Skip to main content

Input–Output and Hybrid LCA

  • Chapter
  • First Online:

Abstract

Known as hybrid LCA, integrated use of economic input–output (IO) analysis and process-based LCA (PLCA) has become a major tool of LCA inventory analysis. Proceeding from the basics of IO, this chapter discusses the issues of monetary versus physical data, multiregional extension, end-of-life phase with waste management and recycling, cost and price (with implications for life cycle costing), technology choices, and substitution. Besides the strengths of hybrid LCA, several often-cited “weaknesses” are also addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    “Environmental life-cycle costing” (and not environmental LCC) means the environmental-oriented LCC, which is compatible with LCA, in contrast to the (old) purely economic LCC (which is not compatible with LCA). “A primary motivation for LCC studies is to fully account for the financial costs of life-cycle environmental aspects and impacts that ultimately result from a decision” (Swarr et. al. 2011).

Abbreviations

CGE:

Computable general equilibrium

EEIO:

Environmentally extended IO

EoL:

End of life

EPR:

Extended producer responsibility

EXIOPOL:

Externality data and input–output tools for policy analysis

GDP:

Gross domestic product

GE:

General equilibrium model

ICP:

International comparison program

IOT:

IO table

MIOT:

Monetary IO table

MRIO:

Multiregional input–output table

PIOT:

Physical IOT

PLCA:

Process-based LCA

PPP:

Purchasing power parity

ROW:

Rest of the world

WIO-MFA:

Waste input–output material flow analysis

References

  • Acquaye AA, Wiedmann T, Feng K, Crawford RH, Barrett J, Kuylenstierna J, Duffy AP, Koh SL, McQueen-Mason S (2011) Identification of carbon hot-spots and quantification of GHG intensities in the biodiesel supply chain using hybrid LCA and structural path analysis. Environ Sci Technol 45(6):2471–2478

    Article  CAS  Google Scholar 

  • Alsamawi A, Murray J, Lenzen M (2014) The employment footprints of nations. J Ind Ecol 18(1):59–70

    Article  Google Scholar 

  • Alvarez-Gaitan PJ, Peters MG, Rowley VH, Moore S, Short DM (2013) A hybrid life cycle assessment of water treatment chemicals: an Australian experience. Int J Life Cycle Assess 18:1291–1301

    Article  CAS  Google Scholar 

  • Arvesen A, Hertwich GE (2011) Corrigendum: environmental implications of large-scale adoption of wind power: a scenario-based life cycle assessment. Environ Res Lett 6:1–3

    Article  Google Scholar 

  • Arvesen A, Birkeland C, Hertwich GE (2013) The importance of ships and spare parts in lcas of offshore wind power. Environ Sci Technol 47:2948–2956

    Article  CAS  Google Scholar 

  • Aurangzeb Q, Al-Qadi LI, Ozer H, Yang R (2014) Hybrid life cycle assessment for asphalt mixtures with high rap content. Resour Conserv Recycl 83:77–86

    Article  Google Scholar 

  • Baboulet O, Lenzen M (2010) Evaluating the environmental performance of a university. J Clean Prod 18:1134–1141

    Article  Google Scholar 

  • Baral A, Bakshi RB, Smith LR (2012) Assessing resource intensity and renewability of cellulosic ethanol technologies using eco-lca. Environ Sci Technol 46:2436–2444

    Article  CAS  Google Scholar 

  • Berners-Lee M, Howard CD, Moss J, Kaivanto K, Scott AW (2011) Greenhouse gas footprinting for small business -the use of input-output data. Sci Total Environ 409:883–891

    Article  CAS  Google Scholar 

  • Boyd S, Horvath A, Dornfeld D (2009) Life-cycle energy demand and global warming potential of computational logic. Environ Sci Technol 43:7303–7309

    Article  CAS  Google Scholar 

  • Bullard C, Herendeen R (1975) The energy cost of goods and services. Energy Policy 3:268–278

    Article  Google Scholar 

  • Bureau of Economic Analyses. Concepts and Methods of the U.S. Input-Output Accounts, 2009. URL http://www.bea.gov/papers/pdf/IOmanual_092906.pdf

  • Caves DW, Christensen LR, Diewert WE (1982) The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica (J Econ Soc) 50:1393–1414

    Article  Google Scholar 

  • Chang Y, Ries JR, Lei JR (2012) The embodied energy and emissions of a high-rise education building: a quantification using process-based hybrid life cycle inventory model. Energy Build 55:790–798

    Article  Google Scholar 

  • Cooney G, Hawkins RT, Marriott J (2013) Life cycle assessment of diesel and electric public transportation buses. J Ind Ecol 17(5):689–699

    CAS  Google Scholar 

  • Crawford HR (2008) Validation of a hybrid life-cycle inventory analysis method. J Environ Manage 88:496–506

