Skip to main content

Variability of P Uptake by Plants

  • Chapter
  • First Online:
Phosphorus in Agriculture: 100 % Zero

Abstract

Phosphorus (P) uptake affects the planning of P fertilisation of agricultural crops and subsequently the economic evaluation of farming practices and the quantification of agri-environmental burdens. The P uptake of plants is influenced by soil type, soil available P, availability of other essential nutrients, climate and weather conditions as well as by the nutrient use efficiency of the grown cultivar. Phosphorus coefficients are mainly derived from P fertiliser experiments, reflecting regional soil and weather conditions as well as farming practice. P coefficients commonly used for a single crop can vary substantially and hence rarely reflect the actual P uptake rates of crops. However, the main driving factor in P budgets is the yield level rather than the P concentration in plants. While it is difficult to determine a ‘correct’ P coefficient for all crops from which to calculate reliable agri-environmental indicators, it is important for farmers to be able to calculate their nutrient budgets as accurately as possible to avoid economic losses and environmental burdens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker DE, Jarrell AE, Marshall LE, Thomas WI (1970) Phosphorus uptake from soils by corn hybrids selected for high and low phosphorus accumulation. Agron J 62:103–106

    Article  CAS  Google Scholar 

  • Baligar VC, Pitta GVE, Gama EEE, Schaffert RE, de Bahia Filho AFC, Clark RB (1997) Soil acidity effects on nutrient use efficiency in exotic maize genotypes. Plant Soil 192:9–13

    Article  CAS  Google Scholar 

  • Barrier-Guillot B, Casado P, Maupetit P, Jondreville C, Gatel F, Larbier M (1996) Wheat phosphorus availability: 1-In vitro study; factors affecting endogenous phytasic activity and phytic phosphorus content. J Sci Food Agric 70:62–68

    Article  CAS  Google Scholar 

  • Bates TE (1971) Factors affecting critical nutrient concentrations in plants and their evaluation: a review. Soil Sci 112:116–130

    Article  CAS  Google Scholar 

  • Batten GD (1992) A review of phosphorus efficiency in wheat. Plant Soil 146:163–168

    Article  CAS  Google Scholar 

  • Batten GD (1994) Concentrations of elements in wheat grains grown in Australia, North America, and the United Kingdom. Aust J Exp Agric 34:51–56

    Article  CAS  Google Scholar 

  • Bayuelo-Jiménez JS, Ochoa-Cadavid I (2014) Phosphorus acquisition and internal utilization efficiency among maize landraces from the central Mexican highlands. Field Crop Res 156:123–134

    Article  Google Scholar 

  • Binford GD (2010) Amounts of nutrients removed in corn grain at harvest in Delaware. In: Proceedings of the 19th world congress of soil science, soil solution for a changing world, Brisbane, Australia, 1–6 Aug 2010, pp 26–29

    Google Scholar 

  • Bryant RJ, Dorsch JA, Peterson KL, Rutger JN, Raboy V (2005) Phosphorus and mineral concentrations in whole grain and milled low phytic acid (lpa) 1-1 rice. Cereal Chem 82:517–522

    Article  CAS  Google Scholar 

  • Buciene A, Svedas A (1997) Spatial variability of soil agrochemical properties and crop yield in Lithuania. In: Proceedings of the 1st European conference on precision agriculture, Warwick, UK, 7–10 Sept 1997, vol 1, pp 71–78

    Google Scholar 

  • Bullock DS, Lowenberg-DeBoer J (2007) Using spatial analysis to study the values of variable rate technology and information. J Agric Econ 58:517–535

    Article  Google Scholar 

  • Bundy LG, Tunney H, Halvorson AD (2005) Agronomic aspects of phosphorus management. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. ASA-CSSA-SSSA, Madison, Wisconsin, USA, pp 685–727

    Google Scholar 

  • Cahn MD, Hummel JW, Brouer BH (1994) Spatial analysis of soil fertility for site-specific crop management. Soil Sci Soc Am J 58:1240–1248

    Article  Google Scholar 

  • Calderini DF, Torres-León S, Slafer GA (1995) Consequences of wheat breeding on nitrogen and phosphorus yield, grain nitrogen and phosphorus concentration and associated traits. Ann Bot 76:315–322

    Article  Google Scholar 

  • Chen F-J, Liu X-S, Mi G-H (2012) Varietal differences in plant growth, phosphorus uptake and yield formation in two maize inbred lines grown under field conditions. J Integr Agric 11(10):1738–1743

