Skip to main content

LCA Perspectives for Resource Efficiency Assessment

  • Chapter
  • First Online:
Special Types of Life Cycle Assessment

Abstract

Efficient use and consumption of natural resources is an important strategy in sustainable development. This chapter discusses available methods and indicators to assess “resource efficiency” beyond the assessment of the quantities of materials used and toward available indicators in life cycle assessment (LCA). According to the classical definition in LCA, natural resources encompass input-oriented environmental interventions (e.g., extraction of abiotic resources, such as oil, ore deposits, fossil, and fresh surface water, as well as biotic resources such as fish and trees). LCA and existing life cycle impact assessment (LCIA) methods are seen as a good basis for measuring resource efficiency. Despite several models to assess resource use and depletion within LCA, important challenges remain. Available models do not fully evaluate resource use and availability in the context of their functional relevance for human purposes. For the efficient use of resources, all dimensions of sustainability need to be addressed. Environmental, economic, and social implications of material use and availability have to also be considered. Assessment of resource utilization and efficiency associated with product systems needs to shift toward life cycle sustainability assessment (LCSA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The DMI accounts for the environmental resource used in domestic production and consumption, including imports (Wuppertal Institute for Climate 2013).

  2. 2.

    The TMR comprises the use of all domestic and foreign primary materials for production and consumption (Wuppertal Institute for Climate 2013).

  3. 3.

    The DMC refers to the amount of resources used for domestic consumption (excluding exports and unused extraction) (Wuppertal Institute for Climate 2013).

  4. 4.

    The societal values can be grouped into different areas of protection (AoPs). Within LCA, mainly three AoPs are differentiated: “human health,” “natural environment,” and “natural resources.”

  5. 5.

    Several impact categories are available in LCA that model the effects of the resource extraction process on the natural environment. As an example, for climate change, which is caused by several greenhouse gases, methods for quantifying the global warming impacts of activities are available and well established (see, e.g., Guinée et al. 2002).

  6. 6.

    See Chap. on “Water Use” by Stephan Pfister, LCA Compendium, the volume on “Life Cycle Impact Assessment” (Pfister 2015).

  7. 7.

    See this volume, Chap. 3 on “Water Footprinting” by Berger et al. (2016).

  8. 8.

    Commonly, different types of resources are identified: stocks, funds, and flows. Stocks are irreversibly depletable, while funds are temporarily or locally degradable. Contrary, flows are nondegradable, but with a limited availability at a certain time (see Lindeijer et al. 2002).

  9. 9.

    In some cases, natural resources are a mix of biotic and abiotic components (mineral nutrients) (Lindeijer et al. 2002). In this context, it is often referred to as an abiotic factor (a nonliving component of a habitat), rather than an abiotic resource. Nutrients from soil minerals are fund resources that are temporarily or locally degradable but that can be regenerated within human lifetime (Lindeijer et al. 2002). Soil is considered within the impact category “land use” as soil quality parameters are adequate indicators to express consequences of land use changes.

  10. 10.

    Low-grade deposits are likely to be more difficult to mine than high-grade deposits. As a result, energy required could be one or two orders of magnitude greater when metals would need to be extracted from low-grade deposits, causing a significant increase in costs (Skinner 1976).

  11. 11.

    The functional values of the natural environment are represented by life-support functions. Examples of LSFs include nutrient dispersal, climate regulation, or purification of water.

  12. 12.

    Within the LCA framework, soil quality is addressed in the impact category “land use” (Lindeijer et al. 2002; Milà i Canals et al. 2006; Núñez et al. 2012) and is thus not further considered here. See chapter 11 on “Land Use” by Milà i Canals and de Baan, in the volume LCIA of the “LCA Compendium” (Milà i Canals and de Baan 2015).

  13. 13.

    However, compared to abiotic resources , biotic resources can also increase during human lifetime when no material is extracted. Increasing stocks are so far not considered within LCIA methods.

  14. 14.

    See “LCA Compendium,” the volume on “Life Cycle Impact Assessment,” Chapter 13 by Swart et al. for more information on LCIA methods (Swart et al. 2015).

  15. 15.

    Threat levels measures the risk of extinction and thus biodiversity loss over a specific time and indicate how severe the risk of extinction for specific species is. Three levels exist to classify threatened species: critically endangered, endangered, and vulnerable (International Union for Conservation of Nature and Natural Resources 2014).

  16. 16.

    In total, four different categories are outlined in the ILCD Handbook. However, as category 3 focuses on water, it is not included here (European Commission 2010c, 2011b).

  17. 17.

    The amount of the resource extracted is divided by the 2004 global production of the resource and weighted according to the quantity of the resources in economically exploitable reserves (European Commission 2011b).

  18. 18.

    International Reference Life Cycle Data System (ILCD). This consists primarily of the ILCD Handbook and the ILCD Data Network.

  19. 19.

    The quantity of resources that is ultimately available in the Earth’s crust. Estimated by multiplying the average natural concentration of the resources in the Earth’s crust by the mass or volume of the crust (Guinée 1995). The definition includes nonconventional and low-grade materials and common rocks.

  20. 20.

    “Reserves” are stocks that are known and profitable to be exploited at current prices, state of technology, etc. (Tilton and Lagos 2007; USGS 2014).

  21. 21.

    The term “reserve base” refers to the part of a resource that meets specific physical and chemical criteria, related to current mining and production practices (UNEP 2011; USGS 2014). The reserves base was used as an estimate of the size of those parts of resources that had reasonable potential for becoming economic within planning horizons. However, these estimates were based on expert opinion rather than on actual data. The USGS discontinued reporting of estimates of the reserve base in 2010.

  22. 22.

    The term “non-harvested” species refers to species which can be depleted without being extracted themselves simply due to the extraction of species they rely on for a food source within their food web.

  23. 23.

    Dissipation refers to the state where elements become so dilute or change their chemical form so they can no longer fulfill the required function (UNEP 2010a).