    Article  Google Scholar 

  • Crawford HR (2009) Greenhouse gas emissions embodied in reinforced concrete and timber railway sleepers. Environ Sci Technol 47(3):3885–3890

    Article  CAS  Google Scholar 

  • Davis SJ, Caldeira K (2010) Consumption-based accounting of CO2 emissions. Proc Natl Acad Sci U S A 107:5687–5692

    Article  CAS  Google Scholar 

  • Defourny J, Thorbecke E (1984) Structural path-analysis and multiplier decomposition within a social accounting matrix framework. Econ J 94(373):111–136

    Article  Google Scholar 

  • Deng L, Babbitt WC, Williams DE (2011) Economic-balance hybrid LCA extended with uncertainty analysis: case study of a laptop computer. J Clean Prod 19:1198–1206

    Article  Google Scholar 

  • Dietzenbacher E, Los B (1998) Structural decomposition techniques: sense and sensitivity. Econ Syst Res 10(4):307–324

    Article  Google Scholar 

  • Dong H, Geng Y, Xi F, Fujita T (2013) Carbon footprint evaluation at industrial park level: a hybrid life cycle assessment approach. Energy Policy 57:298–307

    Article  Google Scholar 

  • Dorfman R, Samuelson P, Solow R (1958) Linear programming & economic analysis. McGraw Hill, New York

    Google Scholar 

  • Duchin F (1990) The conversion of biological materials and wastes to useful products. Struct Chang Econ Dyn 1:243–261

    Article  Google Scholar 

  • Duchin F (2005) A world trade model based on comparative advantage with m regions, n goods, and k factors. Econ Syst Res 17(2):141–162

    Article  Google Scholar 

  • Earles JM, Halog A (2011) Consequential life cycle assessment: a review. Int J Life Cycle Assess 16:445–453

    Article  Google Scholar 

  • Eora MRIO Database. http://worldmrio.com

  • Ewing A, Thabrew L, Perrone D, Abkowitz M, Hornberger G (2011) Insights on the use of hybrid life cycle assessment for environmental footprinting -a case study of an inland marine freight transportation company. J Ind Ecol 15(6):937–950

    Article  Google Scholar 

  • EXIOBASE. http://www.exiobase.eu

  • Facanha C, Horvath A (2007) Evaluation of life-cycle air emission factors of freight transportation. Environ Sci Technol 41:7138–7144

    Article  CAS  Google Scholar 

  • Forrest N, Williams E (2010) Life cycle environmental implications of residential swimming pools. Environ Sci Technol 44:5601–5607

    Article  CAS  Google Scholar 

  • Frischknecht R, Althaus H-J, Bauer C, Doka G, Heck T, Jungbluth N, Kellenberger D, Nemecek T (2007) The environmental relevance of capital goods in life cycle assessments of products and services. Int J Life Cycle Assess 7(Special Issue 1):7–17

    Google Scholar 

  • Gallagher MP, Spatari S, Cucura J (2013) Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies. J Hazard Mater 250–251, 421–430

    Google Scholar 

  • Gavankar S, Suh S, Keller AA (2014) The role of scale and technology maturity in life cycle assessment of emerging technologies: a case study on carbon nanotubes. J Ind Ecol 19(1):51–60

    Article  CAS  Google Scholar 

  • GTAP. https://www.gtap.agecon.purdue.edu/default.asp

  • Harto C, Meyers R, Williams E (2010) Life cycle water use of low-carbon transport fuels. Energy Policy 28:4933–4944

    Article  Google Scholar 

  • Heijungs R, Suh S (2002) The computational structure of life cycle assessment. Kluwer, Dordrecht

    Book  Google Scholar 

  • Heijungs R, Settanni E, Guinée J (2013) Toward a computational structure for life cycle sustainability analysis: unifying LCA and LCC. Int J Life Cycle Assess 18(9):1722–1733

    Article  CAS  Google Scholar 

  • Heinone J, Junnila S (2011) A carbon consumption comparison of rural and urban lifestyles. Sustainability 3:1234–1249

    Article  Google Scholar 

  • Heinone J, Saynajoki J-A, Kurornen M, Junnila S (2012) Are the greenhouse gas implications of new residential developments understood wrongly? Energies 5:2874–2893

    Article  CAS  Google Scholar 

  • Heinonen J, Junnila S (2011) Case study on the carbon consumption of two metropolitan cities. Int J Life Cycle Assess 16:569–579

    Article  CAS  Google Scholar 

  • Hertwich EG (2005) Consumption and the rebound effect: an industrial ecology perspective. J Ind Ecol 9(1–2):85–98

    Google Scholar 

  • Hertwich E, Peters G (2009) Carbon footprint of nations: a global, trade-linked analysis. Environ Sci Technol 43:6414–6420