    Article  CAS  Google Scholar 

  • Diepenbrock W, Ellmer F, Léon J (2009) Ackerbau, Pflanzenbau und Pflanzenzüchtung. Eugen Ulmer KG, Stuttgart, pp 264–349

    Google Scholar 

  • Dikeman E, Pomeranz Y, Lai FS (1982) Mineral and protein contents in hard red winter wheat. Cereal Chem 59(2):139–142

    CAS  Google Scholar 

  • DüV (2006) Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis beim Düngen (Düngeverordnung – DüV). http://www.gesetze-im-internet.de/bundesrecht/d_v/gesamt.pdf. Accessed 18 July 2012

  • Erdman JA, Moul RC (1982) Mineral composition of small-grain cultivars from a uniform test plot in South Dakota. J Agr Food Chem 30(1):169–174

    Article  CAS  Google Scholar 

  • Eurostat (2013) Nutrient budgets—methodology and handbook, Version 1.02. Eurostat and OECD, Luxembourg, pp 1–112

    Google Scholar 

  • Fageria NK, Baligar VC (1997a) Phosphorus-use efficiency by corn genotypes. J Plant Nutr 20:1267–1277

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC (1997b) Upland rice genotypes evaluation for phosphorus use efficiency. J Plant Nutr 20:499–509

    Article  CAS  Google Scholar 

  • Fageria N, Wright R, Baligar V (1988) Rice cultivar evaluation for phosphorus use efficiency. Plant Soil 111(1):105–109

    Article  CAS  Google Scholar 

  • Fageria NK, Santana EP, de Castro EM, Moraes OP (1995) Resposta diferencial de genótipos de arroz de sequeiro à fertilidade do solo. Rev Bras Cienc Solo 19:261–267

    Google Scholar 

  • Fageria N, Baligar VC, Jones CA (2011) Growth and mineral nutrition of field crops, 3rd edn. CRC Press, Boca Raton, FL, USA, pp 1–560

    Google Scholar 

  • FAO (2014a) Top production—World (total)—2012. http://faostat.fao.org/site/339/default.aspx. Accessed 21 Aug 2014

  • FAO (2014b) Top production—Europe (total)—2012. http://faostat.fao.org/site/339/default.aspx. Accessed 21 Aug 2014

  • FAO (2014c) FAOSTAT. http://faostat.fao.org/site/567/default.aspx. Accessed 21 Aug 2014

  • Ferreira CF, Vargas Motta AC, Prior SA, Reissman CB, dos Santos NZ, Gabardo J (2012) Influence of corn (Zea mays L.) cultivar development on grain nutrient concentration. Int J Agron 2012:ID842582

    Google Scholar 

  • Finck A (1979) Dünger und Düngung – Grundlagen und Anleitung zur Düngung der Kulturpflanzen. Verlag Chemie, Weinheim, New York, pp 1–442

    Google Scholar 

  • Fisher MJ (1980) The influence of water stress on nitrogen and phosphorus uptake and concentration in Towensville Stylo (Stylosanthes humilis). Aust J Exp Agr 20:175–180

    Article  Google Scholar 

  • Flachowsky G (2006) Futtermittelkundliche Aspekte. Landbauforsch Volk, Sonderheft 289:101–111

    Google Scholar 

  • Gahoonia TS, Nielsen NE (1996) Variation in acquisition of soil phosphorus among wheat and barley genotypes. Plant Soil 178:223–230

    Article  CAS  Google Scholar 

  • Gill HS, Singh A, Sethi SK, Behl RK (2004) Phosphorus uptake and use efficiency in different varieties of bread wheat (Triticum aestivum L.). Arch Acker Pfl Boden 50:563–572

    CAS  Google Scholar 

  • Gregersen PL (2011) Senescence and nutrient remobilization in crop plants. In: Hawkesford MJ, Barraclough P (eds) (2011) The molecular and physiological basis of nutrient use efficiency in crops. Wiley-Blackwell, Chichester, UK, pp 83–102

    Google Scholar 

  • Gregory FG, Crowther F, Beaven ES (1928) A physical study of varietal differences in plants. Part I. A study of the comparative yields of barley varieties with different manurings. Ann Bot-London 42:757–770

    CAS  Google Scholar 

  • Hafeez F, Aziz T, Maqsood MA, Ahmed M, Farooq M (2010) Differences in rice cultivars for growth and phosphorus acquisition from rock phosphate and mono-ammonium phosphate sources. Int J Agric Biol 12:907–910

