Skip to main content

Phosphorus—The Predicament of Organic Farming

  • Chapter
  • First Online:
Phosphorus in Agriculture: 100 % Zero

Abstract

Today on many sites organic farming might neglect phosphorus (P) fertilization due to soil reserves build up by P fertilization of former farming systems. Additionally organic farming has restricted itself to the use of non-solubilised rock phosphate as mineral fertilizer source that only has limited plant availability on agricultural soils with adequate pH. Also recycling of P from the food chain back to organic agriculture is not consequently realised. These predicaments of organic farming endanger its future sustainability. The article gives an overview on the state of knowledge of the use of topsoil and subsoil P reserves by plants in organic production, on possibilities to activate them by biological measures for direct use by plants and for their redistribution on farms. As in legislation phosphate rock is defined as prevailing mineral fertilizer source for organic farming, a detailed view is given on the use of its P in dependence of plant variety. Also attempts to improve its fertilizer value by mixtures with organic matter are reviewed. It is obvious that plant roots and soil organisms can activate P from the soil and keep it in biological turnover. This is a promising concept to use soil reserves, but quantification of time-spans offering sufficient P supply just by this approach is not possible. Therefore, while promoting root density, root penetration and biological activity in soils, site specific analyses of plant available P in soil, analyses of field and farm P-budgets as well as of plants P supply are necessary to decide on P-fertilization. Soluble P sources, preferably from recycling processes, should be developed for future fertilization demands of organic farming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam C, Pepelinski B, Kley G, Kratz S, Schick J, Schnug E (2008) Phosphorrückgewinnung aus Klärschlammaschen - Ergebnisse aus dem EU-Projekt SUSAN. Österreichische Wasser- und Abfallwirtschaft 3–4 (Special Issue “IFAT 2008”):55–64

    Google Scholar 

  • Amann C, Amberger A (1989) Phosphorus efficiency of buckwheat (Fagopyrum esculentum). Z Pflanz Bodenkunde 152:181–189

    Google Scholar 

  • Arcand MM, Schneider KD (2006) Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. An Acad Bras Cienc 78:791–807

    Google Scholar 

  • Aria MM, Lakzian A, Haghnia GH, Berenji AR, Besharati H, Fotovat A (2010) Effect of Thiobacillus, sulphur, and vermicompost on the water-soluble phosphorus of hard rock phosphate. Bioresour Technol 101:551–554

    Article  CAS  PubMed  Google Scholar 

  • Arthurson V (2009) Closing the global energy and nutrient cycles through application of biogas residue to agricultural land—potential benefits and drawbacks. Energies 2:226–242

    Article  CAS  Google Scholar 

  • Balzer FM, Balzer-Graf UR (1984) Bodenanalyse system Dr. Balzer. Lebendige Erde 1:13–18, 66–71; 4:151–156

    Google Scholar 

  • Barberis E, Marsan FA, Scalenghe R, Lammers A, Schwertmann U, Edwards AC, Maguire R, Wilson MJ, Delgado A, Torrent J (1996) European soils overfertilized with phosphorus. 1. Basic properties. Fert Res 45:199–207

    Article  Google Scholar 

  • Barbosa FT, Bertol I, Luciano RV, Gonzalez AP (2009) Phosphorus losses in water and sediments in runoff of the water erosion in oat and vetch crops seed in contour and downhill. Soil Till Res 106:22–28

    Article  Google Scholar 

  • Barej JAM, Pätzold S, Perkons U, Amelung W (2014) Phosphorus fractions in bulk subsoil and its biopore systems. Eur J Soil Sci 65:553–561

    Article  CAS  Google Scholar 

  • Berry PM, Stockdale EA, Sylvester-Bradley R, Philipps L, Smith KA, Lord EI, Watson CA, Fortune S (2003) N, P and K budgets for crop rotations on nine organic farms in the UK. Soil Use Manag 19:112–118

    Article  Google Scholar 

  • Bhat KKS, Nye PH (1974) Diffusion of phosphate to plant roots in soil. Plant Soil 41:383–394