Abbreviations

AADP:

Anthropogenic stock extended abiotic depletion potential

ADP:

Abiotic depletion potential

AoP:

Area of protection

CF:

Characterization factors

CML-IA:

CML impact assessment

DMC:

Domestic material consumption

DMI:

Domestic material input

EMC:

Environmentally weighted material consumption

ESP:

Economic resource scarcity potential

GDP:

Gross domestic product

LSFs:

Life-support functions

MSY:

Maximum sustainable yield

NPP:

Net primary production

PEF:

Product environmental footprint

PGMs:

Platinum group metals

REE:

Rare earth elements

TMI:

Total material requirement

References

  • Achzet B, Reller A, Zepf V, Rennie C, Ashfield M, Simmons J (2011) Materials criticality to the energy industry. An introduction. University of Augsburg, BP, ON Communication, Augsburg

    Google Scholar 

  • Angerer G, Erdmann L, Marscheider-Weidemann F, Scharp M, Lüllmann A, Handke V, Marwerde M (2009a) Rohstoffe für Zukunftstechnologien. ISI-Schriftenreihe “Innovationspotenziale”. Fraunhofer IRB Verlag, Stuttgart

    Google Scholar 

  • Angerer G, Marscheider-Weidemann F, Wendl M, Witschel M (2009b) Lithium für Zukunftstechnologien. Fraunhofer ISI, Karlsruhe

    Google Scholar 

  • Aubin J, Papatryphon E, Van der Werf HMG, Petit J, Morvan YM (2006) Characterisation of the environmental impact of a turbot (Scophthalmus maximus) re-circulating production system using life cycle assessment. Aquaculture 261(4):1259–1268. doi:10.1016/j.aquaculture.2006.09.008

    Article  Google Scholar 

  • Auty RM (1993) Sustaining development in mineral economics RTZ. Routledge, London

    Book  Google Scholar 

  • Avadí A, Fréon P (2013) Life cycle assessment of fisheries: a review for fisheries scientists and managers. Fish Res 143:21–38. doi:10.1016/j.fishres.2013.01.006

    Article  Google Scholar 

  • Azapagic A (2004) Developing a framework for sustainable development indicators for the mining and minerals industry. J Clean Prod 12(6):639–662

    Article  Google Scholar 

  • Bardi U (2011) Revisiting the limits to growth. Springer, New York

    Book  Google Scholar 

  • Bardi U (2013) Der geplünderte Planet – Die Zukunft der Menschen im Zeitalter schwindender Ressourcen. Oekom, München

    Google Scholar 

  • Beddington JR, May RM (1980) Maximum sustainable yields in systems subject to harvesting at more than one trophic level. Math Biosci 51(3–4):261–281. doi:10.1016/0025-5564(80)90103-0

    Article  Google Scholar 

  • Behrens A, Giljum S, Kovanda J, Niza S (2007) The material basis of the global economy – worldwide patterns of natural resource extraction and their implications for sustainable resource use policies. Ecol Econ 64(2):444–453

    Article  Google Scholar 

  • Bennett E (1999) Hunting for sustainability in tropical forests. Columbia University Press, New York

    Google Scholar 

  • Berger M, Finkbeiner M (2011) Correlation analysis of life cycle impact assessment indicators measuring resource use. Int J Life Cycle Assess 16(1):74–81

    Article  Google Scholar 

  • Berger M, Warsen J, Krinke S, Bach V, Finkbeiner M (2012) Water footprint of European cars: potential impacts of water consumption along automobile life cycles. Environ Sci Technol 46(7):4091–4099

    Article  CAS  Google Scholar 

  • Berger M, Pfister S, Motoshita M (2016) Water footprinting in life cycle assessment – how to count the drops and assess the impacts? Chapter 3 “Special Types of Life Cycle Assessment” (Finkbeiner M ed). In: LCA compendium – the complete world of life cycle assessment (Klöpffer W, Curran MA, series eds). Springer, Dordrecht, pp 73–114

    Google Scholar 

  • BIO Intelligence Service (2012) Assessment of resource efficiency indicators and targets. Final report prepared for the European Commission, DG Environment. Institute for Social Ecology (SEC) and Sustainable Europe Research Institute (SERI)

    Google Scholar 

  • Bösch ME, Hellweg S, Huijbregts M, Frischknecht R (2007) Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int J Life Cycle Assess 12(3):181–190

    Article  Google Scholar 

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2002) Impact assessment of abiotic resource consumption. Int J LCA 7(5):301–307

    Article  Google Scholar 

  • Bringezu S, Schütz H (2010) Material use indicators for measuring resource productivity and environmental impacts. Paper within the framework of the “Material Efficiency and Resource Conservation” (MaRess) Project. Wuppertal Institute for Climate, Environment and Energy, Wuppertal

    Google Scholar 

  • BUWAL (1998) Bewertung in Ökobilanzen mit der Methode der ökologischen Knappheit – Ökofaktoren 1997. Schriftenreihe Umwelt, Nr. 297 – Ökobilanzen. Federal Office for Environment, Forest and Landscape, Bern

    Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59–67. doi:10.1038/nature11148

    Article  CAS  Google Scholar 

  • Catovsky S, Bradford MA, Hector A (2002) Biodiversity and ecosystem productivity: implications for carbon storage. Oikos 97(3):443–448

    Article  CAS  Google Scholar 

  • CML (2013) CML – IA characterisation factors. Universiteit Leiden, Institute of Environmental Sciences (CML), Leiden

    Google Scholar 

  • Costanza R, Fisher B, Mulder K, Liu S, Christopher T (2007) Biodiversity and ecosystem services: a multi-scale empirical study of the relationship between species richness and net primary production. Ecol Econ 61(2–3):478–491. doi:10.1016/j.ecolecon.2006.03.021

    Article  Google Scholar 

  • Curran M, de Baan L, de Schryver AM, van Zelm R, Hellweg S, Koellner T, Sonnemann G, Huijbregts MAJ (2011) Toward meaningful end points of biodiversity in life cycle assessment. Environ Sci Technol 45(1):70–79

    Article  CAS  Google Scholar 

  • de Baan L, Alkemade R, Koellner T (2012) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18(6):1216–1230. doi:10.1007/s11367-012-0412-0

