Skip to main content

The Latent Class Stochastic Process Model for Evaluation of Hidden Heterogeneity in Longitudinal Data

  • Chapter
  • First Online:
Biodemography of Aging

Abstract

Various approaches to statistical model building and data analysis that incorporate unobserved heterogeneity are ubiquitous in different scientific disciplines. Frailty models introduce the concept of unobserved or hidden heterogeneity in survival analysis for time-to-event data. Longitudinal data provide an additional source of heterogeneity that can contribute to differences in risks of time-to-event outcomes. Individual age trajectories of biomarkers can differ due to various observed as well as unobserved factors and such individual differences propagate to differences in risks of related time-to-event outcomes such as the onset of a disease or death. In this chapter, we briefly review recent biostatistical approaches to deal with heterogeneity, focusing on approaches that model both time-to-event and longitudinal data such as joint models (see Chap. 11). One of the approaches to deal with hidden heterogeneity assumes that a population under study may consist of “latent” subpopulations or classes with distinct patterns of longitudinal trajectories of biomarkers that can also have different effects on the time-to-event outcome in each subpopulation. Within the joint modeling framework, a special class of models, joint latent class models, was developed to account for such heterogeneity in a population. In this chapter, we also present a version of the stochastic process model (see Chap. 12), which we call the “latent class stochastic process model” that deals with a similar approach in the context of such models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbeev, K. G., Ukraintseva, S. V., Akushevich, I., Kulminski, A. M., Arbeeva, L. S., Akushevich, L., Culminskaya, I. V., & Yashin, A. I. (2011). Age trajectories of physiological indices in relation to healthy life course. Mechanisms of Ageing and Development, 132(3), 93–102.

    Article  Google Scholar 

  • Arbeev, K. G., Akushevich, I., Kulminski, A. M., Ukraintseva, S., & Yashin, A. I. (2014). Joint analyses of longitudinal and time-to-event data in research on aging: Implications for predicting health and survival. Frontiers in Public Health, 2, article 228.

    Google Scholar 

  • Commenges, D., Liquet, B., & Proust-Lima, C. (2012). Choice of prognostic estimators in joint models by estimating differences of expected conditional Kullback-Leibler risks. Biometrics, 68(2), 380–387.

    Article  Google Scholar 

  • Dawber, T. R., Meadors, G. F., & Moore, F. E. (1951). Epidemiological approaches to heart disease: The Framingham Study. American Journal of Public Health, 41(3), 279–286.

    Article  Google Scholar 

  • Duchateau, L., & Janssen, P. (2008). The frailty model. New York: Springer.

    Google Scholar 

  • Elashoff, R. M., Li, G., & Li, N. (2007). An approach to joint analysis of longitudinal measurements and competing risks failure time data. Statistics in Medicine, 26(14), 2813–2835.

    Article  Google Scholar 

  • Elashoff, R. M., Li, G., & Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics, 64(3), 762–771.

    Article  Google Scholar 

  • Faucett, C. L., & Thomas, D. C. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Statistics in Medicine, 15(15), 1663–1685.

    Article  Google Scholar 

  • Garre, F. G., Zwinderman, A. H., Geskus, R. B., & Sijpkens, Y. W. J. (2008). A joint latent class changepoint model to improve the prediction of time to graft failure. Journal of the Royal Statistical Society, Series A (Statistics in Society), 171(1), 299–308.

    Google Scholar 

  • Guo, X., & Carlin, B. P. (2004). Separate and joint modeling of longitudinal and event time data using standard computer packages. American Statistician, 58(1), 16–24.

    Article  Google Scholar 

  • Han, J. (2009). Starting values for EM estimation of latent class joint model. Communications in Statistics-Simulation and Computation, 38(7), 1519–1534.

    Article  Google Scholar 

  • Hanagal, D. D. (2011). Modeling survival data using frailty models. Boca Raton: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Henderson, R., Diggle, P., & Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics, 1(4), 465–480.

    Article  Google Scholar 

  • Henderson, R., Diggle, P., & Dobson, A. (2002). Identification and efficacy of longitudinal markers for survival. Biostatistics, 3(1), 33–50.

    Article  Google Scholar 

  • Hu, W., Li, G., & Li, N. (2009). A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data. Statistics in Medicine, 28(11), 1601–1619.

    Article  Google Scholar 

  • Huang, X., Li, G., & Elashoff, R. M. (2010). A joint model of longitudinal and competing risks survival data with heterogeneous random effects and outlying longitudinal measurements. Statistics and Its Interface, 3(2), 185–195.

    Article  Google Scholar 

  • Huang, X., Li, G., Elashoff, R. M., & Pan, J. (2011). A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects. Lifetime Data Analysis, 17(1), 80–100.

    Article  Google Scholar 

  • Jacqmin-Gadda, H., Proust-Lima, C., Taylor, J. M. G., & Commenges, D. (2010). Score test for conditional independence between longitudinal outcome and time to event given the classes in the joint latent class model. Biometrics, 66(1), 11–19.

