Skip to main content

Testing Archaeological Approaches to Determining Past Projectile Delivery Systems Using Ethnographic and Experimental Data

  • Chapter
  • First Online:
Multidisciplinary Approaches to the Study of Stone Age Weaponry

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

TCSA and TCSP are often considered valuable measures of projectile performance, particularly in terms of penetration and overall design. Proponents of this view have also argued that TCSA/TCSP may also be useful for identifying the origins and spread of more complex projectile technologies such as the spear thrower and bow. The strength of these arguments will be tested against ethnographic data and new experiments. The results suggest that TCSA/TCSP statistics are not robust measures of projectile performance, or reliable proxies for inferring delivery systems. An alternative approach is developed using experimental data that compares impact fracture size for three different diagnostic impact fracture types. This approach, while found to be valuable, also presents problems for archaeological identification of projectile technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerman, K. (1978). Notes on the Kimberley stone-tipped spear focusing on the point hafting mechanism. Mankind, 11(4), 486–490.

    Google Scholar 

  • Barton, R. N. E., & Bergman, C. A. (1982). Hunters at Hengistbury: Some evidence from experimental archaeology. World Archaeology, 14(2), 237–248.

    Article  Google Scholar 

  • Blitz, J. H. (1988). Adoption of the bow in North America. North American Archaeologist, 9(2), 123–145.

    Article  Google Scholar 

  • Boëda, E., Bonilauri, S., Connan, J., Jarvet D., Mercier, N., Toby, M., et al. (2008). Middle Palaeolithic bitumen use at Umm el Tlel around 70000BP. Antiquity, 82(318), 853–861.

    Google Scholar 

  • Buchanan, B., Collard, M., Hamilton, M. J., & O’Brien, M. J. (2011). Points and prey: A quantitative test of the hypothesis that prey size influences early Paleoindian projectile point form. Journal of Archaeological Science, 38(4), 852–864.

    Google Scholar 

  • Catellan, P. (1997). Hunting during the Upper Paleolithic: Bow, spearthrower, or both? In H. Knecht (Ed.), Projectile technology (pp. 213–240). New York: Plenum Press.

    Chapter  Google Scholar 

  • Christenson, A. L. (1986). Projectile point size and projectile aerodynamics: An exploratory study. Plains Anthropologist, 31(112), 109–128.

    Google Scholar 

  • Costa, A. G. (2012). Were there stone-tipped armatures in the South Asia Middle Paleolithic? Quaternary International, 269, 22–30. doi:10.1016/j.quaint.2011.01.044.

    Article  Google Scholar 

  • Cundy, B. (1989). Formal variation in Australian spear and spear thrower technology (Vol. 546). Oxford: British Archaeological Reports.

    Google Scholar 

  • Dockall, J. (1997). Wear traces and projectile impact: A review of the experimental and archaeological evidence. Journal of Field Archaeology, 24, 321–331.

    Google Scholar 

  • Fischer, A., Vemming Hansen, P., & Rasmussen, P. (1984). Macro and micro wear traces on lithic projectile points: Experimental results and prehistoric examples. Journal of Danish Archaeology, 3, 19–46.

    Google Scholar 

  • Flenniken, J. J., & Raymond, A. W. (1986). Projectile point typology: Replication experimentation and technological analysis. American Antiquity, 51, 603–614.

    Article  Google Scholar 

  • Friis-Hansen, J. (1990). Mesolithic cutting arrows: Functional analysis of arrows used in the hunting of large game. Antiquity, 64(244), 494–504.

    Article  Google Scholar 

  • Grünberg, J. M. (2002). Middle Palaeolithic birch-bark pitch. Antiquity, 76, 15–16.

    Article  Google Scholar 

  • Hughes, S. S. (1998). Getting to the point: Evolutionary change in prehistoric weaponry. Journal of Archaeological Method and Theory, 5, 345–408.