    Article  CAS  Google Scholar 

  • Hertwich EG, Peters GP (2010) Multiregional input-output database. Technical report, OPEN: EU technical document. http://www.oneplaneteconomynetwork.org/resources/work-package-1.html

  • Hillman T, Ramaswami A (2010) Greenhouse gas emission footprints and energy use benchmarks for eight U.S. cities. Environ Sci Technol 44:1902–1910

    Article  CAS  Google Scholar 

  • Horowitz KJ, Planting MA (2009) Concepts and methods of the U.S. input-output accounts. Bureau of Economic Analysis, U.S. Dept of Commerce (BEA). http://www.bea.gov/papers/pdf/IOmanual_092906.pdf

  • Hubacek K, Feng K, Minx JC, Pfister S, Zhou N (2014) Teleconnecting consumption to environmental impacts at multiple spatial scales. J Ind Ecol 18(1):7–9

    Article  Google Scholar 

  • Huppes G, De Koning A, Suh S, Heijungs R, Van Oers L, Nielsen P, Guinée J (2006) Environmental impacts of consumption in the European Union – high-resolution input-output tables with detailed environmental extensions. J Ind Ecol 10(3):129–146

    Article  Google Scholar 

  • Inaba R, Nansai K, Fujii M, Hashimoto S (2010) Hybrid life-cycle assessment (LCA) of CO2 emission with management alternatives for household food wastes in Japan. Waste Manag Res 28:496–507

    Article  CAS  Google Scholar 

  • Jiang M, Hendrickson TC (2014) Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well. Environ Sci Technol 48:1911–1920

    Article  CAS  Google Scholar 

  • Jorgenson DW (1988) Productivity and postwar U.S. economic growth productivity and postwar U.S. economic growth. J Econ Perspect 2(4):23–41

    Article  Google Scholar 

  • Joshi S (1999) Product environmental life-cycle assessment using input-output techniques. J Ind Ecol 2–3:95–120

    Article  Google Scholar 

  • Junnila S (2008) Life cycle management of energy-consuming products in companies using io-lca. Int J Life Cycle Assess 13:432–439

    Article  CAS  Google Scholar 

  • Klijn JA, Vullings L, Van den Berg M, Van Meijl H, Van Lammeren R, Van Rheenen T, Veldkamp A, Verburg P, Westhoek H, Eickhout B, Tabeau AA (2005) The eururalis study: technical document. Technical report. https://www.wageningenur.nl/en/Publication-details.htm?publicationId=publication-way-333433363432

  • Klöpffer W (1996) Allocation rule for open-loop recycling in life cycle assessment. Int J Life Cycle Assess 1(1):27–31

    Article  Google Scholar 

  • Kofoworola FO, Gheewala S (2008) Environmental life cycle assessment building in Thailand. Int J Life Cycle Assess 13:498–511

    Article  CAS  Google Scholar 

  • Kondo Y, Nakamura S (2004) Evaluating alternative life-cycle strategies for electrical appliances by the waste input-output model. Int J Life Cycle Assess 9(4):236–246

    Article  Google Scholar 

  • Koopmans TC (ed) (1951) Activity analysis of production and allocation. Wiley, New York

    Google Scholar 

  • Krishnan N, Boyd S, Somani A, Raoux S, Clark D, Dornfeld D (2008) A hybrid life cycle inventory of nano-scale semiconductor manufacturing. Environ Sci Technol 42:3069–3075

    Article  CAS  Google Scholar 

  • Kucukvar M, Tatari O (2012) Ecologically based hybrid life cycle analysis of continuously reinforced concrete and hot-mix asphalt pavements. Transp Res D 17:86–90

    Article  Google Scholar 

  • Lankey LR, McMichael CF (2000) Life-cycle methods for comparing primary and rechargeable batteries. Environ Sci Technol 34:2299–2304

    Article  CAS  Google Scholar 

  • Larsen NH, Hertwich EG (2009) The case for consumption-based accounting of greenhouse gas emissions to promote local climate action. Environ Sci Policy 12:791–798

    Article  CAS  Google Scholar 

  • Lave L, Maclean H, Hendrickson C, Lankey R (2000) Life-cycle analysis of alternative automobile fuel/propulsion technologies. Environ Sci Technol 34:3598–3605

    Article  CAS  Google Scholar 

  • Lee HC, Ma WH (2013) Improving the integrated hybrid lca in the upstream scope 3 emissions inventory analysis. Int J Life Cycle Assess 18:17–23

    Article  CAS  Google Scholar 

  • Lee YD, Thomas MV, Brown AM (2013) Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness. Environ Sci Technol 47:8022–8030

    Article  CAS  Google Scholar 

  • Lenzen M (2009) Dealing with double-counting in tiered hybrid life-cycle inventories: a few comments. J Clean Prod 17:1382–13848