    Google Scholar 

  • Hawkesford MJ (2011) An overview of nutrient use efficiency and strategies for crop improvement. In: Hawkesford MJ, Barraclough P (eds) The molecular and physiological basis of nutrient use efficiency in crops. Wiley-Blackwell, Chichester, UK, pp 5–19

    Chapter  Google Scholar 

  • Heckman JR, Sims JT, Beegle DB, Coale FJ, Herbert SJ, Bruulsema TW, Bamka WJ (2003) Nutrient removal by corn grain harvest. Agron J 95:587–591

    Article  Google Scholar 

  • Helyar KR (1998) Efficiency of nutrient utilization and sustaining soil fertility with particular reference to phosphorus. Field Crop Res 56:187–195

    Article  Google Scholar 

  • Hussain AA, Maurya DM, Vaish CP (1987) Studies on quality of indigenous upland rice (Oryza sativa). Indian J Genet Plant Breed 47:145–152

    Google Scholar 

  • Jessop RS, Jones GP, Blair GJ (1984) Performance of 22 wheat varieties under low and high phosphorus conditions and implications for the selection of P-efficient varieties. In: Proceedings of the 3rd international congress on phosphorus compounds, Brussels, 4–6 Oct 1983, pp 445–454

    Google Scholar 

  • Johnston AE (2005) Phosphorus nutrition of arable crops. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. ASA-CSSA-SSSA, Madison, Wisconsin, USA, pp 495–519

    Google Scholar 

  • Johnston AE, Poulton PR, Syers JK (2001) Phosphorus, potassium and sulphur cycles in agricultural soils. The International Fertiliser Society, Proceedings No: 465

    Google Scholar 

  • Jones GPD, Blair GJ, Jessop RS (1989) Phosphorus efficiency in wheat—a useful selection criterion? Field Crop Res 21:257–264

    Article  Google Scholar 

  • Jones GPD, Jessop RS, Blair GJ (1992) Alternative methods for the selection of phosphorus efficiency in wheat. Field Crop Res 30:29–40

    Article  Google Scholar 

  • Juliano BO, Bechtel DB (1985) The rice grain and its gross composition. Rice—chemistry and technology. American Association of Cereal Chemistry, St. Paul, Minnesota, USA, pp 17–57

    Google Scholar 

  • Karlen DL, Flannery RL, Sadler EJ (1988) Aerial accumulation and partitioning of nutrients by corn. Agron J 80:232–242

    Article  Google Scholar 

  • Klatt JG, Mallarino AP, Downing JA, Kopaska JA, Wittry DJ (2003) Soil phosphorus, management practice, and their relationship to phosphorus delivery in the Iowa Clear Lake agricultural watershed. J Environ Qual 32(6):2140–2149

    Article  CAS  PubMed  Google Scholar 

  • Kristensen K, Simmelsgaard SE, Djurhuus J, Olesen SE (1995) Spatial variability of soil physical and chemical parameters. In: Seminar on site specific farming, Koldkægaard, Århus, Denmark, 20–21 Mar 1995, pp 39–55

    Google Scholar 

  • Lark RM (2009) Estimating the regional mean status and change of soil properties: two distinct objectives for soil survey. Eur J Soil Sci 60:748–756

    Article  Google Scholar 

  • LfL (2013) Gruber Tabellen zur Fütterung der Milchkühe, Zuchtrinder, Schafe, Ziegen. Bayerische Landesanstalt für Landwirtschaft (LfL). pp 1–94. http://www.lfl.bayern.de/mam/cms07/publikationen/daten/informationen/p_36967.pdf. Accessed 16 July 2014

  • LKSH (2011) Futtermitteltabellen. Landwirtschaftskammer Schleswig-Holstein (LKSH). pp 1–9. http://www.lksh.de/fileadmin/dokumente/Landwirtschaft/Tier/Rinder/2011/Futterwerte-wichtigste-Futtermittel.pdf. Accessed 16 July 2014

  • LLH (2009) Empfehlungen zur Energie- und Nährstoffversorgung für Milchkühe und Jungrinder sowie Futterwerte der in Hessen gebräuchlichen Futtermittel. Landesbetrieb Landwirtschaft Hessen (LLH). pp 1–6. http://www.llh.hessen.de/tierproduktion/rinder.html. Accessed 16 July 2014