    Article  Google Scholar 

  • de Haes HA U, Finnveden G, Goedkoop M, Hauschild M, Hertwich EG, Hofstetter P, Jolliet O, Klöpffer W, Krewitt W, Lindeijer EW, Mueller-Wenk R, Olson SI, Pennington DW, Potting J, Steen B (2002) Life cycle impact assessment: striving towards best practice. Published by the Society of Environmental Toxicology and Chemistry (SETAC), Pensacola

    Google Scholar 

  • de Udo Haes H, Lindeijer E (2002) The conceptual structure of life cycle impact assessment. In: de Udo Haes HA, Finnveden G, Goedkoop M et al (eds) Life-cycle impact assessment: striving towards best practice. Published by the Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 209–226

    Google Scholar 

  • Defra (2012) A review of national resource strategies and research. Department for Environment, Food and Rural Affairs, London

    Google Scholar 

  • Demurtas A, Sousanoglou A, Morton G, Humphris-Bach A, Cole A (2014) Resource Efficiency Scoreboard 2014 Highlights, European Union, Belgium

    Google Scholar 

  • Dewulf J, Bösch ME, de Meester B, van der Vorst G, van Langenhove H, Hellweg S, Huijbregts MAJ (2007) Cumulative exergy extraction from the natural environment (CEENE): a comprehensive life cycle impact assessment method for resource accounting. Environ Sci Technol 41(24):8477–8483

    Article  CAS  Google Scholar 

  • Dewulf J, Van Langenhove H, Muys B, Bruers S, Bakshi BR, Grubb GF, Paulus DM, Sciubba E (2008) Exergy: its potential and limitations in environmental science and technology. Environ Sci Technol 42(7):2221–2232

    Article  CAS  Google Scholar 

  • DeYoung JH Jr, Barton PB, Boulègue J, Dahmen P, Gocht WRA, Kürsten MOC, Phillips WGB, Price RA, Sheldon RP, Skinner BJ, Vogt JH, Alten EGL, Weisser JD, Williams N (1987) Assessment of non-energy mineral resources. In: McLaren DJ, Skinner BJ (eds) Resources and world development. Dahlem Workshop Reports. Wiley, Dahlem, pp 508–523

    Google Scholar 

  • Doka G, Hillier W, Kaila S, Köllner T, Kreißig J, Muys B, Quijano JG, Salpakivi-Salomaa P, Schweinle J, Swan G, Wessman H (2006) The assessment of environmental impacts caused by land use in the life cycle assessment of forestry and forest products – guidelines, hints and recommendations – final report of Working Group 2 “Land use” of COST Action E9. www.doka.ch/COSTE9LandUseDoka.pdf

  • Dong Y, Laurent A, Hauschild MZ (2013) Recommended assessment framework, characterisation models and factors for environmental impacts and resource use. Report prepared within the Seventh Framework Project of the European Union – development and application of a standardized methodology for the prospective sustainability assessment of technologies

    Google Scholar 

  • Dreyer LC, Hauschild MZ, Shierbeck J (2006) A framework for social life cycle impact assessment. Int J Life Cycle Assess 11(2):88–97

    Article  Google Scholar 

  • Efole Ewoukem T, Aubin J, Mikolasek O, Corson MS, Tomedi Eyango M, Tchoumboue J, van der Werf HMG, Ombredane D (2012) Environmental impacts of farms integrating aquaculture and agriculture in Cameroon. J Clean Prod 28:208–214. doi:10.1016/j.jclepro.2011.11.039

    Article  Google Scholar 

  • Emanuelsson A, Ziegler F, Pihl L, Sköld M, Sonesson U (2014) Accounting for overfishing in life cycle assessment: new impact categories for biotic resource use. Int J Life Cycle Assess 19(5):1156–1168. doi:10.1007/s11367-013-0684-z

    Article  Google Scholar 

  • Erdmann L, Behrendt S (2010) Kritische Rohstoffe für Deutschland. Institut für Zukunftsstudien und Technologiebewertung (IZT), Berlin

    Google Scholar 

  • European Commission (2005) Thematic strategy on the sustainable use or natural resources. COM (2005) 670. Brussels

    Google Scholar 

  • European Commission (2010a) Critical raw materials for the EU. Report of the ad-hoc working group on defining critical raw materials. European Commission, Brussels

    Google Scholar 

  • European Commission (2010b) International reference life cycle data system (ILCD) handbook – general guide for life cycle assessment – detailed guidance. EUR 24708 EN. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • European Commission (2010c) International Reference Life Cycle Data System (ILCD) Handbook – Framework and Requirements for Life Cycle Impact Assessment Models and Indicators. EUR 24709 EN. Luxembourg

    Google Scholar 

  • European Commission (2011a) Analysis associated with the Roadmap to a Resource Efficient Europe. SEC(2011) 1067 final, Brussels

    Google Scholar 

  • European Commission (2011b) International Reference Life Cycle Data System (ILCD) handbook – recommendations for life cycle impact assessment in the European context. Publications Office of the European Union, Luxemburg

    Google Scholar 

  • European Commission (2011c) Roadmap to a resource efficient Europe. COM (2011) 571 final. Brussels

    Google Scholar 

  • European Commission (2012) Options for Resource Efficiency Indicators. European Commission, Directorate-general Environment, Brussels

    Google Scholar 

  • European Commission (2013a) Commission Recommendation of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations

    Google Scholar 

  • European Commission (2013b) Science for environment policy in-depth report: resource efficiency indicators. Science Communication Unit, University of the West of England, Bristol

    Google Scholar 

  • FAO (2006) The state of world fisheries and aquaculture – opportunities and challenges 2006. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2012) Capture fisheries. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2014a) State of the World’s forests – enhancing the socioeconomic benefits from forests. The Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • FAO (2014b) The state of world fisheries and aquaculture – opportunities and challenges 2014. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Finkbeiner M (ed) (2011) Toward life cycle sustainability management. Springer Science + Business Media, Berlin

    Google Scholar 

  • Finkbeiner M, Ackermann R, Bach V, Berger M, Brankatschk G, Chang Y-J, Grinberg M, Lehmann A, Martínez-Blanco J, Minkov N, Neugebauer S, Scheumann R, Schneider L, Wolf K (2014) Challenges in life cycle assessment: An overview of current gaps and research needs”. Chapter 7 “Background and Future Prospects in Life Cycle Assessment” (Klöpffer W ed). In: LCA Compendium – The Complete World of Life Cycle Assessment (Klöpffer W, Curran MA, series eds). Springer, Dordrecht, pp 207–258

