere of Festuca arundinacea promotes hydrocarbon removal and pyrene accumulation in roots. Plant Soil 362, 261–270 (2013)

    Article  CAS  Google Scholar 

  • M. Cycon, Z. Piotrowska-Seget, Changes in bacterial diversity and community structure following pesticides addition to soil estimated by cultivation technique. Ecotoxicology 18, 632–642 (2009)

    Article  CAS  PubMed  Google Scholar 

  • M. Cycon, M. Wojcik, S. Borymski, Z. Piotrowska-Seget, Short-term effects of the herbicide napropamide on the activity and structure of the soil microbial community assessed by the multi-approach analysis. Appl. Soil Ecol. 66, 8–18 (2013)

    Article  Google Scholar 

  • A.C. Das, D. Mukherjee, Insecticidal effects on soil microorganisms and their biochemical processes related to soil fertility. World J. Microbiol. Biotechnol. 14(6), 903–909 (1998)

    Article  CAS  Google Scholar 

  • A.C. Das, A. Chakrabarty, P. Sukul, D. Mukherjee, Insecticides: their effect on microorganisms and persistence in rice soil. Microbiol. Res. 50, 187–194 (1995)

    Article  Google Scholar 

  • E.J. DaSilva, L.E. Henriksson, E. Henriksson, Effect of pesticides on blue-green algae and nitrogen-fixation. Arch. Environ. Contam. Toxicol. 3(2), 193–204 (1975)

    Article  CAS  PubMed  Google Scholar 

  • C. Davidson, R.A. Knapp, Multiple stressors and amphibian declines: dual impacts of pesticides and fish on yellow-legged frogs. Ecol. Appl. 17, 587–597 (2007)

    Article  PubMed  Google Scholar 

  • M.E. DeLorenzo, G.I. Scott, P.E. Ross, Effects of the agricultural pesticides atrazine, deethylatrazine, endosulfan and chlorpyrifos on an estuarine microbial food web. Environ. Toxicol. Chem. 18(12), 2824–2835 (1999)

    Article  CAS  Google Scholar 

  • L.A. Demoling, E. Baath, G. Greve, M. Wouterse, H. Schmitt, Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biol. Biochem. 41, 840–848 (2009)

    Article  CAS  Google Scholar 

  • P.C. De-Ruiter, A.M. Neutel, J.C. Moore, Energetics, patterns of interaction strengths and stability in real ecosystems. Science 269, 1257–1260 (1995)

    Article  CAS  PubMed  Google Scholar 

  • M. De-Schampheleire, P. Spanoghe, E. Brusselman, S. Sonck, Risk assessment of pesticide spray drift damage in Belgium. Crop Prot. 26(4), 602–611 (2007)

    Article  Google Scholar 

  • P. De-Werra, M. Pechy-Tarr, C. Keel, M. Maurhofer, Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl. Environ. Microbiol. 75, 4162–4174 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M. Dhagat, K. Verma, Effect of herbicides on soil microorganisms. Curr. Adv. Agric. Sci. 1, 54–55 (2009)

    Google Scholar 

  • M. Digrak, F. Kazanici, Effect of some organophosphorus insecticides on soil microorganisms. Turk. J. Biol. 25, 51–58 (2001)

    CAS  Google Scholar 

  • C. Dimkpa, A. Svatos, D. Merten, G. Buchel, E. Kothe, Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can. J. Microbiol. 54, 163–172 (2008)

    Article  CAS  PubMed  Google Scholar 

  • C. Dimkpa, T. Weinand, F. Asch, Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32(12), 1682–1694 (2009a)

    Article  CAS  PubMed  Google Scholar 

  • C. Dimkpa, D. Merten, A. Svatos, G. Buchel, E. Kothe, Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J. Appl. Microbiol. 107(5), 1687–1696 (2009b)

    Article  CAS  PubMed  Google Scholar 

  • S. Dobbelaere, Y. Okon, The plant growth promoting effects and plant responses, in Nitrogen fixation: Origins, applications and research progress. Newton W. (ed.), Vol V: Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations, ed. by C. Elmerich, W.E. Newton (Springer, Helderberg, 2007), pp. 145–170

    Google Scholar 

  • S. Dobbelaere, J. Vanderleyden, Y. Okon, Plant growth promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22, 107–149 (2003)

    Article  CAS  Google Scholar 

  • J. Dobereiner, Nitrogen-fixing bacteria of the genus Beijerinckia Derx in the rhizosphere of sugar cane. Plant Soil 15(3), 211–216 (1961)

    Article  Google Scholar 

  • E.J. Dominati, M.G. Patterson, A.D. Mackay, A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 69, 1858–1868 (2010)

    Article  Google Scholar 

  • S. Dordevic, M. Sestovic, V. Raicevic, A. Dordevic, Fluctuation of the abundance of microorganisms in the carbofuran treated soil. Pest 13(4), 281–288 (1998)

    CAS  Google Scholar 

  • J. Du, Z. Shao, H. Zhao, Engineering microbial factories for synthesis of value-added products. J. Indus. Microbiol. Biotechnol. 38, 873–890 (2011)

    Article  CAS  Google Scholar 

  • S. Duah-Yentumi, D.B. Johnson, Changes in soil microflora in response to repeated applications of some pesticides. Soil Biol. Biochem. 18, 629–635 (1986)

    Article  CAS  Google Scholar 

  • M.G. Dumont, J.C. Murrell, Stable isotope probing – linking microbial identity to function. Nat. Rev. Microbiol. 3(6), 499–504 (2005)

    Article  CAS  PubMed  Google Scholar 

  • C.A. Edwards, Insecticide residues in soils. Rev. Environ. Contam. Toxicol. 13, 83–132 (1966)

    CAS  Google Scholar 

  • D. Egamberdiyeva, The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36, 184–189 (2007)

    Article  Google Scholar 

  • R.U. Ehlers, Einsatz der Biotechnologie im biologischen Pflanzenschutz. Schr. reihe Dtsch. Phytomed Ges. 8, 17–31 (2006)

    CAS  Google Scholar 

  • S. El-Fantroussi, L. Verschuere, W. Verstraete, E.M. Top, Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl. Environ. Microbiol. 65, 982–988 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  • T. Endo, T. Kusaka, N. Tan, M. Sakai, Effects of the insecticide cartap hydrochloride on soil enzyme activities, respiration and nitrification. J. Pestic. Sci. 7, 101–110 (1982)

    Article  CAS  Google Scholar 

  • J.A. Entry, P.K. Donelly, W.H. Emmingham, Microbial mineralization of atrazine and 2, 4-dichlorophenoxyacetic acid in riparian pasture and forest soils. Biol. Fert. Soils 18, 89–94 (1994)

    Article  CAS  Google Scholar 

  • P.F. Entwistle, J.S. Cory, M.J. Bailey, S. Higgs, Bacillus thuringiensis: An Environmental Biopesticide – Theory and Practice (Wiley, Chichester, 1993). 311 p

    Google Scholar 

  • L. Epelde, J.M. Becerril, J. Hernandez-Allica, O. Barrutia, C. Garbisu, Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Appl. Soil Ecol. 39, 299–310 (2008)

    Article  Google Scholar 

  • O.W. Fawole, M. Aluko, T.E. Olowonihi, Effects of carbendazim-mancozeb fungicidal mixture on soil microbial populations and some enzyme activities in soil. Agrosearch 10(1&2), 65–74 (2009)

    Google Scholar 

  • K. Feng, B.Y. Yu, D.M. Ge, M.H. Wong, X.C. Wang, Z.H. Cao, Organo-chlorine pesticide (DDT and HCH) residues in the Taihu Lake region and its movement in soil–water system: I. Field survey of DDT and HCH residues in ecosystem of the region. Chemosphere 50(6), 683–687 (2003)

    Article  CAS  PubMed  Google Scholar 

  • K.P. Feris, K. Hristova, B. Gebreyesus, D. Mackay, K.M. Scow, A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community. Microb. Ecol. 48, 589–600 (2004)

    Article  CAS  PubMed  Google Scholar 

  • E.P.D. Ferreira, A.N. Dusi, J.R. Costa, G.R. Xavier, N.G. Rumjanek, Assessing insecticide and fungicide effects on the culturable soil bacterial community by analyses of variance of their DGGE fingerprinting data. Eur. J. Soil Biol. 45, 466–472 (2009)

    Article  CAS  Google Scholar 

  • N. Fierer, M. Breitbart, J. Nulton et al., Metagenomic and small subunit rRNA analyses reveal the genetic diversity of bactera, archaea, fungi and viruses in soil. Appl. Environ. Microbiol. 73, 7059–7066 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • V.B. Figueiredo, H.A. Buritya, C.R. Martinez, C.P. Chanway, Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Ecol. 40, 182–188 (2008)

    Article  Google Scholar 

  • B.J. Finlay, G.F. Esteban, Ubiquitous microbes and ecosystem function. Limnetica 20(l), 31–43 (2001)

    Google Scholar 

  • C. Folch, A.C. Chevremont, K. Joarico, Y. Capowiez, S. Criquet, Indicators of pesticide contamination: soil enzyme compared to functional diversity of bacterial communities via Biolog® ecoplates. Eur. J. Soil Biol. 47, 256–263 (2011)

    Article  CAS  Google Scholar 

  • W.T. Frankenberger, M.A. Tabatabai, Amidase activity in soils. IV. Effects of trace elements and pesticides. Soil Sci. Soc. Am. J. 44, 532–536 (1980a)

    Article  CAS  Google Scholar 

  • W.T. Frankenberger, M.A. Tabatabai, Amidase activity in soils: I. Methods of assay. Soil Sci. Soc. Am. J. 44, 282–287 (1980b)

    Article  CAS  Google Scholar 

  • W.T. Frankenberger, M.A. Tabatabai, Factors affecting L-asparaginase activity in soil. Biol. Fert. Soils 11, 1–5 (1991)