    Article  Google Scholar 

  • Hunzicker, D. A. (2008). Folsom projectile technology: An experiment in design, effectiveness and efficiency. Plains Anthropologist, 53, 291–311.

    Article  Google Scholar 

  • Hutchings, W. K. (1999). Quantification of fracture propagation velocity employing a sample of Clovis channel flakes. Journal of Archaeological Science, 26, 1437–1447.

    Article  Google Scholar 

  • Hutchings, W. K., & Brüchert, L. W. (1997). Spearthrower performance: Ethnographic and experimental research. Antiquity, 71, 890–897.

    Article  Google Scholar 

  • Knecht, H. (1997). Projectile points of bone, antler and stone: Experimental explorations of manufacture and use. In H. Knecht (Ed.), Projectile technology (pp. 191–212). New York: Plenum Press.

    Chapter  Google Scholar 

  • Lombard, M., & Clark, J. L. (2008). Variability and change in Middle Stone Age hunting behaviour: Aspects from the lithic and faunal records. In S. Badenhorst, P. Mitchell, & J. C. Driver (Eds.), Animals and people: Archaeozoological papers in honour of Ina Plug (pp. 46–56). Oxford: Archaeopress.

    Google Scholar 

  • Lombard, M., & Phillipson, L. (2010). Indications of bow and stone-tipped arrow use 64,000 years ago in KwaZulu-Natal, South Africa. Antiquity, 84, 635–648.

    Article  Google Scholar 

  • Lombard, M., Wadley, L., Jacobs, Z., Mohapi, M., & Roberts, R. G. (2010). Still Bay and serrated points from Umhlatuzana Rock Shelter. Kwazulu-Natal, South Africa Journal of Archaeological Science, 37, 1773–1784.

    Google Scholar 

  • Mackay, A. (2010). History and selection in the late Pleistocene archaeology of the Western Cape, South Africa. PhD dissertation, Australia: Australian National University.

    Google Scholar 

  • McCall, G. (2007). Behavioral ecological models of lithic technological change during the later Middle Stone Age of South Africa. Journal of Archaeological Science, 34, 1738–1751.

    Article  Google Scholar 

  • Moncel, M.-H., Chacón, M. G., Coudenneau, A., & Fernandes, P. (2009). Points and convergent tools in the European Early Middle Palaeolithic site of Payre (SE, France). Journal of Archaeological Science, 36, 1892–1909.

    Article  Google Scholar 

  • Newman, K., & Moore, M. (2013). Ballistically anomalous stone projectile points in Australia. Journal of Archaeological Science, 40, 2614–2620.

    Article  Google Scholar 

  • Pargeter, J. (2007). Howiesons poort segments as hunting weapons: Experiments with replicated projectiles. South African Archaeological Bulletin, 62, 147–153.

    Google Scholar 

  • Pétillon, J.-M., Bignon, O., Bodu, P., Cattelain, P., Debout, G., Langlais, M., et al. (2011). Hard core and cutting edge: Experimental manufacture and use of Magdalenian composite projectile tips. Journal of Archaeological Science, 38, 1266–1283.

    Article  Google Scholar 

  • Schoville, B. J. (2010). Frequency and distribution of edge damage on Middle Stone Age lithic points, Pinnacle Point 13B, South Africa. Journal of Human Evolution, 59, 378–391.

    Article  Google Scholar 

  • Shea, J. (1997). Middle Palaeolithic spear technology. In H. Knecht (Ed.), Projectile technology (pp. 79–106). New York: Plenum Press.

    Chapter  Google Scholar 

  • Shea, J. J. (2006). The origins of lithic projectile point technology: Evidence from Africa, the Levant, and Europe. Journal of Archaeological Science, 33, 823–846.

    Article  Google Scholar 

  • Shea, J. J., & Sisk, S. M. (2010). Complex projectile technology and Homo sapiens dispersal into Western Eurasia. PaleoAnthropology, 2010, 100–122.