    Google Scholar 

  • Finnveden G (1996) Resources and related impact categories. In: de Udo Haes HA (ed) Towards a methodology for life-cycle impact assessment. Society of Environmental Toxicology and Chemistry (SETAC), Brussels, pp 39–48

    Google Scholar 

  • Finnveden G (2005) The resource debate needs to continue. Int J Life Cycle Assess 10(5):372

    Article  Google Scholar 

  • Finnveden G, Östlund P (1997) Exergies of natural resources in life cycle assessment and other applications. Energy 22(9):923–931

    Article  CAS  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21

    Article  Google Scholar 

  • Frischknecht R, Steiner R, Jungbluth N (2009) The ecological scarcity method: Eco-factors 2006 – a method for impact assessment in LCA. Environmental studies no. 0906. Federal Office for the Environment (FOEN), Bern

    Google Scholar 

  • Ghosh B, Kar TK (2014) Sustainable use of prey species in a prey–predator system: jointly determined ecological thresholds and economic trade-offs. Ecol Model 272:49–58. doi:10.1016/j.ecolmodel.2013.09.013

    Article  Google Scholar 

  • Giljum S, Polzin C (2009) Resource efficiency for sustainable growth: global trends and European policy scenarios. Background paper. Sustainable Europe Research Institute (SERI), Vienna

    Google Scholar 

  • Giljum S, Behrens A, Hinterberger F, Lutz C, Meyer B (2008) Modelling scenarios towards a sustainable use of natural resources in Europe. Environ Sci Pol 11(3):204–216

    Article  Google Scholar 

  • Giurco D, Cooper C (2012) Mining and sustainability: asking the right questions. Miner Eng 29:3–12

    Article  CAS  Google Scholar 

  • Goedkoop M, Spriensma R (2001) The eco-indicator 99 – a damage-oriented method for life cycle impact assessment, vol 2. PRé Consultants B.V, Amersfoort

    Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M, Schryver AD, Struijs J, Zelm Rv (2008) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Pré Consultants, CML, RUN, RIVM, Amersfoort

    Google Scholar 

  • Gontier M, Balfors B, Mörtberg U (2006) Biodiversity in environmental assessment – current practice and tools for prediction. Environ Impact Assess Rev 26(3):268–286

    Article  Google Scholar 

  • Gordon RB, Bertram M, Graedel TE (2006) Metal stocks and sustainability. Proc Natl Acad Sci U S A 103(5):1209–1214

    Article  CAS  Google Scholar 

  • Graedel TE, Erdmann L (2012) Will material scarcity impede routine industrial use? MRS Bull 37(4):325–331

    Article  Google Scholar 

  • Graedel TE, Barr R, Chandler C, Chase T, Choi J, Christofferson L, Friedlander E, Henly C, Jun C, Nassar NT, Schechner D, Warrne S, Yang M-y, Zhu C (2012) Methodology of metal criticality determination. Environ Sci Technol 46(2):1063–1070

    Article  CAS  Google Scholar 

  • Guinée JB (1995) Development of a methodology for the environmental life-cycle assessment of products. Leiden University, Leiden

    Google Scholar 

  • Guinée J, Heijungs R (1995) A proposal for the definition of resource equivalency factors for use in product LCA. Environ Toxicol Chem 14(5):917–925

    Article  Google Scholar 

  • Guinée JB, Heijungs R, Haes HAU, Huppes G (1993) Quantitative life cycle assessment of products – 2. Classification, valuation and improvement analysis. J Clean Prod 1(2):81–91

    Article  Google Scholar 

  • Guinée JB, Bruijn H, van Duin R, Gorree M, Heijungs R, Huijbregts M, Huppes G, Kleihn R, de Koning A, van Oers L, Sleeswijk A, Suh S, Udo de Haes HA (eds) (2002) Handbook on life cycle assessment – an operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hagelüken C, Meskers CEM (2010) Complex life cycles of precious and special metals. In: Graedel TE, Voet EVD (eds) Linkages of sustainability. MIT Press, Cambridge, pp 163–197

    Google Scholar 

  • Hajjar R, Jarvis DI, Gemmill-Herren B (2008) The utility of crop genetic diversity in maintaining ecosystem services. Agric Ecosyst Environ 123(4):261–270. doi:10.1016/j.agee.2007.08.003

    Article  Google Scholar 

  • Hansen SB, Olsen SI, Ujang Z (2013) Carbon balance impacts of land use changes related to the life cycle of Malaysian palm oil-derived biodiesel. Int J Life Cycle Assess 19(3):558–566. doi:10.1007/s11367-013-0672-3

    Article  CAS  Google Scholar 

  • Hauschild M, Wenzel H (1998) Environmental assessment of products, vol 2, Scientific backgrounds. Chapman & Hall, New York

    Google Scholar 

  • Hauschild M, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, de Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modelling in life cycle impact assessment. Int J Life Cycle Assess 18(3):683–697

    Article  CAS  Google Scholar 

  • Heijungs R, Guinée J, Huppes G (1997) Impact categories for natural resources and land use. CML Report 138. Leiden University, Centre of Environmental Science (CML), Leiden

    Google Scholar 

  • Helin T, Holma A, Soimakallio S (2014) Is land use impact assessment in LCA applicable for forest biomass value chains? Findings from comparison of use of Scandinavian wood, agro-biomass and peat for energy. Int J Life Cycle Assess 19(4):770–785. doi:10.1007/s11367-014-0706-5

    Article  Google Scholar 

  • Henzen C (2008) The impact of land use on biodiversity in the framework of life cycle assessment. University of Basel, Basel

    Google Scholar 

  • Hilborn R (2011) Future directions in ecosystem based fisheries management: a personal perspective. Fish Res 108(2–3):235–239. doi:10.1016/j.fishres.2010.12.030