    Article  CAS  Google Scholar 

  • R.B. Franklin, D.R. Taylor, A.L. Mills, Characterization of microbial communities using randomly amplified polymorphism (RAPD). J. Microbiol. Meth. 35, 225–235 (1999)

    Article  CAS  Google Scholar 

  • A. Frostegard, E. Baath, The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fert. Soils 22(1&2), 59–65 (1996)

    Article  Google Scholar 

  • A. Frostegard, A. Tunlid, E. Baath, Microbial biomass measured as total lipid phosphate in soils of different organic content. J. Microbiol. Meth. 14, 151–163 (1991)

    Article  Google Scholar 

  • A. Frostegard, A. Tunlid, E. Baath, Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 59(11), 3605–3617 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  • G.M. Gadd, Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156, 609–643 (2010)

    Article  CAS  PubMed  Google Scholar 

  • D.J. Gage, Infection and invasion of roots by symbiotic, nitrogen fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 68(2), 280–300 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S. Gaind, L. Nain, Exploration of composted cereal waste and poultry manure for soil restoration. Biores. Technol. 101, 2996–3003 (2010)

    Article  CAS  Google Scholar 

  • S. Gaind, L. Nain, V.B. Patel, Quality evaluation of co-composted wheat straw, poultry droppings and oil seed cakes. Biodegradation 20, 307–317 (2009)

    Article  PubMed  Google Scholar 

  • J.L. Garland, A.L. Mills, Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole carbon source utilization. Appl. Environ. Microbiol. 57, 2351–2359 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  • M.A. German, S. Burdman, Y. Okon, J. Kigel, Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol. Fertil. Soils 32, 259–264 (2000)

    Article  Google Scholar 

  • B. Gevao, K.T. Semple, K.C. Jones, Bound pesticide residues in soils: a review. Environ. Pollut. 108, 3–14 (2000)

    Article  CAS  PubMed  Google Scholar 

  • A. Ghani, D.A. Wardle, A. Rahman, D.R. Lauren, Interactions between 14C labeled atrazine and the soil microbial biomass in relation to herbicide degradation. Biol. Fertil. Soils 21, 17–22 (1996)

    Article  CAS  Google Scholar 

  • C. Giaveno, L. Celi, A.E. Richardson, R.J. Simpson, E. Barberis, Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates. Soil Biol. Biochem. 42, 491–498 (2010)

    Article  CAS  Google Scholar 

  • S.M. Gifford, S. Sharma, J.M. Rinta-Kanto, M.A. Moran, Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME J. 5(3), 461–472 (2011)

    Article  PubMed  Google Scholar 

  • F. Gil-Sotres, C. Trasar-Cepeda, M.C. Leiros, S. Seoane, Different approaches in evaluating soil quality using biochemical properties. Soil Biol. Biochem. 37, 877–887 (2005)

    Article  CAS  Google Scholar 

  • B.R. Glick, C. Liu, S. Ghosh, E.B. Dumbroff, Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium, Pseudomonas putida GR12-2. Soil Biol. Biochem. 29(8), 1233–1239 (1997)

    Article  CAS  Google Scholar 

  • E. Gomez, L. Ferreras, L. Lovotti, E. Fernandez, Impact of glyphosate application on microbial biomass and metabolic activity in a Vertic Argiudoll from Argentina. Eur. J. Soil Biol. 45, 163–167 (2009)

    Article  CAS  Google Scholar 

  • M.R. Goswami, U.K. Pati, A. Chowdhury, A. Mukhopadhyay, Studies on the effect of cypermethrin on soil microbial biomass and its activity in an alluvial soil. Int. J. Agric. Food Sci. 3(1), 1–9 (2013)

    Google Scholar 

  • D. Goulson, An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013)

    Article  Google Scholar 

  • E.J. Gray, D.L. Smith, Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol. Biochem. 37, 395–412 (2005)

    Article  CAS  Google Scholar 

  • V.S. Green, D.E. Stott, M. Diack, Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol. Biochem. 38, 693–701 (2006)

    Article  CAS  Google Scholar 

  • P. Grenni, Effects of pesticides and pharmaceuticals on soil and water bacterial communities. Ph.D thesis, University of Milano-Bicocca (2011), Retrieved from https://boa.unimib.it/retrieve/handle/10281/19697/24499/Phd_unimib_716451.pdf

  • V.P. Grichko, B.R. Glick, Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39, 11–17 (2001)

    Article  CAS  Google Scholar 

  • B.S. Griffiths, S. Caul, J. Thompson, C.A. Hacket, J. Cortet, C. Pernin, P.H. Krogh, Soil microbial and faunal responses to herbicide-tolerant maize and herbicide in two soils. Plant Soil 308, 93–103 (2008)

    Article  CAS  Google Scholar 

  • L. Gu, Z. Bai, B. Jin et al., Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere. J. Environ. Sci. 22(1), 134–141 (2010)

    Article  CAS  Google Scholar 

  • S.Y. Guan, D.S. Zhang, Z.M. Zhang, Soil Enzymes and Its Methodology (Agricultural Press, Beijing, 1986). 340 p

    Google Scholar 

  • A.A. Guimaraes, P.M.D. Jaramillo, R.S.A. Nobrega, L.A. Florentino, K.B. Silva, M.F.M. De-Souza, Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant. Appl. Environ. Microbiol. 78, 6726–6733 (2012)

    Article  CAS  Google Scholar 

  • J. Guo, L. Yu, N.J. Turro, J.Y. Ju, An integrated system for DNA sequencing by synthesis using novel nucleotide analogues. Acc. Chem. Res. 43, 551–563 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D. Haas, G. Defago, Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319 (2005)

    Article  CAS  PubMed  Google Scholar 

  • J.A. Hall, D. Peirson, S. Ghosh, B.R. Glick, Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Israel J. Plant Sci. 44(1), 37–42 (1996)

    Article  Google Scholar 

  • B. Hamaoui, J.M. Abbadi, S. Burdman, A. Rashid, S. Sarig, Y. Okon, Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21, 553–560 (2001)

    Article  Google Scholar 

  • A.B.E. Hamdia, M.A.K. Shaddad, M.M. Doaa, Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Reg. 44, 165–174 (2004)

    Article  CAS  Google Scholar 

  • H.S. Han, K.D. Lee, Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of egg plant. Res. J. Agric. Biol. Sci. 1, 176–180 (2005)

    Google Scholar 

  • S.K. Handa, N.P. Agnihotri, G. Kulshrestha, Effect of Pesticides on Soil Fertility, Pesticide Residues: Significance, Management and Analysis (Research Periodicals and Book Publishing House, Houston, 1999), pp. 184–198

    Google Scholar 

  • R.L. Haney, S.A. Senseman, F.M. Hons, Effect of roundup ultra on microbial activity and biomass from selected soils. J. Environ. Qual. 31, 730–735 (2002)

    Article  CAS  PubMed  Google Scholar 

  • E.S.R.Y. Haque, A. Gaffar, Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mung-bean. J. Phytopathol. 138, 157–163 (1993)

    Article  Google Scholar 

  • P.R. Hardoim, L.S. Van-Overbeek, J.D. Van-Elsas, Properties of bacterial endophytes and their proposed role in plant growth. Trends. Microbiol. 16, 463–471 (2008)

    Article  CAS  PubMed  Google Scholar 

  • R.W. Hardy, R.D. Holsten, E.K. Jackson, R.C. Burns, The acetylene–ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 43, 1185–1207 (1968)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M.M. Hart, J.T. Trevors, Microbe management: application of mycorrhyzal fungi in sustainable agriculture. Front. Ecol. Environ. 3, 533–539 (2005)

    Article  Google Scholar 

  • S. Hati, S. Mandal, J.B. Prajapati, Novel starters for value added fermented dairy products. Curr. Res. Nutr. Food Sci. 1(1), 83–91 (2013)

    Article  Google Scholar 

  • A.D. Hazel, M.P. Greaves, Effects of some herbicides on soil enzyme activities. Weed Res. 21, 205–209 (1981)

    Article  Google Scholar 

  • Y.H. He, D.S. Shen, C.R. Fang, R. He, Y.M. Zhu, Effect of metsulfuronmethyl on the microbial population and enzyme activities in wheat rhizosphere soil. J. Environ. Sci. Health B 41, 269–284 (2006)

    Article  CAS  PubMed  Google Scholar 

  • D.M. Hegde, B.S. Dwived, S.N. Sudhakara, Biofertilizers for cereal production in India-a review. Indian J. Agric. Sci. 69, 73–83 (1999)

    Google Scholar 

  • P. Helmke, D. Sparks, Lithium, sodium, potassium, rubidium, and cesium, in Methods of Soil Analysis, Part 3. Chemical Properties, ed. by D. Sparks, 1st edn. (SSSA, Madison, 1996), pp. 551–574

    Google Scholar 

  • C.L. Hemme, Y. Deng, T.J. Gentry et al., Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J. 4, 660–672 (2010)

    Article  CAS  PubMed  Google Scholar 

  • T. Higa, J.F. Parr, Beneficial and effective microorganisms: for a sustainable agriculture and environment (1994). Retrieved from www.agriton.nl/higa.html

  • C.K. Hindumathy, V. Gayathri, Effect of pesticide (chlorpyrifos) on soil microbial flora and pesticide degradation by strains isolated from contaminated soil. J. Bioremed. Biodeg. 4, 178 (2013)

    Google Scholar 

  • S.S. Hirano, C.D. Upper, Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae- a pathogen, ice nucleus and epiphyte. Microbiol. Mol. Biol. Rev. 64, 624–653 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • P.R. Hirsch, Detection of microbial DNA sequences by colony hybridization, in Molecular Microbial Ecology Manual, ed. by A.D.L. Akkermans, J.D. Van-Elsas, F.J. De-Bruin (Kluwer Academic Publishers, Dordrecht, 1995), pp. 1–12