    Article  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:255

    Article  Google Scholar 

  • Biswas DR, Narayanasamy G (2006) Rock phosphate enriched compost: an approach to improve low-grade Indian rock phosphate. Bioresour Technol 97:2243–2251

    Article  CAS  PubMed  Google Scholar 

  • Blake L, Mercik S, Koerschens M, Moskal S, Poulton PR, Goulding KWT, Weigel A, Powlson DS (2000) Phosphorus content in soil, uptake by plants and balance in three European long-term field experiments. Nutr Cycl Agroecosys 56:263–275

    Article  Google Scholar 

  • Blum WEH, Herbinger B, Mentler A, Ottner F, Pollok M, Unger E, Wenzel WW (1989): Zur Verwendung von Gesteinsmehlen in der Landwirtschaft. I. Chemisch-mineralogische Zusammensetzung und Eignung von Gesteinsmehlen als Düngemittel. Z Pflanz Bodenk 15:421–425

    Google Scholar 

  • Böhm W, Köpke U (1977) Comparative root investigations with two profile wall methods. Z Acker Pflanzenb 144:297–303

    Google Scholar 

  • Cai TT, Olsen TW, Yost RS, Silva JA (1997) Performance indices for tests of soil nutrient status: extractable P. Commun Soil Sci Plan 28:329–339

    Article  CAS  Google Scholar 

  • Campbell CA, Lafond GP, Biederbeck VO, Winkleman GE (1993) Influence of legumes and fertilization on deep distribution of available phosphorus (Olsen-P) in a thin black chernozemic soil. Can J Soil Sci 73:555–565

    Article  CAS  Google Scholar 

  • Cavigelli MA, Thien SJ (2003) P bioavailability following incorporation of green manure crops. Soil Sci Soc Am J 67:1186–1194

    Article  CAS  Google Scholar 

  • Chapin FS (1980) The mineral-nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Claassen N, Steingrobe B, Syring KM (2002) A mechanistic model to describe the effect of complexing root exudates on transport and uptake of soil nutrients. In: Plant nutrition, developments in plant and soil sciences, symposium 8, vol 92, pp 600–601. doi:10.1007/0-306-47624-X_291

    Google Scholar 

  • Cobo JG, Dercon G, Cadisch G (2010) Nutrient balances in African land use systems across different spatial scales: a review of approaches, challenges and progress. Agr Ecosyst Environ 136:1–15

    Article  Google Scholar 

  • Commission regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control

    Google Scholar 

  • Cornish PS (2009) Phosphorus management on extensive organic and low-input farms. Crop Past Sci 60:105–115

    Article  CAS  Google Scholar 

  • Daroub SH, Ellis BG, Robertson GP (2001) Effect of cropping and low-chemical input systems on soil P fractions. Soil Sci 166:281–291

    Article  CAS  Google Scholar 

  • Dawson JC, Huggins DR, Jones SS (2008) Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crops Res 107:89–101

    Article  Google Scholar 

  • Demaria P, Flisch R, Frossard E, Sinaj S (2005) Exchangeability of phosphate extracted by four chemical methods. J Plant Nutr Soil Sci 168:89–93

    Article  CAS  Google Scholar 

  • Devliegher W, Verstraete W (1997) The effect of lumbricus terrestris on soil in relation to plant growth: effects of nutrient-enrichment processes (NEP) and gut-associated processes (GAP). Soil Biol Biochem 29:341–346

    Article  CAS  Google Scholar 

  • Dreesmann S (1993) Pflanzenbauliche Untersuchungen zu Rotklee- und Luzernegras-Grünbrachen in der modifizierten Fruchtfolge Zuckerrüben - Winterweizen -. Wintergerste. Dissertation Thesis. Faculty of Agriculture, University of Bonn, Germany, pp 116