    Article  Google Scholar 

  • Hornborg S, Nilsson P, Valentinsson D, Ziegler F (2012) Integrated environmental assessment of fisheries management: Swedish Nephrops trawl fisheries evaluated using a life cycle approach. Mar Policy 36(6):1193–1201. doi:10.1016/j.marpol.2012.02.017

    Article  Google Scholar 

  • Humbert S, De Schryver A, Bengoa X, Margni M, Joliet O (2012) IMPACT 2002+: user guide. Version Q2.21. Quantis, CIRAIG, Center for Risk Science and Communication, Ann Arbor

    Google Scholar 

  • International Union for Conservation of Nature and Natural Resources (2014) The IUCN (International Union for Conservation of Nature) red list of threatened species. http://www.iucnredlist.org/

  • ISO 14040 (2006) Environmental management – life cycle assessment – principles and framework. European Committee for Standardisation, Brussels

    Google Scholar 

  • ISO 14044 (2006) Environmental management – life cycle assessment – requirements and guidelines. European Committee for Standardisation, Brussels

    Google Scholar 

  • ISO 14045 (2012) Environmental management – eco-efficiency assessment of product systems – principles, requirements and guidelines. European Committee for Standardisation, Brussels

    Google Scholar 

  • Itsubo N, Inaba A (2012) LIME 2 – life-cycle impact assessment method based on endpoint modeling – summary. Life cycle assessment society of Japan

    Google Scholar 

  • Jerbi MA, Aubin J, Garnaoui K, Achour L, Kacem A (2012) Life cycle assessment (LCA) of two rearing techniques of sea bass (Dicentrarchus labrax). Aquac Eng 46:1–9. doi:10.1016/j.aquaeng.2011.10.001

    Article  Google Scholar 

  • Jolliet O, Margni M, Charles R, Humbert S, Payet J, REbitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324–330

    Article  Google Scholar 

  • Jolliet O, Müller-Wenk R, Bare J, Brent A, Goedkoop M, Heijungs R, Itsubo N, Pena C, Pennington D, Potting J, Rebitzer G, Stewart M, Haes HU, Weidema B (2004) The LCIA midpoint-damage framework of the UNEP/SETAC life cycle initiative. Int J Life Cycle Assess 9(6):394–404

    Article  Google Scholar 

  • Jørgensen A, Herrmann IT, Bjorn A (2013) Analysis of the link between a definition of sustainability and the life cycle methodologies. Int J Life Cycle Assess 18(8):1440–1449

    Article  Google Scholar 

  • Kesler SE (1994) Mineral resources, economics and the environment. Macmillan College Publishing Company, New York

    Google Scholar 

  • Kesler SE (2007) Mineral supply and demand into the 21st century. U. S Geological Survey, Reston

    Google Scholar 

  • Kleijn R (2012) Materials and energy: a story of linkages. Leiden University, Leiden

    Google Scholar 

  • Klinglmair M, Sala S, Brandao M (2013) Assessing resource depletion in LCA: a review of methods and methodological issues. Int J Life Cycle Assess 19(3):580–592

    Article  Google Scholar 

  • Klöpffer W (2008) Life cycle sustainability assessment of products. Int J Life Cycle Assess 13:89–95

    Article  Google Scholar 

  • Klöpffer W, Renner I (1994) Methodik der Wirkungsbilanz im Rahmen von Produkt-Ökobilanzen unter Berücksichtigung nicht oder nur schwer quantifizierbarer Umwelt-Kategorien. Imweltbundesamt, Berlin

    Google Scholar 

  • Koellner T, Baan L, Beck T, Brandão M, Civit B, Margni M, Canals LM, Saad R, Souza DM, Müller-Wenk R (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1188–1202. doi:10.1007/s11367-013-0579-z

    Article  Google Scholar 

  • Langlois J, Fréon P, Delgenes JP, Steyer JP, Hélias A (2012) Biotic resources extraction impact assessment in LCA of fisheries. Paper presented at the LCA Food, Saint-Malo, October 2–4, 2012

    Google Scholar 

  • Langlois J, Fréon P, Delgenes J-P, Steyer J-P, Hélias A (2014) New methods for impact assessment of biotic-resource depletion in life cycle assessment of fisheries: theory and application. J Clean Prod 73:63–71. doi:10.1016/j.jclepro.2014.01.087

    Article  Google Scholar 

  • Legović T, Geček S (2010) Impact of maximum sustainable yield on independent populations. Ecol Model 221(17):2108–2111. doi:10.1016/j.ecolmodel.2010.05.015

    Article  Google Scholar 

  • Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A (2012) International trade drives biodiversity threats in developing nations. Nature 486(7401):109–112

    Article  CAS  Google Scholar 

  • Libralato S, Coll M, Tudela S, Palomera I, Pranovi F (2008) Novel index for quantification of ecosystem effects of fishing as removal of secondary production. Mar Ecol Prog Ser 355:107–129. doi:10.3354/meps07224

    Article  Google Scholar 

  • Lindeijer EW, Müller-Wenk R, Steen B et al (2002) Impact assessment of resources and land use. In: de Udo Haes HA, Finnveden G, Goedkoop M (eds) Life-cycle impact assessment: striving towards best practice. Published by the Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 11–64

    Google Scholar 

  • Mancini L, De Camillis C, Pennington D (eds) (2013) Security of supply and scarcity of raw materials. Publications Office of the European Union, Luxemburg

    Google Scholar 

  • Meadows DH, Meadows DL, Randers J, Behrens WW (1972) The limits to growth. A report of the club of Rome. Universe Books, New York

    Google Scholar 

  • Meadows DH, Randers J, Meadows DL (2004) Limits to growth – the 30-year update. Chelsea Green Publishing Company, Vermont

    Google Scholar 

  • Michelsen O, McDevitt JE, Coelho CRV (2014) A comparison of three methods to assess land use impacts on biodiversity in a case study of forestry plantations in New Zealand. Int J Life Cycle Assess 19(6):1214–1225. doi:10.1007/s11367-014-0742-1

    Article  Google Scholar 

  • Mikesell RF (1994) Sustainable development and mineral resources. Resour Policy 20(2):83–86

    Article  Google Scholar 

  • Milà i Canals L (2003) Contribution to LCA methodology for agricultural systems. Site-dependency and soil degradation impact assessment. Universitat Autónoma de Barcelona, Bellaterra