    Google Scholar 

  • D. Hoffmeister, N.P. Keller, Natural products of filamentous fungi: enzymes, genes and their regulation. Nat. Prod. Rep. 24, 393–416 (2007)

    Article  CAS  PubMed  Google Scholar 

  • R. Hood-Nowotny, U.N. Hinko-Najera, E. Inselsbacher, P. Oswald-Lachouani, W. Wanek, Alternative methods for measuring inorganic, organic and total dissolved nitrogen in soil. Soil Sci. Soc. Am. J. 74, 1018–1027 (2010)

    Article  CAS  Google Scholar 

  • H. Hoper, Substrate-induced respiration, in Microbiological Methods for Assessing Soil Quality, ed. by J. Bloem, D.H. Hopkins, A. Benedetti (CABI Publishing, Wallingford, 2006), pp. 84–92

    Google Scholar 

  • W.R. Horwath, E.A. Paul, Microbial biomass, in Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties, ed. by R.W. Weaver (Soil Science Society of America, Madison, 1994), pp. 760–761

    Google Scholar 

  • C.C. Howell, How do pesticides impact soil microbial structure and functioning? Ph.D thesis, University of Warwick, UK (2011). Retrieved from http://go.warwick.ac.uk/wrap/46766

  • M.B. Hussain, I. Mehboob, Z.A. Zahir, M. Naveed, H.N. Asghar, Potential of Rhizobium spp. for improving growth and yield of rice (Oryza sativa L.). Soil Environ. 28(1), 49–55 (2009)

    Google Scholar 

  • A.M. Ibekwe, A.C. Kennedy, Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiol. Ecol. 26, 151–163 (1998)

    Article  CAS  Google Scholar 

  • A.M. Ibekwe, S.K. Papiemk, J. Gan, S.R. Yates, C.H. Yang, D.E. Crowley, Impact of fumigants on soil microbial communities. Appl. Environ. Microbiol. 67, 3245–3257 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • G. Imfeld, S. Vuilleumier, Measuring the effects of pesticides on bacterial communities in soil: a critical review. Eur. J. Soil Biol. 49, 22–30 (2012)

    Article  CAS  Google Scholar 

  • B.S. Ismail, K.F. Yapp, O. Omar, Effects of metsulfuron-methyl on amylaze, urease and proteaseactivities in two soils. Aust. J. Soil Res. 36(3), 449–456 (1996)

    Article  Google Scholar 

  • ISO, 16072, Soil quality – laboratory methods for determination of microbial soil respiration (2002). Retrieved from www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=32096

  • ISO, 17155, Soil quality – determination of abundance and activity soil microflora using respiration curves (2012). Retrieved from www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=53529.

  • M. Jail, R. Urkude, L. Deshmukh, Studies on the impact of pesticides on soil microbial respiration. Int. J. Plant Anim. Environ. Sci. 5(1), 43–49 (2015)

    CAS  Google Scholar 

  • M. Jamalizadeh, H.R. Etebarian, H. Aminian et al., Biological control of Botrytis mali on apple fruit by use of Bacillus bacteria, isolated from the rhizosphere of wheat. Arch. Phytopathol. Plant Prot. 43, 1836–1845 (2010)

    Article  Google Scholar 

  • E.K. James, V.M. Reis, F.L. Olivares, J.I. Baldani, J. Dobereiner, Infection of sugar cane by the nitrogen-fixing bacterium, Acetobacter diazotrophicus. J. Exp. Bot. 45(6), 757–766 (1994)

    Article  CAS  Google Scholar 

  • H. Janshekar, A. Fiechter, Lignin: biosynthesis, application and degradation. Adv. Biochem. Eng. Biotechnol. 27, 119–178 (1983)

    CAS  PubMed  Google Scholar 

  • E. Jastrzebska, The effect of soil contamination with fungicides on microorganisms counts. Pol. J. Nat. Sci. 21(2), 487–498 (2006)

    Google Scholar 

  • E. Jastrzebska, The effect of crop protection chemicals on soil-dwelling microorganisms, in Contemporary Problems Mmanagement and Environmental Protection – Influence of Pesticide Dump on the Environment, ed. by K.A. Skibniewska (University of Warmia and Mazury in Olsztyn, Olsztyn, 2010). Retrieved from www.uwm.edu.pl/environ/vol05.htm

    Google Scholar 

  • D.S. Jenkinson, S.A. Davidson, D.S. Powlson, Adenosine triphosphate and microbial biomass in soil. Soil Biol. Biochem. 8, 521–527 (1979)

    Article  Google Scholar 

  • R.G. Joergensen, P.C. Brookes, Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biol. Biochem. 22(8), 1023–1027 (1990)

    Article  CAS  Google Scholar 

  • M. Johansson, M. Pell, J. Stenstrom, Kinetics of substrate-induced respiration (SIR) and denitrification: applications to a soil amended with silver. Ambio 27(1), 40–44 (1998)

    Google Scholar 

  • K. Johnsen, C.S. Jacobsen, V. Torsvik, J. Sorensen, Pesticide effects on bacterial diversity in agricultural soils – a review. Biol. Fertil. Soils 33, 443–453 (2001)

    Article  CAS  Google Scholar 

  • W.J. Jones, N.D. Ananyeva, Correlations between pesticide transformation rate and microbial respiration activity in soil of different ecosystems. Biol. Fertil. Soils 33, 477–483 (2001)

    Article  CAS  Google Scholar 

  • G.J. Joo, Y.M. Kim, J.T. Kim, I.K. Rhee, J.H. Kim, I.J. Lee, Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J. Microbiol. 43, 510–515 (2005)

    CAS  PubMed  Google Scholar 

  • M. Kai, U. Effmert, G. Berg, B. Piechulla, Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen, Rhizoctonia solani. Arch. Microbiol. 187, 351–360 (2007)

    Article  CAS  PubMed  Google Scholar 

  • M. Kai, M. Haustein, F. Molina, A. Petri, B. Scholz, B. Piechulla, Bacterial volatiles and their action potential. Appl. Microbiol. Biotechnol. 81, 1001–1012 (2009)

    Article  CAS  PubMed  Google Scholar 

  • A. Kawasaki, E.R. Watson, M.A. Kertesz, Indirect effects of polycyclic aromatic hydrocarbon contamination on microbial communities in legume and grass rhizospheres. Plant Soil 358, 169–182 (2012)

    Article  CAS  Google Scholar 

  • A.G. Khan, Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol. 18, 355–364 (2005)

    Article  CAS  PubMed  Google Scholar 

  • J.W. Kloepper, R.M. Zablotowicz, E.M. Tipping, R. Lifshitz, Plant growth promotion mediated by bacterial rhizosphere colonizers, in The Rhizosphere and Plant Growth, ed. by D.L. Keister, P.B. Cregan (Kluwer Academic Publishers, Dordrecht, 1991), pp. 315–326

    Google Scholar 

  • J.W. Kloepper, R. Rodriguez-Kabana, G.W. Zehnder, J.F. Murphy, E. Sikora, C. Fernandez, Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Aust. Plant Pathol. 28, 21–26 (1999)

    Article  Google Scholar 

  • J.W. Kloepper, C. Ryu, S. Zhang, Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11), 1259–1266 (2004)

    Article  CAS  PubMed  Google Scholar 

  • J.W. Kloepper, A. Gutierrez-Estrada, J.A. McInroy, Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can. J. Microbiol. 53, 159–167 (2007)

    Article  CAS  PubMed  Google Scholar 

  • S. Klose, V. Acosta-Martinez, H.A. Ajwa, Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides. Soil Biol. Biochem. 38, 1243–1254 (2006)

    Article  CAS  Google Scholar 

  • D. Knudsen, G. Peterson, P. Pratt, Lithium, sodium and potassium, in Methods of Soil Analysis Part 2. Chemical and Microbiological Properties, ed. by A.L. Page (ASA and SSSA, Madison, 1982), pp. 225–246

    Google Scholar 

  • R.J. Kremer, N.E. Means, S.J. Kim, Glyphosate affects soybean root exudation and rhizosphere microorganisms. Int. J. Environ. Anal. Chem. 85, 1165–1174 (2005)

    Article  CAS  Google Scholar 

  • D.P. Kreutzweiser, K.P. Good, D.T. Chartrand, T.A. Scarr, D.G. Thompson, Toxicity of the systemic insecticide, imidacloprid to forest stream insects and microbial communities. Bull. Environ. Contam. Toxicol. 80(3), 211–214 (2008)

    Article  CAS  PubMed  Google Scholar 

  • J. Kucharski, J. Wyszkowska, A. Borowik, Microbiological properties of soil contaminated with the herbicide Granstar 75 WG. Ekol. Tech. 16(4), 160–164 (2008)

    CAS  Google Scholar 

  • I. Kuiper, E.L. Lagendijk, G.V. Bloemberg, B.J.J. Lugtenberg, Rhizoremediation: a beneficial plant–microbe interaction. Mol. Plant Microbe Interact. 17, 6–15 (2004)

    Article  CAS  PubMed  Google Scholar 

  • J.N. Ladd, J.H.A. Butler, Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 4, 19–30 (1972)

    Article  CAS  Google Scholar 

  • S.H. Lancaster, E.B. Hollister, S.A. Senseman, T.J. Gentry, Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Manag. Sci. 66(1), 59–64 (2010)

    Article  CAS  PubMed  Google Scholar 

  • M.A. Latif, M.A. Razzaque, M.M. Rahman, Impact of some selected insecticides application on soil microbial respiration. Pak. J. Biol. Sci. 11, 2018–2022 (2008)

    Article  CAS  PubMed  Google Scholar 

  • A.M. Lenart, In vitro effects of various xenobiotics on Azotobacter chroococcum strains isolated from soils of southern Poland. J. Environ. Sci. Health B 47, 7–12 (2012)