    Google Scholar 

  • Sisk, M., & Shea, J. J. (2009). Experimental use and quantitative performance analysis of triangular flakes (Levallois points) used as arrowheads. Journal of Archaeological Science, 36, 2039–2047.

    Article  Google Scholar 

  • Sisk, M., & Shea, J. J. (2011). The African origin of complex projectile technology: An analysis using tip cross-sectional area and perimeter. International Journal of Evolutionary Biology, 2011, 1–8.

    Article  Google Scholar 

  • Thomson, D. F. (1949). Arnhem Land: Explorations among an unknown people part III: On foot across Arnhem Land. The Geographical Journal, 114, 53–67.

    Article  Google Scholar 

  • Thieme, H. (1997). Lower Palaeolithic hunting spears from Germany. Nature, 385, 807–810.

    Article  Google Scholar 

  • Towner, R. H., & Warburton, M. (1990). Projectile point rejuvenation: A technological analysis. Journal of Field Archaeology, 17, 311–321.

    Google Scholar 

  • Villa, P., & Lenoir, M. (2009). Hunting and hunting weapons of the Lower and Middle Paleolithic of Europe. In J.-J. Hublin & M. P. Richards (Eds.), The evolution of hominin diets: Integrating approaches to the study of Palaeolithic subsistence (pp. 59–85). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Villa, P., Soressi, M., Henshilwood, C. S., & Mourre, V. (2009). The Still Bay points of Blombos Cave (South Africa). Journal of Archaeological Science, 36, 441–460.

    Article  Google Scholar 

  • Wadley, L., & Mohapi, M. (2008). A Segment is not a Monolith: evidence from the Howiesons Poort of Sibudu, South Africa. Journal of Archaeological Science, 35, 2594–2605.

    Article  Google Scholar 

  • Yaroshevich, A., Kaufman, D., Nuzhnyy, D., Bar-Yosef, O., & Weinstein-Evron, M. (2010). Design and performance of implemented projectiles during the Middle and the Late Epipaleolithic of the Levant: Experimental and archaeological evidence. Journal of Archaeological Science, 37, 368–388.

    Article  Google Scholar 

Download references

Acknowledgements

The invitation to participate in the International Symposium on Prehistoric Weapons in Mainz in September 2011 turned my long held interest in points into the chance to conduct my own projectile experiments, for which I am most grateful to Radu Iovita and Katsuhiro Sano. The workshop was a great success, and certainly much more than “a marriage of dogs”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Clarkson .

Editor information

Editors and Affiliations

Appendix

Appendix

Details of the 105 points used in the experiment

ID

Type of projectile

Retouch type

Typology

Penetration depth (cm)