    Google Scholar 

  • Milà i Canals L (2007) Land use in LCA: a new subject area and call for papers. Int J Life Cycle Assess 12:1 (1 Editorial)

    Article  Google Scholar 

  • Milà i Canals L, de Baan, L (2015) Land use. Chapter 11 “Life Cycle Impact Assessment” (Hauschild M, Huijbregts MAJ eds). In: LCA compendium – the complete world of life cycle assessment (Klöpffer W, Curran MA, series eds). Springer, Dordrecht, pp 197–222

    Google Scholar 

  • Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2006) Key elements in a framework for land use impact assessment within LCA (11 pp). Int J Life Cycle Assess 12(1):5–15. doi:10.1065/lca2006.05.250

    Article  Google Scholar 

  • Milà i Canals L, Bauer C, Depestele J, Dubeuil A, Knuchel R, Gaillard G, Michelsen O, Mueller-Wenk R, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5–15

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Müller-Wenk R (1999) Depletion of abiotic resources weighted on base of ‘virtual’ impacts of lower grade deposits used in the future. IWÖ-Diskussionsbeitrag nr. 57. St. Gallen

    Google Scholar 

  • Müller-Wenk R, Brandão M (2010) Climatic impact of land use in LCA—carbon transfers between vegetation/soil and air. Int J Life Cycle Assess 15(2):172–182. doi:10.1007/s11367-009-0144-y

    Article  CAS  Google Scholar 

  • Nassar NT, Barr R, Browning M, Diao Z, Fiedlander E, Harper EB, Henly C, Kavlak G, Kwatra S, Jun C, Warren S, Yang M-Y, Graedel TE (2012) Criticality of the geological copper family. Environ Sci Technol 46(2):1071–1078

    Article  CAS  Google Scholar 

  • National Research Council (2008) Minerals, critical minerals, and the U.S. Economy. National Academies Press, Washington, DC

    Google Scholar 

  • Núñez M, Antón A, Muñoz P, Rieradevall J (2012) Inclusion of soil erosion impacts in life cycle assessment on a global scale: application to energy crops in Spain. Int J Life Cycle Assess 18(4):755–767. doi:10.1007/s11367-012-0525-5

    Article  Google Scholar 

  • Nuss P, Harper EM, Nassar NT, Reck BK, Graedel TE (2014) Criticality of iron and its principal alloying elements. Environ Sci Technol 48(7):4171–4177

    Article  CAS  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2011) Terrestrial ecoregions of the world: a new map of life on earth – a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51(11):933–938

    Article  Google Scholar 

  • Papatryphon E, Petit J, Kaushik SJ, Werf HM (2004a) Environmental impact assessment of salmonid feeds using Life Cycle Assessment (LCA). Ambio J Hum Environ 33(6):316–323

    Article  Google Scholar 

  • Papatryphon E, Petit J, Werf HMGvd (2004b) The development of life cycle assessment for the evaluation of rainbow trout farming in France. Paper presented at the proceedings of the 4th international conference on life cycle assessment in the agri-food sector, 6–8 October 2004

    Google Scholar 

  • PE International (2013) GaBi 6 software-system and database for life cycle engineering. Echterdingen, Stuttgart

    Google Scholar 

  • Pelletier NL, Ayer NW, Tyedmers PH, Kruse SA, Flysjo A, Robillard G, Ziegler F, Scholz AJ, Sonesson U (2006) Impact categories for life cycle assessment research of seafood production systems: Review and prospectus. Int J Life Cycle Assess 12(6):414–421. doi:10.1065/lca2006.09.275

    Article  Google Scholar 

  • Pennington DW, Potting J, Finnveden G, Lindeijer E, Jolliet O, Rydberg T, Rebitzer G (2004) Life cycle assessment part 2: current impact assessment practice. Environ Int 30(5):721–739

    Article  CAS  Google Scholar 

  • Petrie J (2007) New models of sustainability for the resources sector – a focus on minerals and metals. Trans IChemE B Process Saf Environ Prot 85(B1):88–98

    Article  Google Scholar 

  • Pfister S (2015) Water use. Chapter 12 “Life Cycle Impact Assessment” (Hauschild M, Huijbregts MAJ eds). In: LCA compendium – the complete world of life cycle assessment (Klöpffer W, Curran MA, series eds), pp 223–245

    Google Scholar 

  • Radetzki M (2002) Is resource depletion a threat to human progress? Oil and other critical exhaustible materials. Paper presented at the energex’ 2002, Cracow, 19–24 May

    Google Scholar 

  • Rankin WJ (2011) Minerals, metals and sustainability: meeting future material needs. CSIRO Publishing, Collingwood

    Google Scholar 

  • Reuter MA, Heiskanen K, Boin U, Schaik A, Verhoef E, Yang Y, Georgalli G (2005) The metrics of material and metal ecology, vol 16, Developments in Mineral Processing. Elsevier, Amsterdam

    Google Scholar 

  • Reynolds JD (2008) Conservation of Exploited Species. Conservation biology, vol 6. Cambridge University Press, Cambridge

    Google Scholar 

  • Ricard D, Minto C, Jensen OP, Baum JK (2012) Examining the knowledge base and status of commercially exploited marine species with the RAM legacy stock assessment database. Fish Fish 13(4):380–398. doi:10.1111/j.1467-2979.2011.00435.x

    Article  Google Scholar 

  • Ritthoff M, Rohn H, Liedtke C (2002) Calculating MIPS – resource productivity of products and services. Wuppertal Spezial 27e. Wuppertal Institute for Climate, Environment and Energy, Wuppertal

    Google Scholar 

  • Rosenau-Tornow D, Buchholz P, Riemann A, Wagner M (2009) Assessing the long-term supply risks for mineral raw materials – a combined evaluation of past and future trends. Resour Policy 34(4):161–175

    Article  Google Scholar 

  • Sala S (2012) Assessing resource depletion in LCA: a review of methods and methodological issues. In: Mancini L, De Camillis C, Pennington D (eds) Security of supply and scarcity or raw materials. Towards a methodological framework for sustainability assessment. European Commission, Joint Research Center, Institute for Environment and Sustainability. Publication Office of the European Union, Luxemburg, pp 24–27