    Article  CAS  PubMed  Google Scholar 

  • C.A. Levesque, J.E. Rahe, D.M. Eaves, Fungal colonization of glyphosate treated seedlings using a new root plating technique. Mycol. Res. 97, 299–306 (1993)

    Article  Google Scholar 

  • M. Liebeke, V.S. Brozel, M. Hecker, M. Lalk, Chemical characterization of soil extract as growth media for the ecophysiological study of bacteria. Appl. Microbiol. Biotechnol. 83, 161–173 (2009)

    Article  CAS  PubMed  Google Scholar 

  • S.E. Lindow, M.T. Brand, Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69(4), 1875–1883 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • C. Lo, Effect of pesticides on soil microbial community. J. Environ. Sci. Health B 45, 348–359 (2010)

    Article  CAS  PubMed  Google Scholar 

  • E.M. Lodwig, A.H. Hosie, A. Bourdes, K. Findlay, D. Allaway, R. Karunakaran, J.A. Downie, P.S. Poole, Amino-acid cycling drives nitrogen fixation in the legume- rhizobium symbiosis. Nature 422, 722–726 (2003)

    Article  CAS  PubMed  Google Scholar 

  • A.H. Lone, K.P. Raverkar, N. Pareek, In vitro effects of herbicides on soil microbial communities. Bioscan 9(1), 11–16 (2014)

    CAS  Google Scholar 

  • N. Lorenz, K. Verdell, C. Ramsier, R. Dick, A rapid assay to estimate soil microbial biomass potassium in agricultural soils. Soil Sci. Soc. Am. J. 74, 512–516 (2010)

    Article  CAS  Google Scholar 

  • T. Lueders, B. Pommerenke, M.W. Friedrich, Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl. Environ. Microbiol. 70(10), 5778–5786 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • B. Lundgren, Fluorescein diacetate as a stain of metabolically active bacteria in soil. Oikos 36, 17–22 (1981)

    Article  Google Scholar 

  • N.Z. Lupwayi, K.N. Harker, L.M. Dosdall et al., Changes in functional structure of soil bacterial community due to fungicide and insecticide applications in canola. Agric. Ecosyst. Environ. 130, 109–114 (2009a)

    Article  CAS  Google Scholar 

  • N.Z. Lupwayi, K.N. Harker, G.W. Clayton, J.T. O’Donovan, R.E. Blackshaw, Soil microbial response to herbicides applied to glyphosate-resistant canola. Agric. Ecosyst. Environ. 129, 171–176 (2009b)

    Article  CAS  Google Scholar 

  • N.Z. Lupwayi, S.A. Brandt, K.N. Harker, J.T. O’Donovan, G.W. Clayton, T.K. Turkington, Contrasting soil microbial responses to fertilizers and herbicides in a canola-barley rotation. Soil Biol. Biochem. 42, 1997–2004 (2010)

    Article  CAS  Google Scholar 

  • G.A. Lyons, G.J. McKay, H.S.S. Sharma, Molecular comparison of Scytalidium thermophilum isolates using RAPD and ITS nucleotide sequence analyses. Mycol. Res. 104(12), 1431–1438 (2000)

    Article  CAS  Google Scholar 

  • M. Lane, The effect of glyphosate on soil microbial communities (2011). Retrieved from https://etd.ohiolink.edu/!etd.send_file?accession=osu1301068421&disposition=inline

  • S. Mahmood, R.D. Finlay, S. Erland, H. Wallander, Solubilisation and colonisation of wood ash by ectomycorrhizal fungi isolated from a wood ash fertilized spruce forest. FEMS Microbiol. Ecol. 35, 151–161 (2001)

    Article  CAS  PubMed  Google Scholar 

  • K. Makarova, A. Slesarev, Y. Wolf et al., Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. U. S. A. 103(42), 15611–15616 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  • S. Mantelin, B. Touraine, Plant growth-promoting bacteria and nitrate availability impacts on root development and nitrate uptake. J. Exp. Bot. 55, 27–34 (2004)

    Article  CAS  PubMed  Google Scholar 

  • P.A. Maron, L. Ranjard, C. Mougel, P. Lemanceau, Metaproteomics: a new approach for studying functional microbial ecology. Microb. Ecol. 53, 486–493 (2007)

    Article  CAS  PubMed  Google Scholar 

  • J.P. Martin, R.B. Harding, G.H. Connell, L.D. Anderson, Soil Sci. 87, 334–338 (1959)

    Article  CAS  Google Scholar 

  • T.M.V. Martinez, V. Salmeron, J. Gonzalez-Lopez, Effects of an organophosphorus insecticide, profenofos on agricultural soil microflora. Chemosphere 24(1), 71–80 (1992)

    Article  Google Scholar 

  • M.V. Martinez-Toledo, V. Salmeron, B. Rodelas, C. Pozo, J. Gonzalez-Lopez, Effects of the fungicide captan on some functional groups of soil microflora. Appl. Soil Ecol. 7, 245–255 (1998)

    Article  Google Scholar 

  • S. Mayak, T. Tirosh, B.R. Glick, Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42, 565–572 (2004)

    Article  CAS  PubMed  Google Scholar 

  • M.J. Mazzarino, L. Szott, M. Jiminez, Dynamics of soil total C and N, microbial biomass and water-soluble C in tropical agroecosystems. Soil Biol. Biochem. 25(2), 205–214 (1993)

    Article  CAS  Google Scholar 

  • R. Mendes, P. Garbeva, J.M. Raaijmakers, The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013)

    Article  CAS  PubMed  Google Scholar 

  • J.M. Meriles, S.V. Gil, R.J. Haro, G.J. March, C.A. Guzman, Glyphosate and previous crop residue effect on deleterious and beneficial soil-borne fungi from peanut–corn–soybean rotations. J. Phytopathol. 154, 309–316 (2006)

    Article  CAS  Google Scholar 

  • M.L. Metzker, Sequencing technologies – the next generation. Nat. Rev. Genet. 11, 31–46 (2010)

    Article  CAS  PubMed  Google Scholar 

  • I. Mijangos, J.M. Becerril, I. Albizu, L. Epelde, C. Garbisu, Effects of glyphosate on rhizosphere soil microbial communities under two different plant compositions by cultivation dependent and independent methodologies. Soil Biol. Biochem. 41, 505–513 (2009)

    Article  CAS  Google Scholar 

  • U. Mishra, S. Pabbi, Cyanobacteria: a potential biofertilizer for rice. Resonance 9(6), 6–10 (2004)

    Article  Google Scholar 

  • A. Monkiedje, M.O. Ilori, M. Spiteller, Soil quality changes resulting from the application of the fungicides mefenoxam and metalaxyl to a sandy loam soil. Soil Biol. Biochem. 34, 1939–1948 (2002)

    Article  CAS  Google Scholar 

  • T.B. Moorman, S.S. Harper, Transformation and mineralization of metribuzin in surface and subsurface horizons of a Mississippi Delta soil. J. Environ. Qual. 18, 302–306 (1989)

    Article  CAS  Google Scholar 

  • J.P. Morrissey, J.M. Dow, G.L. Mark, F. O’Gara, Are microbes at the root of a solution to world food production? EMBO Rep. 5(10), 922–926 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • C. Moulas, C. Petsoulas, K. Rousidou, C. Perruchon, P. Karas, D.G. Karpouzas, Effects of systemic pesticides imidacloprid and metalaxyl on the phyllosphere of pepper plants. BioMed. Res. Int. 2013, 969750 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • W.R. Munns, R.C. Helm, W.J. Adams et al., Translating ecological risks to ecosystem service loss. Integr. Environ. Assess. Manag. 5, 500–514 (2009)

    Article  PubMed  Google Scholar 

  • B. Munoz-Leoz, E. Ruiz-Romera, I. Antiguedad, C. Garbisu, Tebuconazole application decreases soil microbial biomass and activity. Soil Biol. Biochem. 43, 2176–2183 (2011)

    Article  CAS  Google Scholar 

  • B. Munoz-Leoz, C. Garbisu, J. Charcosset, J.M. Sanchez-Perez, I. Antiguedad, E. Ruiz-Romera, Non-target effects of three formulated pesticides on microbially-mediated processes in a clay-loam soil. Sci. Total Environ. 449, 345–354 (2013)

    Article  CAS  PubMed  Google Scholar 

  • G. Muyzer, E.C. Dewaal, A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Appl. Environ. Microbiol. 59, 695–700 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  • S.M. Nadeem, Z.A. Zahir, M. Naveed, M. Arshad, Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can. J. Microbiol. 53, 1141–1149 (2007)

    Article  CAS  PubMed  Google Scholar 

  • C. Nasreen, G.J. Mohiddin, M. Srinivasulu, B. Manjunatha, V. Rangaswamy, Interaction effects of insecticides on microbial populations and dehydrogenase activity in groundnut (Arachis hypogeae) planted black clay soil. Int. J. Curr. Microbiol. Appl. Sci. 4(2), 135–146 (2015)

    Google Scholar 

  • P.S. Nicholson, P.R. Hirsch, The effects of pesticides on the diversity of culturable soil bacteria. J. Appl. Microbiol. 84, 551–558 (1998)

    Article  CAS  Google Scholar 

  • P. Nielsen, S.O. Petersen, Ester-linked polar lipid fatty acid profiles of soil microbial communities: a comparison of extraction methods and evaluation of interference from humic acids. Soil Biol. Biochem. 32(8&9), 1241–1249 (2000)

    Article  CAS  Google Scholar 

  • U.N. Nielsen, E. Ayres, D.H. Wall, R.D. Bardgett, Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. Eur. J. Soil Sci. 62, 105–116 (2011)