  • Lolas GM, Palamidis N, Markakis P (1976) The phytic acid-total phosphorus relationship in barley, oats, soybean, and wheat. Cereal Chem 53(6):867–871

    CAS  Google Scholar 

  • LVLF (2008) Richtwerte für die Untersuchung und Beratung sowie zur fachlichen Umsetzung der Düngeverordnung (DüV). http://www.mil.brandenburg.de/cms/detail.php/bb1.c.246175.de?highlight. Accessed 31 Jan 2013

  • Lyness AS (1936) Varietal differences in the phosphorous feeding capacity of plants. Plant Physiol 11:665–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallarino AP, Schepers JS (2005) Role of precision agriculture in phosphorus management practices. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. ASA-CSSA-SSSA, Madison, Wisconsin, USA, pp 881–908

    Google Scholar 

  • Mallarino AP, Wittry DJ, Dousa D, Hinz PN (1998) Variable-rate phosphorus fertilization: on-farm research methods and evaluation for corn and soybean. In: Robert PC et al (eds) Precision agriculture. Proceedings of the 4th international conference, Minneapolis, 19–22 July 1998, Part A, pp 687–696

    Google Scholar 

  • Manschadi AM, Kaul H-P, Vollmann J, Eitzinger J, Wenzel W (2014) Developing phosphorus-efficient crop varieties—an interdisciplinary research framework. Field Crop Res 162:87–98

    Article  Google Scholar 

  • Manske GGB, Ortiz-Monasterio JI, van Ginkel M, Gonzáles RM, Fischer RA, Rajaram S, Vlek PLG (2001) Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. Eur J Agron 14:261–274

    Article  CAS  Google Scholar 

  • Marchant BP, Lark RM (2007) Optimized sample schemes for geostatistical surveys. Math Geol 39:113–134

    Article  Google Scholar 

  • Marr KM, Batten GD, Blakeney AB (1995) Relationships between minerals in Australian brown rice. J Sci Food Agr 68:285–291

    Article  CAS  Google Scholar 

  • McCall ER, Jurgens JF, Hoffpauir CL, Pons WA, Stark SM, Cucullu AF, Heinzelman DC, Cirino VO, Murray MD (1953) Composition of rice: Influence of variety and environment on physical and chemical composition. J Agr Food Chem 1:988–993

    Article  CAS  Google Scholar 

  • Mitscherlich EA (1909) Das Gesetz des Minimums und das Gesetz des abnehmenden Bodenertrages. Landwirtschaftliche Jahrbücher 38:537–552

    CAS  Google Scholar 

  • Nadeem M, Mollier A, Morel C, Vives A, Prud’homme L, Pellerin S (2012) Seed phosphorus remobilisation is not a major limiting step for phosphorus nutrition during early growth of maize. J Plant Nutr Soil Sc 175:805–809

    Article  CAS  Google Scholar 

  • Ning P, Li S, Yu P, Zhang Y, Li C (2013) Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crop Res 144:19–27

    Article  Google Scholar 

  • NMUEK (2014) Nährstoffeintrag durch Düngung. Quellen und Einträge. http://www.umwelt.niedersachsen.de/umweltbericht/herausforderungen/eutrophierung/naehrstoffeintrag_durch_duengung/quellen_und_eintraege/quellen-und-eintraege-89000.html. Accessed 21 Aug 2014

  • Nolin MC, Guertin SP, Wang C (1996) Within-field spatial variability of soil nutrients and corn yield in a Montreal Lowlands clay soil. In: Robert PC et al (eds) Precision agriculture. Proceedings of the 3rd international conference, Minneapolis, 23–26 June 1996, pp 257–270

    Google Scholar 

  • OECD (2010) Environmental performance of agriculture. OECD agricultural statistics (database). doi:10.1787/data-00173-en. Accessed 08 Jan 2013

  • Oenema O, van Liere L, Schoumans O (2005) Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands. J Hydrol 304:289–301

    Article  CAS  Google Scholar 

  • Oliver MA (2010) Geostatistical applications for precision agriculture. Springer, Dordrecht, Heidelberg, London, New York, pp 1–331

    Book  Google Scholar 

  • Osborne LD, Rengel Z (2002) Screening cereals for genotypic variation in efficiency of phosphorus uptake and utilisation. Aust J Agr Res 53:295–303

    Article  Google Scholar 

  • Ozturk L, Eker S, Torun B, Cakmak I (2005) Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil. Plant Soil 269:69–80