    Google Scholar 

  • Sala S, Farioli F, Zamagni A (2013) Progress in sustainability science: lessons learnt from current methodologies for sustainability assessment: Part 1. Int J Life Cycle Assess 18(9):1653–1672

    Article  Google Scholar 

  • Schenck RC (2001) Land use and biodiversity indicators for life cycle impact assessment. Int J Life Cycle Assess 6(2):114–117

    Google Scholar 

  • Schneider L (2014) A comprehensive approach to model abiotic resource provision capability in the context of sustainable development. Doctoral thesis, Technical University Berlin, Berlin

    Google Scholar 

  • Schneider L, Berger M, Finkbeiner M (2011) The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. Int J Life Cycle Assess 16(9):929–936

    Article  Google Scholar 

  • Schneider L, Berger M, Schüler-Hainsch E, Knöfel S, Ruhland K, Mosig J, Bach V, Finkbeiner M (2013) The economic resource scarcity potential (ESP) for evaluating resource use based on life cycle assessment. Int J Life Cycle Assess 19(3):601–610

    Article  Google Scholar 

  • Science and Technology Committee (2011) Strategically important metals. Fifth report of session 2010–12. House of Commons, London

    Google Scholar 

  • Skinner (1976) A second iron age ahead? Am Sci 64(3):158–169

    Google Scholar 

  • Souza D, Flynn D, de Clerck F, Rosenbaum R, de Melo LH, Koellner T (2013) Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity. Int J Life Cycle Assess. doi:10.1007/s11367-013-0578-0

    Google Scholar 

  • Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS). Version 2000 – models and data. Report 1999:5. Chalmers University of Technology, Centre for Environmental Assessment of Products and material Systems, Gothenburg

    Google Scholar 

  • Steen BA (2006) Abiotic resource depletion – different perceptions of the problem with mineral deposits. Int J Life Cycle Assess 11(1):49–54

    Article  Google Scholar 

  • Steffan-Dewenter I, Kessler M, Barkmann J, Bos MM, Buchori D, Erasmi S, Faust H, Gerold G, Glenk K, Gradstein SR, Guhardja E, Harteveld M, Hertel D, Höhn P, Kappas M, Köhler S, Leuschner C, Maertens M, Marggraf R, Migge-Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A, Tjitrosoedirdjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M, Tscharntke T (2007) Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc Natl Acad Sci U S A 104:4973–4978

    Article  CAS  Google Scholar 

  • Steinbach V, Wellmer F-W (2010) Consumption and use of non-renewable mineral and energy raw materials from an economic geology point of view. Sustainability 2(5):1408–1430

    Article  Google Scholar 

  • Stewart M, Weidema B (2005) A consistent framework for assessing the impacts from resource use, a focus on resource functionality. Int J Life Cycle Assess 10(4):240–247

    Article  Google Scholar 

  • Swart P, Alvarenga RAF, Dewulf J (2015) Abiotic resource use. Chapter 13 “Life Cycle Impact Assessment” (Hauschild M, Huijbregts MAJ eds). In: LCA Compendium – the complete world of life cycle assessment (Klöpffer W, Curran MA, series eds), pp 247–269

    Google Scholar 

  • Tilton JE (2003) On borrowed time? Assessing the threat of mineral depletion. Resources for the Future, Washington, DC

    Google Scholar 

  • Tilton JE, Lagos G (2007) Assessing the long-run availability of copper. Resour Policy 32(1–2):19–23

    Article  Google Scholar 

  • Turner G (2008) A comparison of the limits to growth with thirty years of reality. CSIRO Sustainable Ecosystems, Canberra

    Google Scholar 

  • Udo de Haes HA U, Finnveden G, Goedkoop M, Hauschild M, Hertwich EG, Hofstetter P, Jolliet O, Kl­pffer W, Krewitt W, Lindeijer EW, Mueller-Wenk R, Olson SI, Pennington DW, Potting J, Steen B (2002) Life cycle impact assessment: striving towards best practice. Published by the Society of Environmental Toxicology and Chemistry (SETAC), Pensacola

    Google Scholar 

  • UNEP (2010a) Assessing the environmental impacts of consumption and production; priority products and materials. A report of the Working Group on the Environmental impacts of products and materials to the International Panel for Sustainable Resource Management. Hertwich E, van der Voet E, Suh S, Tukker A, Huijbregts M, Kazmierczyk P, Lenzen M, McNeely J, Moriguchi Y, Paris

    Google Scholar 

  • UNEP (2010b) Metal stocks in society. United Nations Environment Programme, International Panel for Sustainable Resource Management, Paris

    Google Scholar 

  • UNEP (2010c) United Nations Environment Programme (UNEP): connecting the dots – Biodiversity, adaptation, food security and livelihoods United Nations Environment Programme, Nairobi

    Google Scholar 

  • UNEP (2011) Decoupling natural resource use and environmental impacts from economic growth. A report of the working group on decoupling to the International Resource Panel. United Nations Environment Programme, Paris

    Google Scholar 

  • United Nations (2005) Handbook of national accounting: integrated environmental and economic accounting 2003, vol 61, Studies in Methods. United Nations, European Commission, International Monetary Fund, Organisation for Economic Co-operation and Development, World Bank, New York

    Google Scholar 

  • USGS (2014) Mineral commodity summaries. U.S. Geological Survey, Department of the Interior, Reston

    Google Scholar 

  • Vaissière B, Freitas B, Gemmill-Herren B (2011) Protocol to detect and assess pollination deficits in crops: a handbook for its use. FAO, Rome

    Google Scholar 

  • Valdivia S, Ugaya CML, Sonnemann G, Hildenbrand J (2011) Towards a life cycle sustainability assessment – making informed choices on products, UNEP/SETAC Life Cycle Initiative, Paris. ISBN: 978-92-807-3175-0

    Google Scholar 

  • Valero A, Valero A (2009) The crepuscular planet. Part II: a model for the exhausted continental crust. Paper presented at the ECOS, Paraná, 31 August – 3 September