    Google Scholar 

  • Eichler-Löbermann B, Kohne S, Kowalski B, Schnug E (2008) Effect of catch cropping on phosphorus bioavailability in comparison to organic and inorganic fertilization. J Plant Nutr 31:659–676

    Article  Google Scholar 

  • El Dessougi H, zu Dreele A, Claassen N (2003) Growth and P uptake of maize cultivated alone, in mixed culture with other crops or after incorporation of their residues. J Plant Nutr Soil Sci 166:254–261

    Article  Google Scholar 

  • Elfstrand S, Bath B, Martensson A (2007) Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Appl Soil Ecol 36:70–82

    Article  Google Scholar 

  • Evans J, Price A (2009) Influence of rates of reactive phosphate rock and sulphur on potentially available phosphorous in organically managed soils in the south-eastern near-mediterranean cropping region of Australia. Nutr Cycl Agroecosys 84:105–118

    Article  CAS  Google Scholar 

  • Fleige H, Strebel O, Renger M, Grimme H (1981) Die potentielle P-Anlieferung durch Diffusion als Funktion von Tiefe, Zeit und Durchwurzelung bei einer Parabraunerde aus Löß. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 32:305–310

    Google Scholar 

  • Flisch R, Sinaj S, Charles R, Richner W (2009) Grundlagen für die Düngung im Acker- und Futterbau (GRUDAF) 2009. Agrarforschung 16:1–97

    Google Scholar 

  • Franchini JC, Pavan MA, Miyazawa M (2004) Redistribution of P roots in soil through cover crop roots. Braz Arch Biol Technol 47:381–386

    Article  Google Scholar 

  • Frossard E, Achat DL, Bernasconi SM, Bünemann EK, Fardeau JC, Jansa J, Morel C, Rabeharisoa L, Randriamanantsoa L, Sinaj S, Tamburini F, Oberson A (2011) The use of tracers to investigate phosphate cycling in soil-plant systems. In: Bünemann E, Oberson A, Frossard, E (eds) Phosphorus in action—biological processes in soil phosphorus cycling. Springer Soil Biology Series, pp 59–61

    Google Scholar 

  • Frossard E, Skrabal P, Sinaj S, Bangerter F, Traoré O (2002) Form and exchangeability of inorganic phosphate in composted solid organic wastes. Nutr Cycl Agroecosys 62:103–113

    Article  CAS  Google Scholar 

  • Gahoonia TS, Care D, Nielsen NE (1997) Root hairs and acquisition of P by wheat and barley cultivars. Plant Soil 191:181–188

    Article  CAS  Google Scholar 

  • Gahoonia TS, Claassen N, Jungk A (1992) Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant Soil 140:241–248

    Article  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57

    Article  Google Scholar 

  • Gallet A, Flisch R, Ryser JP, Frossard E, Sinaj S (2003) Effect of phosphate fertilization on crop yield and soil phosphorus status. J Plant Nutr Soil Sci 166:568–578

    Article  CAS  Google Scholar 

  • Garz J, Schliephake W, Merbach W (2000) Changes in the subsoil of long-term trials in Halle (Saale), Germany, caused by mineral fertilization. J Plant Nutr Soil Sci 163:663–668

    Article  CAS  Google Scholar 

  • Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810

    Article  CAS  Google Scholar 

  • Godlinski F, Leinweber P, Meissner R, Seeger J (2004) Phosphorus status of soil and leaching losses: results from operating and dismantled lysimeters after 15 experimental years. Nutr Cycl Agroecosys 68:47–57

    Article  CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Gransee A, Merbach W (2000) P dynamics in a long-term P fertilization trial on Luvic Phaezom at Halle. J Plant Nutr Soil Sci 163:353–357

    Article  CAS  Google Scholar 

  • Guppy CN, McLaughlin MJ (2009) Options for increasing the biological cycling of P in low-input and organic agricultural systems. Crop Pasture Sci 60:116–123

    Article  CAS  Google Scholar 

  • Hamid N, Ali S, Malik KA, Hafeez FY (2007) Diagnosis of nutritional constraints of Azolla spp. to enhance their growth under flooded conditions of salt affected soils. Pak J Bot 39:161–167