    Article  Google Scholar 

  • Lenzen M (2013) An outlook into a possible future of footprint research. J Ind Ecol 18(1):4–6

    Article  Google Scholar 

  • Lenzen M, Crawford R (2009) The path exchange method for hybrid lca. Environ Sci Technol 43:8251–8256

    Article  CAS  Google Scholar 

  • Lenzen M, Reynolds JC (2014) A supply-use approach to waste input-output analysis. J Ind Ecol 18(2):212–226

    Article  Google Scholar 

  • Lenzen M, Treloar G (2002) Embodied energy in buildings: wood versus concrete – reply to Börjesson and Gustavsson. Energy Policy 30:249–255

    Article  Google Scholar 

  • Lenzen M, Treloar G (2005) Endogenising capital: a comparison of two methods. J Appl Input-Output Anal 10:1–11

    Google Scholar 

  • Lenzen M, Wachsmann U (2004) Wind turbines in Brazil and Germany: an example of geographical variability in life-cycle assessment. Appl Energy 77:119–130

    Article  CAS  Google Scholar 

  • Lenzen M, Murray AS, Korte B, Dey JC (2003) Environmental impact assessment including indirect effects -a case study using input-output analysis. Impact Assess Rev 23:263–282

    Article  Google Scholar 

  • Lenzen M, Kanemoto K, Moran D, Geschke A (2012a) Mapping the structure of the world economy. Environ Sci Technol 46(15):8374–8381

    Article  CAS  Google Scholar 

  • Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A (2012b) International trade drives biodiversity threats in developing nations. Nature 486:109–112

    Article  CAS  Google Scholar 

  • Lenzen M, Moran D, Kanemoto K, Geschke A (2013) Building eora: a global multi-region input-output database at high country and sector resolution. Econ Syst Res 25:20–49

    Article  Google Scholar 

  • Leontief W (1947) A note on the interrelation of subsets of independent variables of a continuous function with continuous first derivatives. Bull Am Math Soc 53:343–350

    Article  Google Scholar 

  • Leontief W (1970) Environmental repercussions and the economics structure: an input-output approach. Rev Econ Stat 52:262–271

    Article  Google Scholar 

  • Li X, Feng K, Siu LY, Hubacek K (2012) Energy-water nexus of wind power in China: the balancing act between CO2 emissions and water consumption. Energy Policy 45:440–448

    Article  Google Scholar 

  • Lin C (2009) Hybrid input-output analysis of wastewater treatment and environmental impacts: a case study for the tokyo metropolis. Ecol Econ 68:2096–2105

    Article  Google Scholar 

  • Lin C (2011) Identifying lowest-emission choices and environmental pareto frontiers for wastewater treatment wastewater treatment input-output model based linear programming. J Ind Ecol 15(3):367–380

    Article  CAS  Google Scholar 

  • Lu W, Zhang T (2010) Life-cycle implications of using crop residues for various energy demands in china. Environ Sci Technol 44:4026–4032

    Article  CAS  Google Scholar 

  • Maclean L, Lave BL (2003) Life cycle assessment of automobile/fuel options. Environ Sci Technol 37:5445–5452

    Article  CAS  Google Scholar 

  • Matsuhashi R, Kudoh Y, Yoshida Y, Ishitani H, Yoshioka M, Yoshioka K (2000) Life cycle of CO2-emissions from electric vehicles and gasoline vehicles utilizing a process-relational model. Int J Life Cycle Assess 5(5):306–312

    Article  CAS  Google Scholar 

  • Mattila JT, Pakarinen S, Sokka L (2010) Quantifying the total environmental impacts of an industrial symbiosis – a comparison of process-, hybrid and input-output life cycle assessment. Environ Sci Technol 44:4309–4314

    Article  CAS  Google Scholar 

  • McKenzie CE, Durango-Cohen LP (2010) An input-output approach for the efficient design of sustainable goods and services. Int J Life Cycle Assess 15:946–961

    Article  Google Scholar 

  • Meier T, Christen O (2013) Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ Sci Technol 47:877–888

    Article  CAS  Google Scholar 

  • Miller RE, Blair PD (2009) Input-output analysis: foundations and extensions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Minx J, Wiedmann T, Barrett J, Suh S (2008) Methods review to support the PAS process for the calculation of the greenhouse gas emissions embodied in goods and services. Technical report, Dept for Environment, Food and Rural Affairs

    Google Scholar 

  • Mo W, Nasiri F, Eckelman JM, Zhang Q, Zimmerman BJ (2010) Measuring the embodied energy in drinking water supply systems: a case study in the great lakes region. Environ Sci Technol 44:9516–9521

