Skip to main content

Planning Tools to Simulate and Optimize Neighborhood Energy Systems

  • Conference paper
  • First Online:
Green Defense Technology

Abstract

This section introduces different energy modeling tools available in Europe and the USA for community energy master planning process varying from strategic Urban Energy Planning to more detailed Local Energy Planning. Two modeling tools used for Energy Master Planning of primarily residential communities, the 3D city model with CityGML, and the Net Zero Planner tool developed for the US Department of Defense installations are described in more details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Translates from German as “Global Emission Model of Integrated Systems”.

References

  • Autodesk White Paper (2011) Streamlining energy analysis of existing buildings with rapid energy modeling. San Rafael

    Google Scholar 

  • Balstrusch S (2011) Landesweite automatische und halbautomatische Erzeugung von 3DGebäudemodellen. Workshop 3D-Stadtmodelle, Bonn

    Google Scholar 

  • Blesl M, Kempe S, Huther H (2010) Capture of spatial high-resolution building heating energy demand. Euroheat Power 39(1–2):28–33 [in German]

    Google Scholar 

  • Born R, Diefenbach N, Loga T (2002) Energieeinsparung durch Verbesserung des Wärmeschutzes und, Modernisierung der Heizungsanlage für 31 Musterhäuser der Gebäudetypologie, Studie im Auftrag des Impulsprogramms Hessen, Endbericht, 7 S. und ca. 50 S. Anhang, IWU, Darmstadt

    Google Scholar 

  • Branco G, Lachal B, Gallinelli P, Weber W (2004) Predicted versus observed heat consumption of a low energy multifamily complex in Switzerland based in long-term experimental data. Energy Build 36:543–555

    Article  Google Scholar 

  • Bruse M, Fleer H (1998) Simulating surface-plant-air interactions inside urban environments with a three-dimensional numerical model. Environ Model Softw 13:373–384

    Article  Google Scholar 

  • Caldera M, Corgnati SP, Filippi M (2008) Energy demand for space heating through a statistical approach: application to residential buildings. Energy Build 40:1972–1983

    Article  Google Scholar 

  • Case M, Liesen R, Swanson M, Yu J, Zhivov A (2014a) Integration of master planning and energy planning: from detailed to conceptual analysis. ASHRAE Transactions, CH-15-013, 121(1)

    Google Scholar 

  • Case M, Liesen R, Zhivov A, Swanson M, Barnes B, Stinson J (2014b) A computational framework for low-energy community analysis and optimization. ASHRAE Transactions. NY-14-011. 120(1)

    Google Scholar 

  • Coors V, Krämer M (2011) Integrating quality management into a 3D geospatial server. 28th Urban Data Management Symposium UDMS

    Google Scholar 

  • Firth SK, Lomas KJ (2009) Investigating CO2-emission reduction in existing urban housing. In: Proceedings of Building Simulation 2009, 11th IBPSA conference

    Google Scholar 

  • Groeger G, Kolbe TH, Nagel C, Häfele KH (2012) OGC City Geography Markup Language (CityGML) En-coding Standard. OGC Doc. No. OGC 12–019

    Google Scholar 

  • Jaffal I, Inard C, Ghiaus C (2009) Fast method to predict building heating demand based on the design of experiments. Energy Build 41:669–677

    Article  Google Scholar 

  • Keirstead J, Jennings M, Sivakumar A (2012) A review of urban energy system models: approaches, challenges and opportunities. Renew Sust Energ Rev 16:3847–3866

    Article  Google Scholar 

  • Keirstead J, Shah M (eds) (2013) Urban energy systems – an integrated approach. EarthScan, London

    Google Scholar 

  • Liesen R, Swanson M, Case M, Zhivov A, Latino A, Dreyer D (2015) Energy master planning towards net zero energy installation – Portsmouth Naval Shipyard. ASHRAE Trans. CH-15-015. 121(1)

    Google Scholar 

  • Mavrogianni A, Davies M, Kolokotroni M, Hamilton I (2009) A GIS-based bottom-up space heating demand model of the London domestic stock. Proceedings of 11th international IBPSA conference, building simulation 2009, Glasgow, Scotland

    Google Scholar 

  • Metral C, Falquet G, Cutting-Decelle AF (2009) Towards semantically enriched 3D city models: an ontology-based approach. Academic Track of GeoWeb 2009 – Cityscapes, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS), XXXVIII-3-4/C3). Vancouver, Canada

    Google Scholar 

  • Nouvel R, Zirak M, Dastageeri H, Coors V, Eicker U (2014) Urban energy analysis based on 3D city model for national scale applications. Fifth German-Austrian IBPSA Conference RWTH Aachen University. September 2014

    Google Scholar 

  • Open Geospatial Consortium (2008) OpenGIS City geography markup language (CityGML) encoding standard. Gröger G, Kolbe T, Czerwinski A, Nagel C (eds)

    Google Scholar 

  • Robinson D (ed) (2011) Computer modelling for sustainable urban design: physical principles, methods and their applications. Earthscan (now Taylor & Francis), London. ISBN 9781844076796

    Google Scholar 

  • Santin OG, Itard L, Visscher H (2009) The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock. Energy Build 41:1223–1232

    Article  Google Scholar 

  • Seebregts AJ, Kram T, Schaeffer GJ, Bos AJM (2000) Endogenous learning of technology clusters in a MARKAL model of the Western European energy system. Int J Global Energy Issues 14:289–319

    Article  Google Scholar 

  • Shimoda Y, Fujii T, Morikawa T, Mizuno M (2004) Residential end-use energy simulation at city scale. Build Environ 39:959–967

    Article  Google Scholar 

  • Shipworth D (2010) The vernacular architecture of household energy models. Modelling in the social sciences: interdisciplinary comparison, Helsinki Collegium for Advances Studies, 17–18 June 2010

    Google Scholar 

  • Swan LG, Ugursal VI (2009) Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renew Sust Energ Rev 13:1819–1835

    Article  Google Scholar 

  • Zhivov A, Case M, Liesen R, Kimman J, Broers W (2014) Energy master planning towards net-zero energy communities/campuses. ASHRAE Transactions. NY-14-010. 120(1)

    Google Scholar 

  • Zhivov A, Case M, Liesen R, Swanson M, Barnes B, Woody A, Richter S, Latino A, Bjork C, Fiedler L, Simihtis R (2015) Energy master planning towards net zero energy installation – US Military Academy, West Point. ASHRAE Trans. CH-15-014. 121(1)

    Google Scholar 

  • Zonooz M, Nopia Z, Yusuf A, Sopian K (2009) A review of MARKAL energy modeling. Eur J Sci Res ISSN 1450-216X 26(3):352–361

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Michael Zhivov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Zhivov, A.M., Case, M.P., Jank, R., Eicker, U., Booth, S. (2017). Planning Tools to Simulate and Optimize Neighborhood Energy Systems. In: Goodsite, M., Juhola, S. (eds) Green Defense Technology. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7600-4_8

Download citation

Publish with us

Policies and ethics