    Google Scholar 

  • Haneklaus S, Schnug E, Paulsen HM, Hagel I (2005) Soil analysis for organic farming. Commun Soil Sci Plan 36:65–79

    Article  CAS  Google Scholar 

  • Helal HM, Sauerbeck D. (1986) Effect of plant roots on carbon metabolism of soil microbial biomass. Z Pflanz Bodenk 149:181–188

    Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hogh-Jensen H, Schjoerring JK, Soussana JF (2002) The influence of P deficiency on growth and nitrogen fixation of white clover plants. Ann Bot 90:745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horst WJ, Waschkies C (1987) Phosphatversorgung von Sommerweizen (Triticum aestivum L.) in Mischkultur mit Weißer Lupine (Lupinus albus L.) (1987) Z Pflanz Bodenk 150:1–8

    Google Scholar 

  • Jungk A, Claassen N (1989) Availability in soil and acquisition by plants as the basis for phosphorus and potassium supply to plants. Z Pflanz Bodenk 152:151–157

    Google Scholar 

  • Jungk A, Claassen N, Schulz V, Wendt J (1993) Pflanzenverfügbarkeit der Phosphatvorräte ackerbaulich genutzter Böden. - Langfristige Feldversuche zur Nutzbarkeit des Bodenphosphors und zur Bewertung der Bodenuntersuchung. Z Pflanz Bodenk 156:397–406

    Google Scholar 

  • Kautz T, Amelung W, Ewert F, Gaiser T, Horn R, Jahn R, Javaux M, Kemna A, Kuzyakov Y, Munch JC, Patzold S, Peth S, Scherer HW, Schloter M, Schneider H, Vanderborght J, Vetterlein D, Walter A, Wiesenberg GLB, Kopke U (2013) Nutrient acquisition from arable subsoils in temperate climates: a review. Soil Biol Biochem 57:1003–1022

    Article  CAS  Google Scholar 

  • Keller M, Oberson A, Annaheim KE, Tamburini F, Maeder P, Mayer J, Frossard E, Buenemann EK (2012) Phosphorus forms and enzymatic hydrolyzability of organic phosphorus in soils after 30 years of organic and conventional farming. J Plant Nutr Soil Sci 175:385–393

    Article  CAS  Google Scholar 

  • Kolbe H, Schuster M (2011) Bodenfruchtbarbeit im Öko-Betrieb. Untersuchungsmethoden. Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Dresden

    Google Scholar 

  • Köster W, Nieder R (2007) Wann ist eine Grunddüngung mit Phosphor, Kalium und Magnesium wirtschaftlich vertretbar?, Beratung-mal-anders.de, Bodenfruchtbarkeit und Pflanzenernährung, Heft 1, 2. Auflage

    Google Scholar 

  • Kratz S, Schnug E (2005) Schwermetalle in P-Düngern. Landbauforsch Volk 286:37–45 (special issue)

    CAS  Google Scholar 

  • Kratz S, Schnug E (2006) Rock phosphates and P fertilizers as sources of U contamination in agricultural soils. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment. Springer, Berlin, pp 57–67

    Chapter  Google Scholar 

  • Kraus M, Fusseder A, Beck E (1987) Development and replenishment of the P-depletion zone around the primary root of maize during the vegetation period. Plant Soil 101:247–255

    Article  CAS  Google Scholar 

  • Kuchenbuch RO, Buczko U (2011) Re-visiting potassium- and phosphate-fertilizer responses in field experiments and soil-test interpretations by means of data mining. J Plant Nutr Soil Sci 174:171–185

    Article  CAS  Google Scholar 

  • Li L, Zhang F, Li X, Christie P, Sun J, Yang S, Tang C (2003) Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. NutrCycl Agroecosys 65:61–71

    Article  CAS  Google Scholar 

  • Liu J, Aronsson H, Blomback K, Persson K, Bergstrom L (2012) Long-term measurements and model simulations of phosphorus leaching from a manured sandy soil. J Soil Water Conserv 67:101–110