    Article  CAS  Google Scholar 

  • Moriguchi Y, Kondo Y, Shimizu H (1993) Analysing the life cycle impacts of cars: the case of CO2. Ind Environ 16:42–45

    Google Scholar 

  • Moses L (1955) The stability of interregional trading patterns and input-output analysis. Am Econ Rev 45:803–826

    Google Scholar 

  • Nakajima K, Ohno H, Kondo Y, Matsubae K, Takeda O, Miki T, Nakamura S, Nagasaka T (2013) Simultaneous MFA of nickel, chromium and molybdenum used in alloy steel by means of input-output analysis. Environ Sci Technol 47:4563–4660

    Article  CAS  Google Scholar 

  • Nakamura S (1999) Input-output analysis of waste cycles. In: Environmentally conscious design and inverse manufacturing, 1999. In: Proceedings EcoDesign’99: first international symposium, pp 475–480

    Google Scholar 

  • Nakamura S (2011) Hybrid input-output analysis as a tool for communication among scientists of different disciplines. J Ind Ecol 15(5):661–663

    Article  Google Scholar 

  • Nakamura S, Kondo Y (2002) Input-output analysis of waste management. J Ind Ecol 6(1):39–63

    Article  Google Scholar 

  • Nakamura S, Kondo Y (2006) Hybrid LCC of appliances with different energy efficiency. Int J Life Cycle Assess 11:305–314

    Article  Google Scholar 

  • Nakamura S, Kondo Y (2009) Waste input-output analysis: concepts and application to industrial ecology. Eco-efficiency in industry and science. Springer, New York

    Book  Google Scholar 

  • Nakamura S, Nakajima K (2005) Waste input-output material flow analysis of metals in the Japanese economy. Mater Trans 46:2550–2553

    Article  CAS  Google Scholar 

  • Nakamura S, Yamasue S (2010) Hybrid lca of a design for disassembly technology: active disassembling fasteners of hydrogen storage alloys for home appliances. Environ Sci Technol 44:4402–4408

    Article  CAS  Google Scholar 

  • Nakamura S, Nakajima K, Kondo Y, Nagasaka T (2007) The waste input-output approach to materials flow analysis. J Ind Ecol 11(4):50–63

    Article  CAS  Google Scholar 

  • Nakamura S, Nakajima K, Yoshizawa Y, Matsubae-Yokoyama K, Nagasaka T (2009) Analyzing polyvinyl chloride in Japan with the waste input-output material flow analysis model. J Ind Ecol 13:706–717

    Article  CAS  Google Scholar 

  • Nakamura S, Kondo K, Matsubae K, Nakajima K, Nagasaka T (2011) Upiom: a new tool of MFA and its application to the flow of iron and steel associated with car production. Environ Sci Technol 45:1114–1120

    Article  CAS  Google Scholar 

  • Nakamura S, Kondo Y, Matsubae K, Nakajima K, Tasaki T, Nagasaka T (2012) Quality-and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality. Environ Sci Technol 46(17):9266–9273

    Article  CAS  Google Scholar 

  • Nansai K, Tohno S, Kono M, Kasahara M, Moriguchi Y (2001) Life-cycle analysis of charging infrastructure for electric vehicles. Appl Energy 70:251–265

    Article  CAS  Google Scholar 

  • Nansai K, Tohno S, Kono M, Kasahara M (2002) Effects of electric vehicles (ev) on environmental loads with consideration of regional differences of electric power generation and charging characteristic of ev users in Japan. Appl Energy 71:111–125

    Article  CAS  Google Scholar 

  • Nansai K, Kagawa S, Kondo Y, Suh S, Nakajima K (2009) Improving the completeness of product carbon footprints using a global link input-output model: the case of Japan. Econ Syst Res 21:267–290

    Article  Google Scholar 

  • Nansai K, Kondo Y, Kagawa S, Suh S, Nakajima K, Inaba R, Tohno S (2012) Estimates of embodied global energy and air-emission intensities of Japanese products for building a Japanese input–output life cycle assessment database with a global system boundary. Environ Sci Technol 46(16):9146–9154

    Article  CAS  Google Scholar 

  • Nansai K, Kagawa S, Kondo Y, Suh S (2013) Simplification of multi-regional input-output structure with a global system boundary: Global link input-output model (GLIO). In: Murray J, Lenzen M (eds) The sustainability practitioner’s guide to multiregional input-output analysis. Common Ground, Champaign

    Google Scholar 

  • National Institute for Environmental Studies. Embodied Energy and Emission Intensity Data for Japan Using Input-Output Tables (3EID). http://www.cger.nies.go.jp/publications/report/d031/3eid_e.html

  • Nikaido H (1970) Introduction to sets and mappings in modern economics. North-Holland, Amsterdam