    Article  CAS  Google Scholar 

  • Panten K (2002) Ein Beitrag zur Fernerkundung der räumlichen Variabilität von Boden- und Bestandesmerkmalen. Landbauforsch Volk, Sonderheft 232:1–135

    Google Scholar 

  • Panten K, Rogasik J, Godlinski F, Funder U, Greef J-M, Schnug E (2009) Gross soil surface nutrient balances: the OECD approach implemented under German conditions. Landbauforsch Volk 59:19–28

    Google Scholar 

  • Peterson CJ, Johnson VA, Mattern PJ (1983) Evaluation of variation in mineral element concentrations in wheat flour and bran of different cultivars. Cereal Chem 60:450–455

    CAS  Google Scholar 

  • Pocknee S, Boydell BC, Green HM, Waters DJ, Kvien CK (1996) Directed soil sampling. In: Robert PC, Rust RH, Larson WE (eds) Proceedings of the 3rd international conference on precision agriculture, Minneapolis, 23–26 June 1996. ASA; CSSA; SSSA, Madison, Wisconsin, pp 159–168

    Google Scholar 

  • Pote DH, Daniel TC, Nichols DJ, Sharpley AN, Moore PA, Miller DM, Edwards DR (1999) Relationship between phosphorus levels in three Ultisols and phosphorus concentrations in runoff. J Environ Qual 28(1):170–175

    Article  CAS  Google Scholar 

  • Ren X-L, Liu Q-L, Wu D-X, Shu Q-Y (2006) Variations in concentration and distribution of health-related elements affected by environmental and genotypic differences in rice grains. Rice Sci 13:170–178

    Google Scholar 

  • Ren X-L, Liu Q-L, Fu H-W, Wu D-X, Shu Q-Y (2007) Density alteration of nutrient elements in rice grains of a low phytate mutant. Food Chem 102:1400–1406

    Article  CAS  Google Scholar 

  • Ros C, Bell RW, White PF (1997) Effects of seed phosphorus and soil phosphorus applications on early growth of rice (Oryza sativa L.) cv. IR66. Soil Sci Plant Nutr 43:499–509

    Article  CAS  Google Scholar 

  • Rosa OS (1991) Wheat breeding for better efficiency in phosphorus use. In: Saunders DA (ed) Wheat for the non-traditional warm areas. Proceedings of an international conference, 29 June–3 Aug 1990, Foz do Iguacu, Brazil, pp 333–351

    Google Scholar 

  • Rose TJ, Pariasca-Tanaka J, Rose MT, Mori A, Wissuwa M (2012) Seeds of doubt: re-assessing the impact of grain P concentrations on seedling vigor. J Plant Nutr Soil Sci 175:799–804

    Article  CAS  Google Scholar 

  • Sarić MR (1987) Progress since the first international symposium: ‘genetic aspects of plant mineral nutrition’, Beograd, 1982, and perspectives of future research. Plant Soil 99:197–209

    Article  Google Scholar 

  • Schepers JS, Schlemmer MR, Ferguson RB (2000) Site-specific considerations for managing phosphorus. J Environ Qual 29(1):125–130

    Article  CAS  Google Scholar 

  • Schnug E, Strampe U (1988) Sortentypische Unterschiede der Nährelementkonzentrationen bei Winterweizen. J Agron Crop Sci 160:163–172

    Article  Google Scholar 

  • Schnug E, Lamp J, Knoop F (1985) Regionale Variabilität von Merkmalen der Bodenfruchtbarkeit II. Beispiele und praktische Bedeutung. Mitt Deut Bodenkdl G 43(2):679–684

    Google Scholar 

  • Schulthess U, Feil B, Jutzi SC (1997) Yield-independent variation in grain nitrogen and phosphorus concentration among Ethiopian wheats. Agron J 89:497–506

    Article  CAS  Google Scholar 

  • Senthilkumar K, Nesme T, Mollier A, Pellerin S (2012) Regional-scale phosphorus flows and budgets within France: the importance of agricultural production systems. Nutr Cycl Agroecosyst 92:145–159

    Article  Google Scholar 

  • Sharpley AN (1995) Dependence of runoff phosphorus on extractable soil phosphorus. J Environ Qual 24(5):920–926

    Article  CAS  Google Scholar 

  • Simpson RJ, Oberson A, Culvenor RA, Ryan MH, Veneklaas EJ, Lambers H, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Richardson AE (2011) Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349:89–120

