Skip to main content

Work Function Variation (WFV)

  • Chapter
  • First Online:
  • 1698 Accesses

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 56))

Abstract

The channel length of metal oxide semiconductor field effect transistors (MOSFETs) has been continuously and successfully scaled down over the past few decades, at the pace described by Moore’s Law. However, aggressively scaled channel lengths have caused MOSFETs to become more vulnerable to short channel effects (SCEs) and process-induced random variations, as discussed in previous sections. In an attempt to alleviate these undesirable effects, the gate-to-channel capacitance has been increased by using a thinner gate oxide layer in order to enhance gate control over the channel potential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. De V, Borkar S (1999) Technology and design challenges for low power and high performance. In: Proceedings of the 1999 international symposium on low power electronics and design, pp 163–168

    Google Scholar 

  2. Hicks J, Bergstrom D, Hattendorf M, Jopling J, Maiz J, Pae S, Prasad C, Wiedemer J (2008) 45 nm transistor reliability. Intel Technol J 12(2):131–144

    Google Scholar 

  3. Pidin S, Morisaki Y, Sugita Y, Aiyama T, Irino K, Nakamura T, Sugii T (2002) Low standby power CMOS with HfO2 gate oxide for 100-nm generation. In: Symposium on VLSI technology of digest, pp 28–29

    Google Scholar 

  4. Morisaki Y, Aoyama T, Sugita Y, Irino K, Sugii T, Nakamura T (2002) Ultra-thin (T inveff  = 1.7 nm) poly-Si-gated SiN/HfO2/SiON high-k stack dielectrics with high thermal stability (1050 °C). In: Proceedings of IEEE IEDM, pp 861–864

    Google Scholar 

  5. Kang L, Onishi K, Jeon Y, Lee BH, Kang C, Qi W-J, Nieh R, Gopalan S, Choi R, Lee JC (2000) MOSFET devices with polysilicon on single-layer HfO2 high-k dielectrics. In: IEDM technical digest, pp 35–38

    Google Scholar 

  6. Lee SJ, Luan HF, Bai WP, Lee CH, Jeon TS, Senzaki Y, Roberts D, Kwong DL (2000) High quality ultra thin CVD HfO2 gate stack with poly-Si gate electrode. In: IEDM technical digest, pp 31–34

    Google Scholar 

  7. Mistry K, Allen C, Auth C, Beattie B, Bergstrom D, Bost M, Brazier M, Buehler M, Cappellani A, Chau R, Choi C-H, Ding G, Fischer K, Ghani T, Grover R, Han W, Hanken D, Hattendorf M, He J, Hicks J, Huessner R, Ingerly D, Jain P, James R, Jong L, Joshi S, Kenyon C, Kuhn K, Lee K, Liu H, Maiz J, McIntyre B, Moon P, Neirynck J, Pae S, Parker C, Parsons D, Prasad C, Pipes L, Prince M, Ranade P, Reynolds T, Sandford J, Shifren L, Sebastian J, Seiple J, Simon D, Sivakumar S, Smith P, Thomas C, Troeger T, Vandervoorn P, Williams S, Zawadzki K (2007) A 45 nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. In: Proceedings of IEEE IEDM, pp 247–250

    Google Scholar 

  8. Takeuchi H, Wong HY, Ha D, Liu T-JK (2004) Impact of oxygen vacancies on high-κ gate stack engineering. In: IEDM technical digest, pp 829–832

    Google Scholar 

  9. Hobbs CC, Fonseca LRC, Knizhnik A, Dhandapani V, Samavedam SB, Taylor WJ, Grant JM, Dip LG, Triyoso DH, Hegde RI, Gilmer DC, Garcia R, Roan D, Lovejoy ML, Rai RS, Hebert EA, Tseng H-H, Anderson SGH, White BE, Tobin PJ (2004) Fermi-level pinning at the polysilicon/metal oxide interface: Part I. IEEE Trans Electron Devices 51(6):971–977

    Article  ADS  Google Scholar 

  10. Gusev EP, Narayanan V, Frank MM (2006) Advanced high-k dielectric stacks with poly-Si and metal gates: recent progress and current challenges. IBM J Res Develop 50(4/5):387–410

    Article  Google Scholar 

  11. Datta S, Dewey G, Doczy M, Doyle BS, Jin B, Kavalieros J, Kotlyar R, Metz M, Zelick N, Chau R (2003) High mobility Si/SiGe strained channel MOS transistors with HfO2/TiN gate stack. In: IEDM technical digest, pp 28.1.1–28.1.4

    Google Scholar 

  12. Wang X, Liu J, Zhu F, Yamada N, Kwong D-L (2004) A simple approach to fabrication of high-quality HfSiON gate dielectrics with improved nMOSFET performances. IEEE Trans Electron Devices 51(11):1798–1804