    Google Scholar 

  • Northwest Territories Bureau of Statistics (2006) NWT input-output model – an overview. http://www.statsnwt.ca/economy/multipliers/NWT

  • OECD web: input-output tables. http://www.oecd.org/trade/input-outputtables.htm

  • Ohno H, Matsubae K, Nakajima K, Nakamura S, Nagasaka T (2014) Unintentional flow of alloying elements in steel during recycling of end-of-life vehicles. J Ind Ecol 18:242–253

    Article  CAS  Google Scholar 

  • Onat CN, Kucukvar M, Tatari O (2014) Scope-based carbon footprint analysis of U.S. residential and commercial buildings: an input-output hybrid life cycle assessment approach. Build Environ 72:53–62

    Article  Google Scholar 

  • Paltsev S, Reilly JM, Jacoby HD, Eckaus RS, McFarland J, Sarofim M, Asadoorian M, Babiker M (2005) The mit emissions prediction and policy analysis (EPPA) model: version 4. Technical report, MIT Joint Program on the Science and Policy of Global Change

    Google Scholar 

  • Peters GP, Andrew R, Lennox J (2011) Constructing an environmentally-extended multi-regional input-output table using the gtap database. Econ Syst Res 23(2):131–152

    Article  Google Scholar 

  • Peters MG, Rowley VH, Wiedmann S, Tucker R, Short DM, Schulz M (2010a) Red meat production in Australia: life cycle assessment and comparison with overseas studies. Environ Sci Technol 44:1327–1332

    Article  CAS  Google Scholar 

  • Peters MG, Wiedmann GS, Rowley VH, Tucker WR (2010b) Accounting for water use in Australian red meat production. Int J Life Cycle Assess 15:311–320

    Article  CAS  Google Scholar 

  • Piringer G, Steinberg H (2006) Reevaluation of energy use in wheat production in the United States. J Ind Ecol 10(1–2):149–167

    CAS  Google Scholar 

  • Qi T, Winchester N, Karplus V, Zhang X (2014) Will economic restructuring in China reduce trade-embodied CO2 emissions? Energy Econ 42:204–212

    Article  Google Scholar 

  • Ramaswami A, Hillman T, Janson B, Reiner M, Thomas G (2008) A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories. Environ Sci Technol 42(17):6455–6461

    Article  CAS  Google Scholar 

  • Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Int J Life Cycle Assess 13(5):374–388

    Article  Google Scholar 

  • Rebitzer G, Nakamura S (2008) Environmental life cycle costing. In: Hunkeler D, Lichtenvort K, Rebitzer G (eds) Environmental life cycle costing. SETAC Press, Boca Raton

    Google Scholar 

  • Rose A (1995) Input-output economics and computable general equilibrium models. Struct Chang Econ Dyn 6(3):295–304

    Article  Google Scholar 

  • Rowley VH, Lundie S, Peters MG (2009) A hybrid life cycle assessment model for comparison with conventional methodologies in Australia. Int J Life Cycle Assess 14:508–516

    Article  CAS  Google Scholar 

  • Samaras C, Meisterling K (2008) Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ Sci Technol 42:3170–3176

    Article  CAS  Google Scholar 

  • S. Sangwon and B. C. Lippiatt. Framework for hybrid life cycle inventory databases: a case study on the Building for Environmental and Economic Sustainability (BEES) database. The International Journal of Life Cycle Assessment 17.5 (2012): 604-612

    Google Scholar 

  • Schoer K, Wood R, Arto I, Weinzettel J (2013) Estimating raw material equivalents on a macro-level: comparison of multi-regional input-output analysis and hybrid LCI-IO. Environ Sci Technol 47:14282–14289

    Article  CAS  Google Scholar 

  • Scholer K, Weinzettel J, Kovanda J, Giegrich J, Lauwigi C (2012) Raw material consumption of the European Union – concept, calculation method, and results. Environ Sci Technol 46:8903–8909

    Article  CAS  Google Scholar 

  • Schumacher K, Sands RD (2007) Where are the industrial technologies in energy-economy models? An innovative cge approach for steel production in Germany. Energy Econ 29(4):799–825

    Article  Google Scholar 

  • Scown DC, Horvath A, McKone ET (2011) Water footprint of U.S. transportation fuels. Environ Sci Technol 45:2541–2553

    Article  CAS  Google Scholar 

  • Shao L, Chen GQ (2013) Water footprint assessment for wastewater treatment: method, indicator, and application. Environ Sci Technol 47:7787–7794

    Article  CAS  Google Scholar 

  • Sharrard LA, Matthews SH, Ries JR (2008) Estimating construction project environmental effects using an input-output-based hybrid life-cycle assessment model. J Infrastruct Syst 14(4):327–336

    Article  Google Scholar 

  • Shen L, Worrell E, Patel MK (2010) Open-loop recycling: a LCA case study of pet bottle-to-re recycling. Resour Conserv Recycl 55(1):34–52