    Article  Google Scholar 

  • Loes AK, Ogaard AF (2001) Long-term changes in extractable soil P (P) in organic dairy farming systems. Plant Soil 237:321–332

    Article  CAS  Google Scholar 

  • Mahimairaja S, Bolan NS, Hedley MJ (1995) Dissolution of phosphate rock during the composting of poultry manure—an incubation experiment. Fert Res 40:93–104

    Article  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press/Elsevier, Amsterdam 668p

    Google Scholar 

  • Mat Hassan H, Marschner P, McNeill A (2010) Growth, P uptake in grain legumes and changes in soil P pools in the rhizosphere. In: 19th world congress of soil science, soil solutions for a changing world, Brisbane, Australia. Published on DVD, 1–6 Aug, pp 179–181

    Google Scholar 

  • McDonald GK, Bennet EM, Potter PA, Ramancutty N (2011) From the cover: agronomic P imbalances across the world’s. Proc Natl Acad Sci 108(7):3086–3091. doi:10.1073/pnas.1010808108

    Article  Google Scholar 

  • McLaughlin MJ, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2011) The chemical nature of P accumulation in agricultural soils-implications for fertilizer management and design: an Australian perspective. Plant Soil 349:69–87

    Article  CAS  Google Scholar 

  • Modin-Edman AK, Oborn I, Sverdrup H (2007) FARMFLOW—a dynamic model for phosphorus mass flow, simulating conventional and organic management of a Swedish dairy farm. Agr Syst 94:431–444

    Article  Google Scholar 

  • Möller K (2009) Inner farm nutrient flows between arable land and permanent grassland via the stable in organic cropping systems. Eur J Agron 31:204–212

    Article  Google Scholar 

  • Murdock JT, Engelbert LE (1958) The importance of subsoil phosphorus to corn. Soil Sci Soc Am J 22:53–57

    Article  CAS  Google Scholar 

  • Nelson NO, Janke RR (2007) P sources and management in organic production systems. HortTechnology 17:442–454

    CAS  Google Scholar 

  • Newman EI (1997) P balance of contrasting farming systems, past and present. Can food production be sustainable? J Appl Ecol 34:1334–1347

    Article  Google Scholar 

  • Nowak B, Pessl A, Aschenbrenner P, Szentannai P, Mattenberger H, Rechberger H, Hermann L, Winter F (2010) Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment. J Hazard Matter 179:323–331

    Article  CAS  Google Scholar 

  • Oberson A, Frossard E (2005) Phosphorus management for organic agriculture. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. ASA, CSSA and SSSA, Madison, pp 761–779

    Google Scholar 

  • Oberson A, Frossard E, Bühlmann C, Mayer J, Mäder P, Lüscher A (2013) Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems. Plant Soil 371:237–255

    Article  CAS  Google Scholar 

  • Oberson A, Pypers P, Bünemann E, Frossard E (2011) Management impacts on biological phosphorus cycling in cropped soils. In: Bünemann E, Oberson A, Frossard, E (eds) Phosphorus in action—biological processes in soil phosphorus cycling. Springer Soil Biology Series, pp 431–458

    Google Scholar 

  • Oberson A, Tagmann H, Langmeier M, Dubois D, Mäder P, Frossard E (2010) Fresh and residual P uptake by ryegrass from soils with different fertilization histories. Plant Soil 334:391–407

    Article  CAS  Google Scholar 

  • Oehl F, Frossard E, Fliessbach A, Dubois D, Oberson A (2004) Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol Biochem 36:667–675

    Article  CAS  Google Scholar 

  • Oehl F, Oberson A, Probst M, Fliessbach A, Roth HR, Frossard E (2001) Kinetics of microbial P uptake in cultivated soils. Biol Fert Soils 34:31–41