TCSA

TCSP

Total projectile weight

1

Dart

Bifacial

Bifacial point

29

292.5

103.94

216.4

2

Dart

Bifacial

Bifacial point

24

292.5

103.94

211.4

3

Dart

Bifacial

Bifacial point

29

292.5

103.94

201.4

4

Arrow

Unifacial

Unifacial point

30

288

84.16

86.1

5

Arrow

Unifacial

Mousterian point

26.5

287

90.64

91.1

6

Arrow

Bifacial

Bifacial point

33.5

287

99.29

81.1

7

Dart

Bifacial

Bifacial point

24

287

99.29

211.4

8

Arrow

Unifacial

Mousterian point

35

287

90.64

81.1

9

Dart

Bifacial

Bifacial point

21

286

102.21

211.4

10

Dart

Bifacial

Bifacial point

24.5

273

98.79

211.4

11

Dart

Unifacial

Unifacial point

24

273

87.01

201.4

12

Dart

Unifacial

Mousterian point

19

266.5

89.54

216.4

13

Arrow

Unifacial

Mousterian point

28

264

94.11

91.1

14

Arrow

Bifacial

Bifacial point

32

260

95.41

86.1

15

Dart

Unifacial

Mousterian point

20.5

258

92.24

221.4

16

Dart

Bifacial

Bifacial point

20.5

255

109.56

201.4

17

Arrow

Bifacial

Bifacial point

29

255

109.56

91.1

18

Arrow

Bifacial

Bifacial point

47.5

252

96.74

81.1

19

Dart

Bifacial

Bifacial point

30.5

246

95.01

221.4

20

Dart

Unifacial

Mousterian point

34.5

240.5

82.22

201.4

21

Arrow

Unifacial

Bifacial point

33.5

240

86.64

81.1

22

Dart

Bifacial

Bifacial point

31

231

94.82

196.4

23

Dart

Bifacial

Bifacial point

24.5

222

88.2

211.4

24

Arrow

Unifacial

Mousterian point

36.5

220.5

101.2

81.1

25

Dart

Bifacial

Bifacial point

32.5

220

85.65

221.4

26

Arrow

Unifacial

Unifacial point

34

217

72.77

81.1

27

Dart

Unifacial

Mousterian point

25.5

216

79.26

211.4

28

Dart

Unifacial

Mousterian point

22

216

79.26

201.4

29

Dart

Bifacial

Bifacial point

22

210

84.87

201.4

30

Arrow

Bifacial

Bifacial point

34

210

84.87

81.1

31

Arrow

Unifacial

Bifacial point

32.5

209

81.9

86.1

32

Arrow

Unifacial

Mousterian point

32.5

209

81.9

81.1

33

Arrow

Unifacial

Leilira

21.5

208

73.23

111.1

34

Arrow

Unifacial

Levallois point

25

203.5

80.04

76.1

35

Dart

Bifacial

Bifacial point

23.5

198

95.07

206.4

36

Dart

Unifacial

Leilira

31.5

198

73.8

211.4

37

Dart

Unifacial

Mousterian point

29

196

67.59

196.4

38

Arrow

Bifacial

Bifacial point

33

195

87.65

91.1

39

Dart

Bifacial

Bifacial point

24.5

192.5

82.68

211.4

40

Dart

Unifacial

Mousterian point

31.5

190

80.94

191.4

41

Arrow

Unifacial

Unifacial point

31.5

190

80.94

81.1

42

Dart

Bifacial

Leilira

19.5

187

80.99

211.4

43

Arrow

Unifacial

Unifacial point

28.5

187

74.49

91.1

44

Dart

Unifacial

Levallois point

29.8

180

77.18

201.4

45

Arrow

Bifacial

Stemmed Bifacial point

33.5

175.5

85.9

71.1

46

Arrow

Unifacial

Mousterian point

35.7

175

75.31

76.1

47

Dart

Bifacial

Bifacial point

22

175

80.62

201.4

48

Arrow

Unretouched

Levallois point

25.3

170

73.44

76.1

49

Arrow

Unifacial

Mousterian point

41.5

166.5

78.14

91.1

50

Dart

Bifacial

Bifacial point

30.5

162

80.49

191.4

51

Arrow

Bifacial

Bifacial point

32.5

154

92.34

76.1

52

Arrow

Unifacial

Mousterian point

44.5

152

79.23

71.1

53

Arrow

Bifacial

Bifacial point

32

148.5

75.17

81.1

54

Arrow

Bifacial

Bifacial point

39

147

88.54

71.1

55

Dart

Unifacial

Unifacial point

25.5

140

73.48

186.4

56

Dart

Bifacial

Bifacial point

30.5

136

75.15

191.4

57

Arrow

Unifacial

Mousterian point

35

130.5

63.13

76.1

58

Arrow

Bifacial

Bifacial point

39.5

130.5

68.26

76.1

59

Dart

Bifacial

Folsom point

21

126

77.25

201.4

60

Arrow

Bifacial

Bifacial point

32

121.5

64.89

61.1

61

Dart

Bifacial

Bifacial point

30.6

120

68

201.4

62

Dart

Unifacial

Unifacial point

28

120

55.24

196.4

63

Arrow

Bifacial

Bifacial point

32.3

120

62.48

71.1

64

Dart

Bifacial

Bifacial point

62

117.1665

 