    Article  Google Scholar 

  • Shrake OS, Bilec MM, Landis EA (2013) The application of a multi-faceted approach for evaluating and improving the life cycle environmental performance of service industries. J Clean Prod 42:263–276

    Article  Google Scholar 

  • Singh B, Strømman AH, Hertwich GE (2011) Life cycle assessment of natural gas combined cycle power plant with post-combustion carbon capture, transport and storage. Int J Greenh Gas Control 5:457–466

    Article  CAS  Google Scholar 

  • Singh B, Strømman AH, Hertwich GE (2012) Environmental damage assessment of carbon capture and storage -application of end-point indicators. J Ind Ecol 16(3):407–419

    Article  CAS  Google Scholar 

  • Sivaraman D, Pacca S, Mueller K, Lin J (2007) Comparative energy, environmental, and economic analysis of traditional and e-commerce DVD rental networks. J Ind Ecol 11(3):77–91

    Article  CAS  Google Scholar 

  • Solli C, Reenaas M, Strømman AH, Hertwich GE (2009) Life cycle assessment of wood-based heating in Norway. Int J Life Cycle Assess 14:517–528

    Article  CAS  Google Scholar 

  • Sono M (1961) The effect of price changes on the demand and supply of separable goods. International economic review (English translation of the original Japanese publication in Kokumin keizai zassi 74–3, 1943, 261–311) 2:239–271

    Google Scholar 

  • Steen-Olsen K, Weinzettel J, Cranston G, Ercin A, Hertwich EG (2012) Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade. Environ Sci Technol 46:10883–10891

    Article  CAS  Google Scholar 

  • Stokes RJ, Horvath A (2006) Life cycle energy assessment of alternative water supply systems. Int J Life Cycle Assess 11(5):335–343

    Article  Google Scholar 

  • Stokes RJ, Horvath A (2009) Energy and air emission effects of water supply. Environ Sci Technol 43:2680–2687

    Article  CAS  Google Scholar 

  • Stokes RJ, Horvath A, Sturm R (2013) Water loss control using pressure management: life-cycle energy and air emission effects. Environ Sci Technol 47:10771–10780

    Article  CAS  Google Scholar 

  • Stone R (1961) Input-output and national accounts. The Organization for European Economic Development, Paris

    Google Scholar 

  • Strømman AH (2009) Dealing with double-counting in tiered hybrid life-cycle inventories: a few comments – response. J Clean Prod 17:1607–1609

    Article  Google Scholar 

  • Strømman AH, Solli C, Hertwich GE (2006) Hybrid life-cycle assessment of natural gas based fuel chains for transportation. Environ Sci Technol 40:2797–2804

    Article  CAS  Google Scholar 

  • Strømman AH, Peters GP, Hertwich EG (2009) Approaches to correct for double counting in tiered hybrid life cycle inventories. J Clean Prod 17:248–254

    Article  Google Scholar 

  • Suh S (2004) Functions, commodities and environmental impacts in an ecological-economic model. Ecol Econ 48:451–467

    Article  Google Scholar 

  • Suh S (ed) (2009) Handbook of input-output economics in industrial ecology. Springer, Dordrecht

    Google Scholar 

  • Suh S, Huppes G (2005) Methods for life cycle inventory of a product. J Clean Prod 13:687–697

    Article  Google Scholar 

  • Suh S, Lenzen M, Treloar GJ, Hondo H, Horvath A, Huppes G, Jolliet O, Klann U, Krewitt W, Moriguchi Y, Munksgaard J, Norris G (2004) System boundary selection in life-cycle inventories using hybrid approaches. Environ Sci Technol 38:657–664

    Article  CAS  Google Scholar 

  • Suh S, Weidema B, Schmidt JH, Heijungs R (2010) Generalized make and use framework for allocation in life cycle assessment. J Ind Ecol 14:335–353

    Article  Google Scholar 

  • Suh S, Tomar S, Leighton M, Kneifel J (2014) Environmental performance of green building code and certification systems. Environ Sci Technol 48:2551–2560

    Article  CAS  Google Scholar 

  • Swarr TE, Hunkeler D, Klöpffer W, Pesonen HL, Ciroth A, Brent AC, Pagan R (2011) Environmental life-cycle costing: a code of practice. Int J Life Cycle Assess 16:389–391

    Article  Google Scholar 

  • Takahashi K, Nansai K, Tohno S, Nishizawa M, Kurokawa J, Ohara T (2014) Production-based and consumption-based emissions and health impacts of PM2.5 carbonaceous aerosols in Asia. Atmos Environ 97:406–415

    Article  CAS  Google Scholar 

  • Timmer MP (2012) World input-output database. WIOD working paper 10. http://www.wiod.org/publications/papers/wiod10.pdf