    Article  CAS  Google Scholar 

  • K.M. Nienstedt, T.C.M. Brock, J. Van-Wensem et al., Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides. Sci. Total Environ. 415(1), 31–38 (2012)

    Article  CAS  PubMed  Google Scholar 

  • N. Nosengo, Fertilized to death. Nature 425, 894–895 (2003)

    Article  CAS  PubMed  Google Scholar 

  • J.M. Notron, Nitrogen mineralization immobilization turnover, in Handbook of Soil Science, ed. by E. Malkolm (CRC Press, Baton Rouge, 2000), pp. 149–190

    Google Scholar 

  • OECD, OECD guidelines for the testing of chemicals. Test no. 216. Soil Microorganisms: nitrogen transformation test (2000), Retrieved from www.biotecnologiebt.it/pdf_our_services/OECD216.pdf

  • OEHHA, Office of Environmental Health Hazard Assessment. Soil toxicity and bioassessment test methods for ecological risk assessment (M. Hooper, M. Anderson, Preparation) (2009). Retrieved from http://oehha.ca.gov/ecotox/pdf/SoilTox120208.pdf

  • A.M. Osborn, E.R.B. Moore, K.N. Timmis, An evaluation of terminal- restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2(1), 39–50 (2000)

    Article  CAS  PubMed  Google Scholar 

  • R. Pal, K. Chakrabarti, A. Chakraborty, A. Chowdhury, Pencycuron application to soils: degradation and effect on microbiological parameters. Chemosphere 60, 1513–1522 (2005)

    Article  CAS  PubMed  Google Scholar 

  • S. Pandey, D.K. Singh, Total bacterial and fungal populations after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere 55(2), 197–205 (2004)

    Article  CAS  PubMed  Google Scholar 

  • A.K. Pandey, S. Gaind, A. Ali, L. Nain, Effect of bioaugmentation and nitrogen supplementation on composting of paddy straw. Biodegradation 20, 293–306 (2009)

    Article  PubMed  Google Scholar 

  • K.B. Parry, R.K.S. Wood, The adaptation of fungi to fungicides: adaptation to thiram, ziram, ferbam, nabarn and zineb. Ann. Appl. Biol. 47, 10–16 (1959)

    Article  CAS  Google Scholar 

  • C.L. Patten, B.R. Glick, Bacterial biosynthesis of indole 3-acetic acid. Can. J. Microbiol. 42, 207–220 (1996)

    Article  CAS  PubMed  Google Scholar 

  • C.L. Patten, B.R. Glick, Role of Pseudomonas putida indole acetic acid in the development of the host plant root system. Appl. Environ. Microbiol. 68, 3795–3801 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M.C. Paul, R.R. Mishra, Laboratory evaluation of some fungicides against colony growth of certain seed borne fungi. Crop. Res. 6, 131–137 (1993)

    Google Scholar 

  • E.A. Paul, R.A. Voroney, Field interpretation of microbial biomass activity and measurements, in Current Perspective in Microbial Ecology, ed. by M.J. Klug, C.A. Reddy (American Society of Microbiology, Washington, DC, 1989), pp. 509–514

    Google Scholar 

  • S.T. Pawar, Isolation and screening of pesticide resistant cyanobacteria from pesticide contaminated agricultural soil. Phykos 45(1), 85–84 (2015)

    Google Scholar 

  • M. Pell, B. Stenberg, L. Torstensson, Potential denitrification and nitrification tests for evaluation of pesticide effects in soil. Ambio 1, 24–28 (1998)

    Google Scholar 

  • D. Perrig, M.L. Boiero, O.A. Masciarelli, C. Penna, O.A. Ruiz, F.D. Cassan, M.V. Luna, Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense and implications for inoculant formulation. Appl. Microbiol. Biotechnol. 75, 1143–1150 (2007)

    Article  CAS  PubMed  Google Scholar 

  • P. Perucci, Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biol. Fertil. Soils 14, 54–60 (1992)

    Article  CAS  Google Scholar 

  • P. Perucci, L. Scarponi, Effects of the herbicide imazethapyr on soil microbial biomass and various soils enzyme activities. Biol. Fertil. Soils 17, 237–240 (1994)

    Article  CAS  Google Scholar 

  • P. Perucci, S. Dumontet, S.A. Bufo, A. Mazzatura, C. Casucci, Effects of organic amendment and herbicide treatment on soil microbial biomass. Biol. Fertil. Soils 32, 17–23 (2000)

    Article  CAS  Google Scholar 

  • V.N. Pishchik, N.I. Vorobyev, I.I. Chernyaeva, S.V. Timofeeva, A.P. Kozhemyakov, Y.V. Alexeev, S.M. Lukin, Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant Soil 243, 173–186 (2002)

    Article  CAS  Google Scholar 

  • R.F. Powers, Mineralizable soil nitrogen as an index of nitrogen availability to forest trees. Soil Sci. Soc. Am. J. 44, 1314–1320 (1980)

    Article  Google Scholar 

  • C. Pozo, V. Rodelas, M.V. Salmeron, G. Martinez-Toledo, R. Vela, Effects of fungicides maneb and mancozeb on soil microbial populations. Toxicol. Environ. Chem. 43(3&4), 123–132 (1994)

    Article  CAS  Google Scholar 

  • C. Pozo, T.M.V. Martinez, V. Salmeron, B. Rodelas, L. Goles, J. Opez, Effect of chloropyrifos on soil microbial activity. Environ. Toxicol. Chem. 14(2), 187–192 (1995)

    Article  CAS  Google Scholar 

  • J.B. Prajapati, B.M. Nair, The history of fermented foods in fermented functional foods, in Hand Book of Functional Fermented Foods, ed. by E.R. Farnworth (CRC Press, Boca Raton, 2003), pp. 1–25

    Google Scholar 

  • G. Preetha, J. Stanley, S. Suresh, R. Samiyappan, Risk assessment of insecticides used in rice on miridbug, Cyrtorhinus lividipennis Reuter, the important predator of brown planthopper, Nilaparvata lugens (Stal.). Chemosphere 80(5), 498–503 (2010)

    Article  CAS  PubMed  Google Scholar 

  • J.M. Raaijmakers, I. De-Bruijn, M.J. De-Kock, Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis and regulation. Mol. Plant Microbe Interact. 19, 699–710 (2006)

    Article  CAS  PubMed  Google Scholar 

  • L.J. Radivojevic, L.J. Santric, R.S. Kalezic, D. Brkic, V. Janjic, Uticaj metribuzina na brojnost i aktivnost nekih grupa zemljiÅ¡nih mikroorganizama. Pesticidi 18, 99–107 (2003)

    Article  CAS  Google Scholar 

  • L.J. Radivojevic, S. Gasic, L.J. Santric, R.S. Kalezic, The impact of atrazine on several biochemical properties of chernozem soil. J. Serb. Chem. Soc. 73, 951–959 (2008)

    Article  CAS  Google Scholar 

  • L. Radivojevic, L. Santric, J.G. Umiljendic, Rimsulfuron in soil: effects on microbiological properties under varying soil conditions. Pestic. Phytomed. 26(2), 135–140 (2011)

    Article  CAS  Google Scholar 

  • L. Radivojevic, J. Dubravka, S. Ljiljana, G. Slavica, U.G. Jelena, Effects of metsulfuron-methyl on soil microbial activity. Arch. Tech. Sci. 11(1), 77–82 (2014)

    Article  Google Scholar 

  • D. Rai, S.N. Sushil, J. Stanley, Ramkewal, J.P. Gupta, V. Singh, Deployment of novel technologies for the management of white grubs in lower hills of NW Himalayan region. Int. J. Hortic. 3(2), 3–10 (2013)

    Google Scholar 

  • V. Rangaswamy, B.R. Reddy, K. Venkateswarlu, Activities of dehydrogenase and protease in soil as influenced by monocrotophos, quinalphos, cypermethrin and fenvalerate. Agric. Ecosyst. Environ. 47, 319–326 (1994)

    Article  CAS  Google Scholar 

  • N. Rasool, Z.A. Reshi, Effect of the fungicide mancozeb at different application rates on enzyme activities in a silt loam soil of the Kashmir Himalaya. India. Trop. Ecol. 51, 199–205 (2010)

    CAS  Google Scholar 

  • A.K. Rath, R.B. Ramarkrishnan, A.K. Rath, S. Kusmaraswamy, K. Bharati, P. Singla, N. Sethunathan, Effects of peticides on microbial biomass of flooded soil. Chemosphere 37, 661–667 (1998)

    Article  CAS  Google Scholar 

  • D.S. Reay, Fertiliser ‘solution’ could turn local problem global. Nature 427, 485 (2004)

    Article  CAS  PubMed  Google Scholar 

  • P.J. Riggs, M.K. Chelius, A.L. Iniguez, S.M. Kaeppler, E.W. Triplett, Enhanced maize productivity by inoculation with diazotrophic bacteria. Aus. J. Plant Physiol. 28, 829–836 (2001)

    Google Scholar 

  • D.A. Robinson, N. Hockley, D.M. Cooper et al., Natural capital and ecosystem services, developing an appropriate soils framework as a basis for valuation. Soil Biol. Biochem. 57, 1023–1033 (2013)

    Article  CAS  Google Scholar 

  • P.A. Roger, I. Simpson, R. Oficial, S. Ardales, R. Jimenez, Effects of pesticides on soil and water microflora and mesofauna in wetland ricefields: a summary of current knowledge and extrapolation to temperate environments. Aust. J. Exp. Agric. 34, 1057–1068 (1994)

    Article  Google Scholar 

  • J. Romeis, R.L. Hellmich, M.P. Candolfi et al., Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgen. Res. 20, 1–22 (2011)