    Article  Google Scholar 

  • Oehl F, Oberson A, Tagmann HU, Besson JM, Dubois D, Mader P, Roth HR, Frossard E (2002) P budget and P availability in soils under organic and conventional farming. Nutr Cyclin Agroecosys 62:25–35

    Article  CAS  Google Scholar 

  • Ohm M, Schüler M, Fystro G, Paulsen HM (2015) Redistribution of soil phosphorus from grassland to cropland in an organic dairy farm. Landbauforsch Appl Agric Forestry Res 65(3/4):193–204

    Google Scholar 

  • Pankhurst CE, Pierret A, Hawke BG, Kirby JM (2002) Microbiological and chemical properties of soil associated with macropores at different depths in a red-duplex soil in NSW. Aust. Plant Soil 238:11–20

    Article  CAS  Google Scholar 

  • Pierret A, Moran CJ, Pankhurst CE (1999) Differentiation of soil properties related to the spatial association of wheat roots and soil macropores. Plant Soil 211:51–58

    Article  CAS  Google Scholar 

  • Puustinen M, Tattari S, Koskiaho J, Linjama J (2007) Influence of seasonal and annual hydrological variations on erosion and phosphorus transport from arable areas in Finland. Soil Tillage Res 93:44–55

    Article  Google Scholar 

  • Rahmann G, Oppermann R, Paulsen HM, Weissmann F (2009) Good, but not good enough? Research and development needs in organic farming. Landbauforsch Volk 59:29–40

    Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating P availability. Plant Physiol. doi:10.1104/pp.111.175448

    Google Scholar 

  • Riley H, Loes AK, Hansen S, Dragland S (2003) Yield responses and nutrient utilization with the use of chopped grass and clover material as surface mulches in an organic vegetable growing system. Biol Agric Hortic 21:63–90

    Article  Google Scholar 

  • Römer W (2006) Plant availability of P from recycling products and phosphate fertilizers in a growth-chamber trial with rye seedlings. J Plant Nutr Soil Sci 169:826–832

    Article  Google Scholar 

  • Römer W (2013) Phosphordüngewirkung neuer Phosphatrecyclingprodukte. Berichte über Landwirtschaft 91(1). http://dx.doi.org/10.12767/buel.v91i1.15.g49

  • Römer W, Lehne P (2004) Neglected P and K fertilization in organic farming reduces N-2 fixation and grain yield in a red clover-oat rotation. J Plant Nutr Soil Sci 167:106–113

    Article  Google Scholar 

  • Römer W, Schilling G (1986) P requirements of the wheat plant in various stages of its life cycle. Plant Soil 91:221–229

    Article  Google Scholar 

  • Sattari SZ, Bouwman AF, Giller KE, van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. P Natl Acad Sci USA 109:6348–6353

    Article  CAS  Google Scholar 

  • Schachtschabel P, Koster W (1985) Relationship between the phosphate content in soil and the optimum phosphate fertilization in long-term field trials. Z Pflanz Bodenk 148:459–464

    Google Scholar 

  • Schiemenz K, Eichler-Löbermann B (2011) Biomass ashes and their phosphorus fertilizing effect on different crops. Nutr Cycl Agroecos 87:471–482

    Article  Google Scholar 

  • Schmutz U, Rayns F, Firth C (2007) Balancing fertility management and economics in organic field vegetable rotations. J Sci Food Agric 87:2791–2793

    Article  CAS  Google Scholar 

  • Schnug E, Haneklaus S (2006) What will organic farming deliver? COR 2006 79:277–281 (Warwik, UK)

    Google Scholar 

  • Schnug E, Rogasik J, Haneklaus S (2003) The utilisation of fertilizer P with special view to organic farming. Landbauforsch Volk 53:1–11

    CAS  Google Scholar 

  • Schröder JJ, Smit AL, Cordell D, Rosemarin A (2011) Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84:822–831

    Article  PubMed  Google Scholar 

  • Schwertmann U, Huith M (1975) Erosionsbedingte Stoffverteilung in zwei hopfengenutzten Kleinlandschaften der Hallertau (Bayern). Z Pflanz Bodenk 138:397–405