    Article  ADS  Google Scholar 

  13. Chau R, Datta S, Doczy M, Doyle B, Kavalieros J, Metz M (2004) High-k/metal–gate stack and its MOSFET characteristics. IEEE Electron Devices Lett 25(6):408–410

    Article  ADS  Google Scholar 

  14. Dadgour HF, Endo K, De V, Banerjee K (2008) Modeling and analysis of grain-orientation effects in emerging metal-gate devices and implications for SRAM reliability. In: Proceedings of IEE IEDM, pp 1–4

    Google Scholar 

  15. Dadgour HF, Endo K, De VK, Banerjee K (2010) Grain-orientation induced work function variation in nanoscale metal-gate transistors—Part II: implications for process, device, and circuit design. IEEE Trans Electron Devices 57(10):2515–2525

    Article  ADS  Google Scholar 

  16. Frye A, Galyon GT, Palmer L (2007) Crystallographic texture and whiskers in electrodeposited thin films. IEEE Trans Electron Packag Manuf 30(1):2–10

    Article  Google Scholar 

  17. Ohmori K, Matsuki T, Ishikawa D, Morooka T, Aminaka T, Sugita Y, Chikyow T, Shiraishi K, Nara Y, Yamada K (2008) Impact of additional factors in threshold voltage variability of metal/high-k gate stacks and its reduction by controlling crystalline structure and grain size in the metal gates. In: Proceedings of IEEE IEDM, pp 1–4

    Google Scholar 

  18. Wang X, Brown AR, Idris N, Markov S, Roy G, Asenov A (2011) Statistical threshold-voltage variability in scaled decananometer bulk HKMG MOSFETs: a full-scale 3-D simulation scaling study. IEEE Trans Electron Devices 58(8):2293–2301

    Article  ADS  Google Scholar 

  19. Nam H, Shin C (2013) Study of high-k/metal-gate work-function variation using Rayleigh distribution. IEEE Electron Devices Lett 34(4):532–534

    Article  ADS  Google Scholar 

  20. Asenov A, Slavcheva G, Brown AR, Davies JH, Saini S (2001) Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: a 3-D density-gradient simulation study. IEEE Trans Electron Devices 48(4):722–729

    Article  ADS  Google Scholar 

  21. Grovenor CRM, Hentzell HTG, Smith DA (1984) The development of grain structure during growth of metallic films. Acta Mater 32(5):773–781

    Article  Google Scholar 

  22. Smoluchowski R (1941) Anisotropy of the electronic work function of metals. Phys Rev 60(9):661–674

    Article  ADS  MATH  Google Scholar 

  23. Lang N, Kohn W (1970) Theory of metal surfaces: charge density and surface energy. Phys Rev B 1(12):4555–4568

    Article  ADS  Google Scholar 

  24. Gaillard N, Mariolle D, Bertin F, Gros-Jean M, Proust M, Bsiesy A, Bajolet A, Chhun S, Djebbouri M (2006) Characterization of electrical and crystallographic properties of metal layers at deca-nanometer scale using Kelvin probe force microscope. Microelectron Eng 83(11–12):2169–2174

    Google Scholar 

  25. Dadgour HF, Endo K, De VK, Banerjee K (2010) Grain-orientation induced work function variation in nanoscale metal-gate transistors—Part I: modeling, analysis, and experimental validation. IEEE Trans Electron Devices 57(10):2504–2514

    Article  ADS  Google Scholar 

  26. Buiu O, Hall S, Engstrom O, Raeissi B, Lemme M, Hurley PK, Cherkaoui K (2007) Extracting the relative dielectric constant for ‘high-κ layers’ from CV measurements—errors and error propagation. Microelectron Reliab 47(4–5):678–681

    Google Scholar 

  27. Feller W (1971) An introduction to probability theory and its applications, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  28. Nam H, Shin C (2013) Comparative study in work-function variation: Gaussian vs. Rayleigh distribution for grain size. IEICE Electron Express 10(9):20130109

    Google Scholar 

  29. Yagishita A, Saito T, Nakajima K, Inumiya S, Matsuo K, Shibata T, Tsunashima Y, Suguro K, Arikado T (2001) Improvement of threshold voltage deviation in damascene metal gate transistors. IEEE Trans Electron Devices 48(8):1604–1611

    Article  ADS  Google Scholar 

  30. Hussain MM, Quevedo-Lopez MA, Alshareef HN, Wen HC, Larison D, Gnade B, El-Bouanani M (2006) Thermal annealing effects on physical properties of a representative high-k/metal film stack. Semicond Sci Technol 21(10):1437–1440

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhwan Shin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shin, C. (2016). Work Function Variation (WFV). In: Variation-Aware Advanced CMOS Devices and SRAM. Springer Series in Advanced Microelectronics, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7597-7_4

Download citation

Publish with us

Policies and ethics