    Google Scholar 

  • Valero A, Valero A, Amaya M (2009) Inventory of the exergy resource on earth including its mineral capital. Energy 35(2):989–995

    Article  Google Scholar 

  • Valero A, Valero A, Domínguez A (2013) Exergy replacement cost of mineral resources. J Environ Account Manag 1(2):147–158

    Article  Google Scholar 

  • van der Voet E (2005) Policy review on decoupling: development of indicators to assess decoupling of economic development and environmental pressure in the EU-25 and AC-3 countries. CML report 166. Leiden University, Leiden

    Google Scholar 

  • van Oers L, deKoning A, Guinée J, Huppes G (2002) Abiotic resource depletion in LCA. Road and Hydraulic Engineering Institute, Leiden

    Google Scholar 

  • van Zelm R, Muchada PAN, van der Velde M, Kindermann G, Obersteiner M, Huijbregts MAJ (2014) Impacts of biogenic CO2 emissions on human health and terrestrial ecosystems: the case of increased wood extraction for bioenergy production on a global scale. GCB Bioenergy: n/a–n/a. doi:10.1111/gcbb.12153

    Google Scholar 

  • Vázquez-Rowe I, Hospido A, Moreira MT, Feijoo G (2012a) Best practices in life cycle assessment implementation in fisheries. Improving and broadening environmental assessment for seafood production systems. Trends Food Sci Technol 28(2):116–131. doi:10.1016/j.tifs.2012.07.003

    Article  CAS  Google Scholar 

  • Vázquez-Rowe I, Moreira MT, Feijoo G (2012b) Inclusion of discard assessment indicators in fisheries life cycle assessment studies. Expanding the use of fishery-specific impact categories. Int J Life Cycle Assess 17(5):535–549. doi:10.1007/s11367-012-0395-x

    Article  CAS  Google Scholar 

  • VDI (2013) http://www.vdi.de/technik/fachthemen/energie-und-umwelt/fachbereiche/ressourcenmanagement/themen/richtlinienwerk-zur-ressourceneffizienz-zre/

  • Verhoef EV (2004) The ecology of metals. Delft University of Technology, Delft

    Google Scholar 

  • Vieira M, Ponsionen TC, Goedkoop M, Huijbregts MAJ (2011) Mineral and fossil resources. Development and application of environmental life cycle impact assessment methods for improved sustainability characterisation of technologies (LC-IMPACT). Seventh Framework Programme, European Union, Brussels

    Google Scholar 

  • Vieira MDM, Goedkoop MJ, Storm P, Huijbregts MAJ (2012) Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper. Environ Sci Technol 46(23):12772–12778

    Article  CAS  Google Scholar 

  • Vogtländer JG, Velden NM, Lugt P (2013) Carbon sequestration in LCA, a proposal for a new approach based on the global carbon cycle; cases on wood and on bamboo. Int J Life Cycle Assess 19(1):13–23. doi:10.1007/s11367-013-0629-6

    Article  CAS  Google Scholar 

  • Wäger PA, Widmer R, Stamp A (2011) Scarce technology metals – applications, criticalities and intervention options. Federal Office for the Environment (FOEN), Bern

    Google Scholar 

  • Watson RT, Rosswall T, Steiner A, Töpfer K, Arico S, Bridgewater P (2005) Ecosystems and human well-being: biodiversity synthesis. In: Watson RT, Rosswall T, Steiner A, Töpfer K, Arico S, Bridgewater P (eds) Ecosystems. World Resources Institute, Washington. doi:10.1196/annals.1439.003

    Google Scholar 

  • Weidema B, Finnveden G, Stewart M (2005) Impacts from resource use – a common position paper. Int J Life Cycle Assess 10(6):382

    Article  Google Scholar 

  • Wellmer F-W, Becker-Platen JD (2002) Sustainable development and the exploitation of mineral and energy resources: a review. Int J Earth Sci 91(5):723–745

    Article  Google Scholar 

  • Weterings R, Bastein T, Tukker A, Rademaker M, Ridder M (2013) Resources for our future – key issues and best practices in resource efficiency. The Hague Centre for Strategic Studies (HCSS) and TNO, Amsterdam

    Google Scholar 

  • Wuppertal Institute for Climate EaE (2013) Economy-wide indicators. Topics Online “Economy-wide Material Flow Analysis and Indicators”. Wuppertal Institute for Climate, Environment and Energy, Wuppertal

    Google Scholar 

  • Yellishetty M, Ranjith PG, Tharumarajah A, Bhosale S (2009) Life cycle assessment in the minerals and metals sector: a critical review of selected issues and challenges. Int J Life Cycle Assess 14(3):257–267

    Article  Google Scholar 

  • Yellishetty M, Mudd GM, Ranjith PG (2011) The steel industry, abiotic resource depletion and life cycle assessment: a real or perceived issue? J Clean Prod 19(1):78–90

    Article  CAS  Google Scholar 

  • Ziegler F, Valentinsson D (2008) Environmental life cycle assessment of Norway lobster (Nephrops norvegicus) caught along the Swedish west coast by creels and conventional trawls—LCA methodology with case study. Int J Life Cycle Assess 13(6):487–497. doi:10.1007/s11367-008-0024-x

    Article  CAS  Google Scholar 

  • Ziegler F, Nilsson P, Mattsson B, Walther Y (2003) Life Cycle assessment of frozen cod fillets including fishery-specific environmental impacts. Int J Life Cycle Assess 8(1):39–47. doi:10.1007/bf02978747

    CAS  Google Scholar 

  • Ziegler F, Emanuelsson A, Eichelsheim JL, Flysjö A, Ndiaye V, Thrane M (2011) Extended life cycle assessment of southern pink shrimp products originating in Senegalese Artisanal and industrial fisheries for export to Europe. J Ind Ecol 15(4):527–538. doi:10.1111/j.1530-9290.2011.00344.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Finkbeiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schneider, L., Bach, V., Finkbeiner, M. (2016). LCA Perspectives for Resource Efficiency Assessment. In: Finkbeiner, M. (eds) Special Types of Life Cycle Assessment. LCA Compendium – The Complete World of Life Cycle Assessment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7610-3_5

Download citation

Publish with us

Policies and ethics