    Google Scholar 

  • Shrivastava M, Kale SP, D’Souza SF (2011) Rock phosphate enriched post-methanation bio-sludge from kitchen waste based biogas plant as P source for mungbean and its effect on rhizosphere phosphatase activity. Eur J Soil Biol 47:205–212

    Article  Google Scholar 

  • Simpson RJ, Oberson A, Culvenor RA, Ryan MH, Veneklaas EJ, Lambers H, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Richardson AE (2011) Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349:89–120

    Article  CAS  Google Scholar 

  • Sorensen P, Rubaek GH (2012) Leaching of nitrate and phosphorus after autumn and spring application of separated solid animal manures to winter wheat. Soil Use Manage 28:1–11

    Article  Google Scholar 

  • Sorensen JN, Thorup-Kristensen K (2011) Plant-based fertilizers for organic vegetable production. J Plant Nutr Soil Sci 174:321–332

    Article  CAS  Google Scholar 

  • Steffens D (1987) Influence of Long-Term Application of Different P-Fertilizers on Phosphate Availability in the Rhizosphere of Rape. Z Pflanz Bodenk 150:75–80

    Google Scholar 

  • Steffens D, Stamm R, Leithold G, Schubert S (2003) Phosphat-Mobilisierung durch Haupt- und Zwischenfrüchte nach Düngung von weicherdigem Rohphosphat im ökologischen Landbau. Justus-Liebig-Universität Gießen, Institut für Pflanzenernährung, Projektbericht Bundesprogramm ökologischer Landbau

    Google Scholar 

  • Stinner W, Möller K, Leithold G (2008) Effects of biogas digestion of clover/grass-leys, cover crops and crop residues on nitrogen cycle and crop yield in organic stockless farming systems. Eur J Agron 29:125–134

    Article  CAS  Google Scholar 

  • Stumpe H, Garz J and Scharf H (1994) Wirkung der Phosphatdüngung in einem 40jährigen Dauerversuch auf einer Sandlöß-Braunschwarzerde in Halle. J Plant Nutr Soil Sc 157:105–110

    Google Scholar 

  • Tarafdar JC, Claassen N (2003) Organic phosphorus utilization by wheat plants under sterile conditions. Biol Fert Soils 39:25–29

    Article  CAS  Google Scholar 

  • Tiunov AV, Scheu S (1999) Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L. (Lumbricidae). Soil Biol Biochem 31:2039–2048

    Article  CAS  Google Scholar 

  • Vance CP (2001) Symbiontic nitrogen fixation and P acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2002) P acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  Google Scholar 

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324:1519–1520

    Article  CAS  PubMed  Google Scholar 

  • Watson CA, Bengtsson H, Ebbesvik M, Loes AK, Myrbeck A, Salomon E, Schroder J, Stockdale EA (2002) A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manage 18:264–273

    Article  Google Scholar 

  • Watt M, Silk WK, Passioura JB (2006) Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann Bot 97:839–855

    Article  PubMed  PubMed Central  Google Scholar 

  • Wechsung G, Pagel, H (1993) Akkumulation und Mobilisation von Phosphaten in einer Schwarzerde im Statischen Dauerversuch Lauchstädt - Betrachtung der P-Bilanz nach 84 Versuchsjahren. J Plant Nutr Soil Sc 156:301–306

    Google Scholar 

  • Withers PJA, Hodgkinson RA, Bates A, Withers CL (2007) Soil cultivation effects on sediment and phosphorus mobilization in surface runoff from three contrasting soil types in England. Soil Till Res 93:438–451

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Marten Paulsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paulsen, H.M., Köpke, U., Oberson, A., Rahmann, G. (2016). Phosphorus—The Predicament of Organic Farming. In: Schnug, E., De Kok, L. (eds) Phosphorus in Agriculture: 100 % Zero. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7612-7_10

Download citation

Publish with us

Policies and ethics