    Article  CAS  Google Scholar 

  • S. Rousseaux, A. Hartmann, N. Rouard, G. Soulas, A simplified procedure for terminal restriction fragment length polymorphism analysis of the soil bacterial community to study the effects of pesticides on the soil microflora using 4,6-dinitroorthocresol as a test case. Biol. Fertil. Soils 37(4), 250–254 (2003)

    CAS  Google Scholar 

  • C.M. Ryu, C.H. Hu, R.D. Locy, J.W. Kloepper, Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268, 285–292 (2005)

    Article  CAS  Google Scholar 

  • H. Saadatnia, H. Riahi, Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ. 55(5), 207–212 (2009)

    Google Scholar 

  • K.R. Saiya-Cork, R.L. Sinsabaugh, D.R. Zak, The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002)

    Article  CAS  Google Scholar 

  • A. Schmalenberger, C.C. Tebbe, M.A. Kertesz, H.L. Drake, K. Kusel, Two dimensional single strand conformation polymorphism (SSCP) of 16S rRNA gene fragments reveals highly dissimilar bacterial communities in an acidic fen. Eur. J. Soil Biol. 44, 495–500 (2008)

    Article  CAS  Google Scholar 

  • M. Schmitz, Poisoned food technique. Indu. Eng. Chem. Anal. 2, 361–363 (1930)

    Article  CAS  Google Scholar 

  • J. Schnurer, T. Rosswall, Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 43(6), 1256–1261 (1982)

    CAS  PubMed  PubMed Central  Google Scholar 

  • U.M.E. Schutte, Z. Abdo, S.J. Bent, C. Shyu, C.J. Williams, J.D. Pierson, L.J. Forney, Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl. Microbiol. Biotechnol. 80, 365–380 (2008)

    Article  CAS  PubMed  Google Scholar 

  • M. Schutter, R. Dick, Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64, 1659–1668 (2000)

    Article  CAS  Google Scholar 

  • F. Schwieger, C.C. Tebbe, A new approach to utilize PCR-single strand conformation polymorphism for 16S rDNA gene-based microbial community analysis. Appl. Environ. Microbiol. 64, 4870–4876 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  • G. Selvakumar, M. Mohan, S.N. Sushil, S. Kundu, J.C. Bhatt, H.S. Gupta, Characterization and phylogenetic analysis of an entomopathogenic Bacillus cereus strain WGPSB-2 (MTCC 7182) isolated from white grub, Anomala dimidiata (Coleoptera: Scarabaeidae). Biocontrol Sci. Technol. 17(5), 525–534 (2007)

    Article  Google Scholar 

  • D. Sengupta, M.W. Aktar, S. Purkait, M. Ganguly, Impact of quinalphos on microbial biomass and activities in tropical clay loam soil. Electron. J. Environ. Agric. Food Chem. 8, 1127–1135 (2009)

    CAS  Google Scholar 

  • H. Setala, M.P. Berg, T.H. Jones, Trophic structure and functional redundancy in soil communities, in Biological Diversity and Function in Soils, ed. by R.D. Bardgett, M.B. Usher, D.W. Hopkins (Cambridge University Press, Cambridge, 2005), pp. 236–249

    Chapter  Google Scholar 

  • S. Sethi, N. Mathur, P. Bhatnagar, Growth response of microbial population exposed to synthetic pyrethroids. Intl. J. Environ. Sci. 4(1), 42–53 (2013)

    Google Scholar 

  • N. Seymour, Impact of pesticides and fertilizers on soil biota (2015). Retrieved from www.academia.edu/10447630/Impacts_of_pesticides_and_fertilisers_on_soil_biota

  • B. Shaharoona, M. Naveed, M. Arshad, Z.A. Zahir, Fertilizer dependent efficiency of Pseudomonads for improving growth, yield and nutrient use efficiency of wheat (Triticum aestivum L.). Appl. Microbiol. Biotechnol. 79, 147–155 (2008)

    Article  CAS  PubMed  Google Scholar 

  • K. Shaukat, S. Affrasayab, S. Hasnain, Growth responses of Triticum aestivum to plant growth promoting rhizobacteria used as biofertilizer. Res. J. Microbiol. 1(4), 330–338 (2006)

    Article  CAS  Google Scholar 

  • R.A. Sikora, K. Schafer, A.A. Dababat, Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Aust. Plant Pathol. 36, 124–134 (2007)

    Article  Google Scholar 

  • M. Simek, L. Jisova, D.W. Hopkins, What is the so-called optimum pH for denitrification in soil? Soil Biol. Biochem. 34(9), 1227–1234 (2002)

    Article  CAS  Google Scholar 

  • M.J. Simpson, J.R. McKelvie, Environmental metabolomics: new insights into earthworm ecotoxicity and contaminant bioavailability in soil. Anal. Bioanal. Chem. 394, 137–149 (2009)

    Article  CAS  PubMed  Google Scholar 

  • S. Singh, B. Singh, B. Mishra et al., Microbes in agrowaste management for sustainable agriculture, in Microorganisms in Sustainable Agriculture and Biotechnology, ed. by T. Satyanarayana, B.N. Johri, A. Prakash (Springer, Dordrecht, 2012), pp. 127–151

    Chapter  Google Scholar 

  • S. Singh, R. Gupta, M. Kumari, S. Sharma, Nontarget effects of chemical pesticides and biological pesticide on rhizospheric microbial community structure and function in Vigna radiata. Environ. Sci. Pollut. Res. Inst. 22(15), 11290–11300 (2015)

    Article  CAS  Google Scholar 

  • S.E. Smith, D.J. Read, Mycorrhizal Symbiosis, 2nd edn. (Academic, London, 1997). 605 p

    Google Scholar 

  • A.E. Smith, L. Hume, G.P. Lafond, V.O. Biederbeck, A review of the effects of long-term 2,4-D and MCPA applications on wheat production and selected biochemical properties of a Black Chernozem. Can. J. Soil Sci. 71, 73–87 (1991)

    Article  CAS  Google Scholar 

  • A. Sofo, A. Scopa, S. Dumontet, A. Mazzatura, V. Pasquale, Toxic effects of four sulphonylureas herbicides on soil microbial biomass. J. Environ. Sci. Health B 47(7), 653–659 (2012)

    Article  CAS  PubMed  Google Scholar 

  • S.H. Son, Z. Khan, S.G. Kim, Y.H. Kim, Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. J. Appl. Microbiol. 107, 524–532 (2009)

    Article  CAS  PubMed  Google Scholar 

  • G. Soulas, C. Lors, Perspectives and limitations in assessing side-effects of pesticides on the soil microflora. in Proceedings of the 8th International Symposium on Microbial Ecology – Microbial Biosystems: New Frontiers Atlantic Canada Society for Microbial Ecology, Halifax, Canada, ed. by C.R. Bell, M. Brylinsky, P. Johnson-Green (1999). Retrieved from http://plato.acadiau.ca/isme/Symposium25/soulas.PDF

  • D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, Methods of Soil Analysis: Chemical Methods. Book series (Soil Science Society of America, Madison, 1996)

    Google Scholar 

  • I.M. Spyrou, D.G. Karpouzas, U. Menkissoglu-Spiroudi, Do botanical pesticides alter the structure of the soil microbial community? Microb. Ecol. 58, 715–727 (2009)

    Article  CAS  PubMed  Google Scholar 

  • P.D. Stahl, T.B. Parkin, Relationship of soil ergosterol concentration and fungal biomass. Soil Biol. Biochem. 28, 847–855 (1996)

    Article  CAS  Google Scholar 

  • J. Stanley, S. Chandrasekaran, G. Preetha, S. Kuttalam, Physical and biological compatibility of diafenthiuron with micro/macro nutrients fungicides and biocontrol agents used in cardamom. Arch. Phytopathol. Plant Prot. 43(14), 1396–1406 (2010a)

    Article  CAS  Google Scholar 

  • J. Stanley, S. Chandrasekaran, G. Preetha, S. Kuttalam, Toxicity of diafenthiuron to honey bees in laboratory, semi-field and field conditions. Pest Manag. Sci. 66(5), 505–510 (2010b)

    Article  CAS  PubMed  Google Scholar 

  • H.O. Stanley, E.M. Maduike, P.O. Okerentugba, Effect of herbicide (atrazine and paraquat) application on soil bacterial population. Sky J. Soil Sci. Environ. Manag. 2(9), 101–105 (2013)

    Google Scholar 

  • G.W. Startton, K.E. Stewart, Glyphosate effects on microbial biomass in a coniferous forest soil. Environ. Toxicol. Water Qual. 7, 223–236 (2002)

    Article  Google Scholar 

  • A.M. Stefanowicz, M. Niklinska, R. Laskowski, Pollution-induced tolerance of soil bacterial communities in meadow and forest ecosystems polluted with heavy metals. Eur. J. Soil Biol. 45, 363–369 (2009)

    Article  CAS  Google Scholar 

  • G. Straatsma, J.P.G. Gerrits, M.P.A.M. Augustin, H.J.M. Camp, G.D. Vogels, L.J.L.D. Van-Griensven, Population dynamics of Scytalidium thermophilum in mushroom compost and stimulatory effects on growth rate and yield of Agaricus bisporus. J. Gen. Microbiol. 135, 751–759 (1989)

    Google Scholar 

  • P.F. Strom, Identification of thermophilic bacteria in solid-waste composting. Appl. Environ. Microbiol. 50(4), 906–913 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  • A. Subhani, A.M. El-ghamry, H. Changyong, X. Jianming, Effects of pesticides (herbicides) on soil microbial biomass- a review. Pak. J. Biol. Sci. 3(5), 705–709 (2000)

    Article  Google Scholar 

  • M.J. Swift, A.N. Izac, M. Van-Moordwijk, Biodiversity and ecosystem services in agricultural landscapes – are we asking the right questions? Agric. Ecosyst. Environ. 104, 113–134 (2004)