    Article  CAS  Google Scholar 

  • Smith SN (1934) Response of inbred lines and crosses in maize to variations of nitrogen and phosphorus supplied as nutrients. J Am Soc Agron 26(9):785–804

    Article  CAS  Google Scholar 

  • Spiess E (2011) Nitrogen, phosphorus and potassium balances and cycles of Swiss agriculture from 1975–2008. Nutr Cycl Agroecosyst 91:351–365

    Article  CAS  Google Scholar 

  • Stangel PJ, von Uexküll HR (1990) Regional food security; demographic and geographic implications. Phosphorus requirements for sustainable agriculture in Asia and Oceania. IRRI, Manilla, Philippines, pp 21–43

    Google Scholar 

  • Steiner T, Mosenthin R, Zimmermann B, Greiner R, Roth S (2007) Distribution of phytase, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal by-products as influenced by harvest year and cultivar. Anim Feed Sci Tech 133:320–334

    Article  CAS  Google Scholar 

  • Syers JK, Johnston AE, Curtin D (2008) Efficiency of soil and fertilizer phosphorus use. Reconciling changing concepts of soil phosphorus behaviour with agronomic information. FAO Fertilizer Plant Nutr Bull 18:1–123

    Google Scholar 

  • Tan ZX, Lal R, Wiebe KD (2005) Global soil nutrient depletion and yield reduction. J Sustain Agr 26(1):123–146

    Article  Google Scholar 

  • Vance CP (2011) Phosphorus as a critical macronutrient. In: Hawkesford MJ, Barraclough P (eds) The molecular and physiological basis of nutrient use efficiency in crops. Wiley-Blackwell, Chichester, UK, pp 229–264

    Google Scholar 

  • Vašát R, Heuvelink GBM, Borůvka L (2010) Sampling design optimization for multivariate soil sampling. Geoderma 155:147–153

    Article  Google Scholar 

  • Vyn TJ, Tollenaar M (1998) Changes in chemical and physical quality parameters of maize grain during three decades of yield improvement. Field Crop Res 59(2):135–140

    Article  Google Scholar 

  • Watson C, Topp K, Stockdale L (2009) A guide to nutrient budgeting on organic farms. http://www.organicresearchcentre.com/manage/authincludes/article_uploads/iota/technical-leaflets/a-guide-to-nutrient-budgeting-on-farms.pdf. Accessed 1 Aug 2014

  • Weld J, Sharpley AN (2006) Phosphorus indices. In: Radcliff DE, Cabrera ML (eds) Modeling phosphorus in the environment. CRC Press, New York, USA, pp 301–332

    Chapter  Google Scholar 

  • Wissuwa M, Ae N (2001) Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breed 120:43–48

    Article  CAS  Google Scholar 

  • Withers PJA, Haygarth PM (2007) Agriculture, phosphorus and eutrophication: a European perspective. Soil Use Manage 23:1–4

    Article  Google Scholar 

  • Withers PJA, Nash DA, Laboski CAM (2005) Environmental management of phosphorus fertilisers. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. ASA-CSSA-SSSA, Madison, Wisconsin, USA, pp 781–827

    Google Scholar 

  • Wittry DJ, Mallarino AP (2004) Comparison of uniform- and variable-rate phosphorus fertilization for corn-soybean rotations. Agron J 96:26–33

    Article  Google Scholar 

  • Yang C, Anderson GL, King JH, Chandler EK (1999) Comparison of uniform and variable rate fertilization strategies using grid soil sampling, variable rate technology, and yield monitoring. In: Proceedings of the 4th international conference on precision agriculture, St. Paul, USA, 19–20 July 1998, pp 675–686

    Google Scholar 

  • Yaseen M, Malhi SS (2011) Exploitation of genetic variability among wheat genotypes for tolerance to phosphorus deficiency. J Plant Nutr 34(5):665–699

    Article  CAS  Google Scholar 

  • Zhang M, Nyborg M, McGill WB (1990) Phosphorus concentration in barley (Hordeum vulgare L.) seed: influence on seedling growth and dry matter production. Plant Soil 122:79–83

    Article  CAS  Google Scholar 

  • Zhu Y-G, Smith SE (2001) Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi. Plant Soil 231:105–112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Panten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Panten, K., Godlinski, F., Schroetter, S., Hofmeier, M. (2016). Variability of P Uptake by Plants. In: Schnug, E., De Kok, L. (eds) Phosphorus in Agriculture: 100 % Zero. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7612-7_8

Download citation

Publish with us

Policies and ethics