186

65

Dart

Bifacial

Folsom point

31

116

66.24

201.4

66

Dart

Unifacial

Unifacial point

32.5

112.5

91.09

196.4

67

Arrow

Bifacial

Bifacial point

31.6

108.5

68.02

81.1

68

Dart

Bifacial

Kimberley point

30.6

104

61.05

211.4

69

Arrow

Bifacial

Bifacial point

37.5

103.5

58.41

61.1

70

Arrow

Unifacial

Levallois point

25.5

101.5

61.2

71.1

71

Arrow

Bifacial

Kimberley point

45.5

100

59.36

66.1

72

Arrow

Bifacial

Bifacial point

28.6

100

59.36

76.1

73

Dart

Bifacial

Bifacial point

32

99

70.22

196.4

74

Dart

Unifacial

Mousterian point

27.5

98

59.3

191.4

75

Dart

Bifacial

Kimberley point

22

94.5

60.82

191.4

76

Dart

Unifacial

Indian MP Tanged point

34.5

93

64.24

191.4

77

Dart

Bifacial

Bifacial point

26

87.5

57.3

181.4

78

Dart

Bifacial

Bifacial point

31

87

62.76

191.4

79

Dart

Unifacial

Leilira

24.5

84.5

42.06

216.4

80

Arrow

Bifacial

Bifacial point

38.8

84

55.56

71.1

81

Dart

Bifacial

Bifacial point

37.5

84

55.56

71.1

82

Arrow

Bifacial

Notched Bifacial point

37

80.5

53.85

76.1

83

Arrow

Bifacial

Bifacial point

39.5

78

57.27

71.1

84

Dart

Bifacial

Bifacial point

28.5

77

52.15

186.4

85

Arrow

Unifacial

Indian MP Tanged point

34

72

50.83

76.1

86

Arrow

Unretouched

Pointed blade

45

70

44.41

61.1

87

Dart

Bifacial

Bifacial point

17.5

69

51.88

181.4

88

Arrow

Bifacial

Notched bifacial point

27.5

52.5

46.51

86.1

89

Arrow

Bifacial

Bifacial point

43

51

41.61

56.1

90

Dart

Bifacial

Bifacial point

36

48

40

186.4

91

Arrow

Bifacial

Kimberley point

34

45

41.18

66.1

92

Arrow

Bifacial

Stemmed Bifacial point

42

40

37.73

56.1

93

Dart

Bifacial

Stemmed Bifacial point

21

36

33.94

176.4

94

Arrow

Bifacial

Notched Bifacial point

35

35

34.4

61.1

95

Dart

Bifacial

Kimberley point

22

32.5

32.8

181.4

96

Dart

Bifacial

Kimberley point

38

32.5

32.8

181.4

97

Dart

Bifacial

Bifacial point

22

30

34

176.4

98

Dart

Bifacial

Stemmed bifacial point

28

30

34

176.4

99

Arrow

Bifacial

Bifacial point

52

28

32.24

61.1

100

Dart

Bifacial

Tanged bifacial point

29.5

28

32.24

176.4

101

Arrow

Unifacial

Unifacial point

43

26

28.26

56.1

102

Arrow

Bifacial

Stemmed bifacial point

50

26

30.52

56.1

103

Arrow

Bifacial

Bifacial point

38.6

19.5

28.63

56.1

104

Dart

Unretouched

Pointed blade

31.5

19.5

27.31

186.4

105

Arrow

Unretouched

Pointed blade

33.2

19.5

27.31

71.1

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clarkson, C. (2016). Testing Archaeological Approaches to Determining Past Projectile Delivery Systems Using Ethnographic and Experimental Data. In: Iovita, R., Sano, K. (eds) Multidisciplinary Approaches to the Study of Stone Age Weaponry. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7602-8_13

Download citation

Publish with us

Policies and ethics