    Article  Google Scholar 

  • M.A. Tabatabai, Soil enzymes, in Method of Soil Analysis, Part 2: Chemical and Microbiological Properties, ed. by L.A. Page (American Society of Agronomy, Soil Science Society of America, Madison, 1982), pp. 903–943

    Google Scholar 

  • M.A. Tabatabai, J.M. Bremner, Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1, 301–307 (1969)

    Article  CAS  Google Scholar 

  • M.A. Tabatabai, J.M. Bremner, Assay of urease activity in soils. Soil Biol. Biochem. 4, 479–487 (1972)

    Article  CAS  Google Scholar 

  • K. Tanaka, S. Endo, H. Kazano, Toxicity of insecticides to predators of rice planthoppers: spiders, the mirid bug and the dryinid wasp. Appl. Entomol. Zool. 35, 177–187 (2000)

    Article  CAS  Google Scholar 

  • J.C. Tarafdar, Effect of different herbicides on enzyme activity in controlling weeds in wheat crop. Pesticides 20, 46–49 (1986)

    CAS  Google Scholar 

  • K. Tawaraya, M. Naito, T. Wagatsuma, Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J. Plant Nutr. 29, 657–665 (2006)

    Article  CAS  Google Scholar 

  • S. Terre, F. Asch, J. Padham, R.A. Sikora, M. Becker, Influence of root zone bacteria on root iron plaque formation in rice subjected to iron toxicity, in Utilization of Diversity in Land Use Systems: Sustainable and Organic Approaches to Meet Human Needs, ed. by E. Tielkes (Tropentag, Witzenhausen, 2007). 446 p

    Google Scholar 

  • J.M. Tiedje, Microbial diversity: of value to whom? ASM News 60, 524–525 (1994)

    Google Scholar 

  • V.N. Tiwari, L.K. Lehri, A.N. Pathak, Effect of inoculating crops with phospho-microbes. Exp. Agric. 25(1), 47–50 (1989)

    Article  Google Scholar 

  • A. Tlili, A. Berard, J.L. Roulier, B. Volat, B. Montuelle, PO4 3- dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron. Aquat. Toxicol. 98, 165–177 (2010)

    Article  CAS  PubMed  Google Scholar 

  • R.K. Tokala, J.L. Strap, C.M. Jung, D.L. Crawford, H. Salove, L.A. Deobald, F.J. Bailey, M.J. Morra, Novel plant–microbe rhizosphere interaction involving S. lydicus WYEC108 and the pea plant (Pisum sativum). Appl. Environ. Microbiol. 68, 2161–2171 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L. Torstenssen, J. Stenstorm, Basic respiration rate as a tool for prediction of pesticide persistence in soil. Toxicol. Assess. 1, 57–72 (1986)

    Article  Google Scholar 

  • R.D. Tripathi, S. Srivastava, S. Mishra, N. Singh, R. Tuli, D.K. Gupta, F.J.M. Maathuis, Arsenic hazards: strategies for tolerance and remediation by plant. Trend. Biotechnol. 25, 158–165 (2007)

    Article  CAS  Google Scholar 

  • R.D. Tripathi, S. Dwivedi, M.K. Shukla, S. Mishra, S. Srivastava, R. Singh, U.N. Rai, D.K. Gupta, Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere 70(10), 1919–1929 (2008)

    Article  CAS  PubMed  Google Scholar 

  • C.M. Tu, Effect of some herbicides on activities of microorganisms and enzymes in soil. J. Environ. Sci. Health 27, 695–709 (1992)

    Article  Google Scholar 

  • C.M. Tu, J.R.W. Miles, Interactions between insecticides and soil microbes. Residue Rev. 64, 17–65 (1976)

    Article  CAS  PubMed  Google Scholar 

  • A.A.C. Uijtewaal, Buried pesticide waste hazard to Poland. Waste Manag. Res. 10(5), 387–398 (1992)

    Article  Google Scholar 

  • Y. Unno, K. Okubo, J. Wasaki, T. Shinano, M. Osaki, Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of lupin analysed by phytate utilization ability. Environ. Microbiol. 7, 396–404 (2005)

    Article  PubMed  Google Scholar 

  • T. Urich, A. Lanzen, J. Qi, D.H. Huson, C. Schleper, S.C. Schuster, Simultaneous assessment of soil microbial community structure and function through analysis of the metatranscriptome. PLoS ONE 3(6), e2527 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • C. Usta, Microorganisms in biological pest control- a review, in Current Progress in Biological Research, ed by S. Marina (InTech, 2013), doi:10.5772/55786

    Google Scholar 

  • X. Vakemans, B. Godden, M.J. Penninckx, Factor analysis of the relationship between several physicochemical and microbial characteristics of some Belgian agricultural soils. Soil Biol. Biochem. 21, 53–58 (1989)

    Article  Google Scholar 

  • P. Van-Beelen, P. Doelman, Significance and Application of Microbial Toxicity Tests in Assessing Ecotoxicological Risks of Contaminants in Soil and Sediment. Report No. 719102051 (National Institute of Public Health and Environment, Bilthoven, 1996). 40 p

    Google Scholar 

  • E.D. Vance, P.C. Brooks, D.S. Jenkinson, An extraction method for measuring soil microbial biomass. Soil Biol. Biochem. 19, 703–707 (1987)

    Article  CAS  Google Scholar 

  • J.D. Van-Elsas, F.G.H. Boersma, A review of molecular methods to study the microbiota of soil and the mycosphere. Eur. J. Soil Biol. 47, 77–87 (2011)

    Article  Google Scholar 

  • J.D. Van-Elsas, M. Chiurazzi, C.A. Mallon, D. Elhottova, V. Kristufek, J.F. Salles, Microbial diversity determines the invasion of soil by bacterial pathogen. Proc. Natl. Acad. Sci. U. S. A. 109, 1159–1164 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L.C. Van-Loon, Plant responses to plant growth promoting bacteria. Eur. J. Plant Pathol. 119, 243–254 (2007)

    Article  CAS  Google Scholar 

  • L.C. Van-Loon, P.A.H.M. Bakker, C.M.J. Pieterse, Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36, 453–483 (1998)

    Article  CAS  PubMed  Google Scholar 

  • A. Vespermann, M. Kai, B. Piechulla, Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 73, 5639–5641 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J.K. Vessey, Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571–586 (2003)

    Article  CAS  Google Scholar 

  • K. Vig, D.K. Singh, A.K. Agarwal, A.K. Dhawan, P. Dureja, Soil microorganisms in cotton fields sequentially treated with insecticides. Ecotoxicol. Environ. Saf. 69, 263–276 (2008)

    Article  CAS  PubMed  Google Scholar 

  • C. Vischetti, P. Perucci, L. Scarponi, Relationship between rimsulfuron degradation and microbial biomass content in a clay loam soil. Biol. Fert. Soils 31, 310–314 (2000)

    Article  CAS  Google Scholar 

  • C. Viti, L. Giovannetti, Characterization of cultivable heterotrophic bacterial communities in Cr-polluted and unpolluted soils using Biolog and ARDRA approaches. Appl. Soil Ecol. 28, 101–112 (2005)

    Article  Google Scholar 

  • A.J. Vlitos, Influence of environment on the Crag pesticide. Contri. Boyce Thompson Inst. 16, 435–438 (1952)

    Google Scholar 

  • G. Voos, P.M. Groffman, Relationship between microbial biomass and dissipation of 2, 4-D and Dicamba in soil. Biol. Fertil. Soils 24, 106–110 (1997)

    Article  CAS  Google Scholar 

  • M. Wainwright, Review of effects of pesticides on microbial activity in soils. J. Soil Sci. 29, 287–298 (1978)

    Article  CAS  Google Scholar 

  • B.H. Walker, Biodiversity and ecological redundancy. Conserv. Biol. 6, 18–24 (1992)

    Article  Google Scholar 

  • A. Walker, Y.H. Moon, S.J. Welch, Influence of temperature, soil moisture and soil characteristics on persistence of Alachlor. Pest Sci. 35, 109–116 (1992)

    Article  CAS  Google Scholar 

  • K. Wallenius, H. Rita, S. Simpanen, A. Mikkonen, R.M. Niemi, Sample storage for soil enzyme activity and bacterial community profiles. J. Microbiol. Meth. 81, 48–55 (2010)

    Article  CAS  Google Scholar 

  • U.F. Walsh, J.P. Morrissey, F. O’Gara, Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr. Opin. Biotechnol. 12, 289–295 (2001)

    Article  CAS  PubMed  Google Scholar 

  • M. Wang, Y. Liu, Q. Wang et al., Impacts of methamidophos on the biochemical, catabolic and genetic characteristics of soil microbial communities. Soil Biol. Biochem. 40(3), 778–788 (2008)

    Article  CAS  Google Scholar 

  • F. Wang, J. Yao, H.L. Chen, K. Chen, P. Trebse, G. Zaray, Comparative toxicity of chlorpyrifos and its oxon derivatives to soil microbial activity by combined methods. Chemosphere 78, 319–326 (2010)

    Article  CAS  PubMed  Google Scholar 

  • D.A. Wardle, A. Ghani, A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol. Biochem. 27, 1601–1610 (1995)

    Article  CAS  Google Scholar 

  • D.A. Wardle, D. Parkinson, Effects of three herbicides on soil microbial biomass and activity. Plant Soil 122, 21–28 (1990a)

    Article  CAS  Google Scholar 

  • D.A. Wardle, D. Parkinson, Influence of the herbicide glyphosate on soil microbial community structure. Plant Soil 122, 29–37 (1990b)

    Article  CAS  Google Scholar 

  • D.A. Wardle, D. Parkinson, Influence of the herbicides, 2, 4-D and glyphosate on soil microbial biomass and activity: a field experiment. Soil Biol. Biochem. 24, 185–186 (1992)