  • Treloar GJ (1997) Extracting embodied energy paths from input-output tables: towards an input-output-based hybrid energy analysis method. Econ Syst Res 9:375–391

    Article  Google Scholar 

  • Trelor GJ, Love PED, Crawford RH (2004) Hybrid life-cycle inventory for road construction and use. J Constr Eng Manag 130(1):43–49

    Article  Google Scholar 

  • Tukker A, Bulavskaya T, Giljum S, De Koning A, Lutter S, Simas M, Stadler K, Wood R (2015) The global resource footprint of nations. Carbon, water, land and materials embodied in trade and final consumption. http://www.truthstudio.com/content/CREEA_Global_Resource_Footprint_of_Nations.pdf

  • United Nations (2003) National accounts: a practical introduction. Studies in methods Series F 85. Department of Economic and Social Affairs, Statistics Division

    Google Scholar 

  • Urban AR, Bakshi RB (2013) Techno-ecological synergy as a path toward sustainability of a North American residential systems. Environ Sci Technol 47:1985–1993

    Article  CAS  Google Scholar 

  • Vieira SP, Horvath A (2008) Assessing the end-of-life impacts of buildings. Environ Sci Technol 42:4663–4669

    Article  CAS  Google Scholar 

  • Wang C, Zhang L, Yang A, Pang M (2012) A hybrid life-cycle assessment of nonrenewable energy and greenhouse-gas emissions of a village-level biomass gasification project in China. Energies 5:2708–2723

    Article  CAS  Google Scholar 

  • Weil M, Jeske U, Schebek L (2006) Closed-loop recycling of construction and demolition waste in Germany in view of stricter environmental threshold values. Waste Manag Res 24(3):197–206

    Article  CAS  Google Scholar 

  • Weinzettel J, Hertwich EG, Peters GP, Steen-Olsen K, Galli A (2013) Affluence drives the global displacement of land use. Glob Environ Chang 23(2):433–438

    Article  Google Scholar 

  • Weisz H, Duchin F (2006) Physical and monetary input-output analysis: what makes the difference? Ecol Econ 57:534–541

    Article  Google Scholar 

  • Wiedmann T (2009) A review of recent multi-region input-output models used for consumption-based emission and resource accounting. Ecol Econ 69(2):211–222

    Article  Google Scholar 

  • Wiedmann T, Suh S, Feng K, Lenzen M, Acquaye A, Scott K, Barrett JR (2011) Application of hybrid life cycle approaches to emerging energy technologies-the case of wind power in the UK. Environ Sci Technol 45(13):5900–5907

    Article  CAS  Google Scholar 

  • Williams E (2004) Energy intensity of computer manufacturing: hybrid assessment combining process and economic input-output methods. Environ Sci Technol 38:6166–6174

    Article  CAS  Google Scholar 

  • Williams ED, Weber CL, Hawkins TR (2009) Hybrid framework for managing uncertainty in life cycle inventories. J Ind Ecol 13(6):928–944

    Article  Google Scholar 

  • World Bank. The International Comparison Program (ICP). http://icp.worldbank.org/

  • Wright D (1974) Goods and services: an input-output analysis. Energy Policy 2:307–315

    Article  Google Scholar 

  • Yang Y, Bae J, Kim J, Suh S (2012) Replacing gasoline with corn ethanol results in significant environmental problem-shifting. Environ Sci Technol 46:3671–3678

    Article  CAS  Google Scholar 

  • Yao MA, Higgs GT, Cullen JM, Stewart S, Brady AT (2010) Comparative assessment of lifecycle assessment methods used for personal computers. Environ Sci Technol 44:7335–7346

    Article  CAS  Google Scholar 

  • Zamagni A, Guinée J, Heijungs R, Masoni P, Raggi A (2012) Lights and shadows in consequential LCA. Int J Life Cycle Assess 17(7):904–918

    Article  Google Scholar 

  • Zhai P, Williams DE (2010) Dynamic hybrid assessment of energy and carbon of multicrystalline silicon photovoltaic systems. Environ Sci Technol 44:7950–7955

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Tomy Wiedmann, Manfred Lenzen, Edgar Hertwich, Sangwon Suh, and Klaus Hubacek for providing us with the latest information about their research and Yosuke Shigetomi for the preparation of the extensive list of references for case studies. We are also grateful to Nigel Harle of Gronsveld, the Netherlands, for his careful revision of our English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichiro Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nakamura, S., Nansai, K. (2016). Input–Output and Hybrid LCA. In: Finkbeiner, M. (eds) Special Types of Life Cycle Assessment. LCA Compendium – The Complete World of Life Cycle Assessment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7610-3_6

Download citation

Publish with us

Policies and ethics