    Article  CAS  Google Scholar 

  • G. Wei, J.W. Kloepper, S. Tuzun, Induced systemic resistance to cucumber diseases and induced plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology 86, 221–224 (1996)

    Article  Google Scholar 

  • W.W. Wenzel, manipulating rhizosphere chemistry to control metal and organic contaminant availability and implications to phytoremediation, in Proceedings of the International Conference on Contaminants in Soil Environment in Australia-Pacific Environments, (New Delhi, 1999). 12 p

    Google Scholar 

  • S. Wertz, V. Degrange, J.I. Prosser, F. Poly, C. Commeaux, T. Freitag, N. Guillaumaud, X.L. Roux, Maintenance of soil functioning following erosion of microbial diversity. Environ. Microbiol. 8, 2162–2169 (2006)

    Article  CAS  PubMed  Google Scholar 

  • R.E. Wheatley, The consequences of volatile organic compound mediated bacterial and fungal interactions. AntonieVan Leeuwenhoek 81, 357–364 (2002)

    Article  CAS  Google Scholar 

  • J. Whipps, Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511 (2001)

    Article  CAS  PubMed  Google Scholar 

  • A. Widenfalk, J.M. Svensson, W. Goedkoop, Effects of the pesticides captan, deltamethrin, isoproturon, and pirimicarb on the microbial community of a freshwater sediment. Environ. Toxicol. Chem. 23(8), 1920–1927 (2004)

    Article  CAS  PubMed  Google Scholar 

  • A. Widenfalk, S. Bertilsson, I. Sundh, W. Goedkoop, Effects of pesticides on community composition and activity of sediment microbes – responses at various levels of microbial community organization. Environ. Pollut. 152, 576–584 (2008)

    Article  CAS  PubMed  Google Scholar 

  • W.S. Wong, X.Q. Shen, B. Wen, S.Z. Xhang, Relationship between the extractable metals from soils and metals taken up by maize roots and shoots. Chemosphere 53, 523–530 (2003)

    Article  CAS  Google Scholar 

  • J.C. Wooley, Y.Z. Ye, Metagenomics: facts, artifacts and computational challenges. J. Comp. Sci. Technol. 25, 71–81 (2010)

    Article  Google Scholar 

  • S.C. Wu, Z.H. Cao, Z.G. Li, K.C. Cheung, M.H. Wong, Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125(1&2), 155–166 (2005)

    Article  Google Scholar 

  • D. Wu, P. Hugernholtz, K. Mavromatis et al., A phylogeny driven genomic encyclopedia of bacteria and Arhaea. Nature 462, 1056–1060 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • X.M. Wu, Y.H. Long, Y.R. Li, R.X. Liu, M. Li, Effects of napropamide on microbiological characteristics of tobacco rhizosphere soil and its dissipation. J. Soil Sci. Plant Nutri. 14(1), 151–159 (2014)

    CAS  Google Scholar 

  • G.R. Xavier, F.V. Silva, J.E. Zilli, N.G. Rumjanek, Adaptação de método para extração de DNA microbiano, Embrapa Agrobiologia, Seropédica, Documento (2004) 171, 24 p

    Google Scholar 

  • A. Yabaya, E.D. Jatau, Investigating wild yeast baking potentials. Middle-East J. Sci. Res. 4(4), 320–322 (2009)

    CAS  Google Scholar 

  • S. Yachi, M. Loreau, Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. PNAS 96, 1463–1468 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S.K. Yadav, A.A. Juwarkar, G.P. Kumar, P.R. Thawale, S.K. Singh, T. Chakrabarti, Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Biores. Technol. 100, 4616–4622 (2009)

    Article  CAS  Google Scholar 

  • T. Yakupoglu, S.F. Hepsen, N. Ozdemir, R. Kizilkaya, The effects of various organic wastes applied into eroded soil on dehydrogenase enzyme activity, in Current Research Topics in Applied Microbiology and Microbial Biotechnology, ed. by A. Mendez-Vila (2009) pp. 97–101

    Google Scholar 

  • J. Yang, J.W. Kloepper, C.M. Ryu, Rhizosphere bacteria help plants tolerate abiotic stress. Trend. Plant Sci. 14, 1–4 (2009)

    Article  CAS  Google Scholar 

  • Y.G. Yanni, R.Y. Rizk, F.K.A. El-Fattah et al., The beneficial plant-growth promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust. J. Plant Physiol. 28, 845–870 (2001)

    CAS  Google Scholar 

  • C.B. Yao, G.W. Zehner, E. Sikora, J. Murphy, J.W. Kloepper, Evaluation of induced systemic resistance and plant growth promotion in tomato with selected PGPR strains, in Plant Growth Promoting Rhizobacteria – Present Status and Future Prospects, ed. by A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Kondo, S. Akino (Nakanishi Printing, Sapporo, 1997), pp. 285–288

    Google Scholar 

  • Z. Yehuda, M. Shenker, Y. Hadar, Y.N. Chen, Remedy of chlorosis induced by iron deficiency in plants with the fungal siderophore rhizoferrin. J. Plant Nutr. 23, 1991–2006 (2000)

    Article  CAS  Google Scholar 

  • S. Yousaf, S. Khan, M.T. Aslam, Effect of pesticides on the soil microbial activity. Pak. J. Zool. 45(4), 1063–1067 (2013)

    Google Scholar 

  • Y.L. Yu, M. Shan, H. Fang, X. Wang, X.Q. Chu, Responses of soil microorganisms and enzymes to repeated applications of chlorothalonil. J. Agric. Food Chem. 54, 10070–10075 (2006)

    Article  CAS  PubMed  Google Scholar 

  • H. Yu, G. Zeng, H. Huang et al., Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18(6), 793–802 (2007)

    Article  CAS  PubMed  Google Scholar 

  • T. Yuwono, D. Handayani, J. Soedarsono, The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust. J. Agric. Res. 56, 715–721 (2005)

    Article  Google Scholar 

  • M.C. Zabaloy, M.A. Gomez, Diversity of rhizobia isolated from an agricultural soil in Argentina based on carbon utilization and effects of herbicides on growth. Biol. Fert. Soils 42, 83–88 (2005)

    Article  Google Scholar 

  • M.C. Zabaloy, J.L. Garland, M.A. Gomez, An integrated approach to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region. Argentina. Appl. Soil Ecol. 40, 1–12 (2008)

    Article  Google Scholar 

  • I. Zabetakis, Enhancement of flavour biosynthesis from strawberry (Fragaria x ananassa) callus cultures by Methylobacterium species. Plant Cell Tiss. Organ. Cult. 50, 179–183 (1997)

    Article  CAS  Google Scholar 

  • J.C. Zak, M.R. Willig, D.L. Moorhead, H.G. Wildman, Functional diversity of microbial communities: a quantitative approach. Soil Biol. Biochem. 26, 1101–1108 (1994)

    Article  Google Scholar 

  • A.A. Zavalin, L.V. Vinogradova, T.M. Dukhanina et al., Geographical regularities of effect of inoculation with associative diazotrophs on the productivity of cereals. Aspects Appl. Biol. 63, 123–127 (2001)

    Google Scholar 

  • L. Zelles, I. Scheunert, F. Korte, Side effects of some pesticides on non-target soil microorganisms. J. Environ. Sci. Health B 20, 457–488 (1985)

    Article  Google Scholar 

  • F. Zhang, D.H. Lynch, D.L. Smith, Low root temperature and nodulation, nitrogen fixation, photosynthesis and growth by soybean [Glycine max (L.) Merr.]. Environ. Exp. Bot. 35, 279–285 (1995)

    Article  Google Scholar 

  • F. Zhang, N. Dashti, R.K. Hynes, D.L. Smith, Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann. Bot. 77, 453–459 (1996)

    Article  Google Scholar 

  • F. Zhang, N. Dashti, R.K. Hynes, D.L. Smith, Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr] growth and physiology at suboptimal root zone temperatures. Ann. Bot. 79, 243–249 (1997)

    Article  Google Scholar 

  • B. Zhang, H. Zhang, B. Jin, L. Tang, J. Yang, B. Li, G. Zhuang, Z. Bai, Effect of cypermethrin insecticide on the microbial community in cucumber phyllosphere. J. Environ. Sci. 20(11), 1356–1362 (2008)

    Article  CAS  Google Scholar 

  • B. Zhang, Z. Bai, D. Hoefel, L. Tang, X. Wang, B. Li, Z. Li, G. Zhuang, The impacts of cypermethrin pesticide application on the non-target microbial community of the pepper plant phyllosphere. Sci. Total Environ. 407(6), 1915–1922 (2009)

    Article  CAS  PubMed  Google Scholar 

  • J. Zhang, G. Zeng, Y. Chen et al., Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Biores. Tech. 102(3), 2950–2956 (2011)

    Article  CAS  Google Scholar 

  • H. Zhou, J. Li, L. Zhao, J. Han, X. Yang, W. Yang, X. Wu, Study on main microbes on quality formation of Yunnan puer tea during pile-fermentation process. J. Tea Sci. (2004). Retrieved from http://en.cnki.com.cn/Article_en/CJFDTOTAL-CYKK20040300B.htm

  • L.H.S. Zobiole, R.J. Kremer, R.S. Oliveira, J. Constantin, Glyphosate affects microorganisms in rhizospheres of glyphosate resistant soybeans. J. Appl. Microbiol. 110, 118–127 (2011)

    Article  CAS  PubMed  Google Scholar 

  • C.S. Zou, M.H. Mo, Y.Q. Gu, J.P. Zhou, K.Q. Zhang, Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol. Biochem. 39, 2371–2379 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stanley, J., Preetha, G. (2016). Pesticide Toxicity to Microorganisms: Exposure, Toxicity and Risk Assessment Methodologies. In: Pesticide Toxicity to Non-target Organisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7752-0_6

Download citation

Publish with us

Policies and ethics