    Article  Google Scholar 

  • Ko, F.-S. (2010). Using frailty models to identify the longitudinal biomarkers in survival analysis. Communications in Statistics Theory and Methods, 39(18), 3222–3237.

    Article  Google Scholar 

  • Larson, M. G., & Dinse, G. E. (1985). A mixture model for the regression analysis of competing risks data. Journal of the Royal Statistical Society, Series C (Applied Statistics), 34(3), 201–211.

    Google Scholar 

  • Li, N., Elashoff, R. M., & Li, G. (2009). Robust joint modeling of longitudinal measurements and competing risks failure time data. Biometrical Journal, 51(1), 19–30.

    Article  Google Scholar 

  • Lillard, L., & Panis, C. W. A. (2003). aML, multilevel multiprocess statistical software. Release 2.0. Los Angeles: EconWare.

    Google Scholar 

  • Lin, H. Q., McCulloch, C. E., & Mayne, S. T. (2002a). Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Statistics in Medicine, 21(16), 2369–2382.

    Article  Google Scholar 

  • Lin, H. Q., Turnbull, B. W., McCulloch, C. E., & Slate, E. H. (2002b). Latent class models for joint analysis of longitudinal biomarker and event process data: Application to longitudinal prostate-specific antigen readings and prostate cancer. Journal of the American Statistical Association, 97(457), 53–65.

    Article  Google Scholar 

  • Lin, H. Q., McCulloch, C. E., & Rosenheck, R. A. (2004). Latent pattern mixture models for informative intermittent missing data in longitudinal studies. Biometrics, 60(2), 295–305.

    Article  Google Scholar 

  • Liu, L., Ma, J. Z., & O’Quigley, J. (2008). Joint analysis of multi-level repeated measures data and survival: An application to the end stage renal disease (ESRD) data. Statistics in Medicine, 27(27), 5679–5691.

    Article  Google Scholar 

  • Ng, S. K., & McLachlan, G. J. (2003). An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data. Statistics in Medicine, 22(7), 1097–1111.

    Article  Google Scholar 

  • Prentice, R. L., Kalbfleisch, J. D., Peterson, A. V., Flournoy, N., Farewell, V. T., & Breslow, N. E. (1978). Analysis of failure times in presence of competing risks. Biometrics, 34(4), 541–554.

    Article  Google Scholar 

  • Proust-Lima, C., & Taylor, J. M. G. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach. Biostatistics, 10(3), 535–549.

    Article  Google Scholar 

  • Proust-Lima, C., Joly, P., Dartigues, J.-F., & Jacqmin-Gadda, H. (2009). Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach. Computational Statistics and Data Analysis, 53(4), 1142–1154.

    Article  Google Scholar 

  • Proust-Lima, C., Diakite, A., & Liquet, B. (2012). lcmm: Estimation of latent class mixed models, joint latent class mixed models and mixed models for curvilinear outcomes. R package, version 1.5.8, http://cran.r-project.org/web/packages/lcmm/index.html

  • Proust-Lima, C., Sene, M., Taylor, J. M., & Jacqmin-Gadda, H. (2014). Joint latent class models for longitudinal and time-to-event data: A review. Statistical Methods in Medical Research, 23(1), 74–90.

    Article  Google Scholar 

  • Ratcliffe, S. J., Guo, W. S., & Ten Have, T. R. (2004). Joint modeling of longitudinal and survival data via a common frailty. Biometrics, 60(4), 892–899.

    Article  Google Scholar 

  • Rizopoulos, D. (2012). Joint models for longitudinal and time-to-event data with applications in R. Boca Raton: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). Impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16(3), 439–454.

    Article  Google Scholar 

  • Wienke, A. (2010). Frailty models in survival analysis. Boca Raton: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Wulfsohn, M. S., & Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics, 53(1), 330–339.

    Article  Google Scholar 

  • Yashin, A. I. (1985). Dynamics in survival analysis: Conditional Gaussian property vs. Cameron-Martin formula. In N. V. Krylov, R. S. Lipster, & A. A. Novikov (Eds.), Statistics and control of stochastic processes (pp. 446–475). New York: Springer.

    Google Scholar 

  • Yashin, A. I., & Manton, K. G. (1997). Effects of unobserved and partially observed covariate processes on system failure: A review of models and estimation strategies. Statistical Science, 12(1), 20–34.

    Article  Google Scholar 

  • Yashin, A. I., Arbeev, K. G., Akushevich, I., Kulminski, A., Akushevich, L., & Ukraintseva, S. V. (2007). Stochastic model for analysis of longitudinal data on aging and mortality. Mathematical Biosciences, 208(2), 538–551.

    Article  Google Scholar 

  • Yashin, A. I., Arbeev, K. G., Akushevich, I., Kulminski, A., Akushevich, L., & Ukraintseva, S. V. (2008). Model of hidden heterogeneity in longitudinal data. Theoretical Population Biology, 73(1), 1–10.

    Article  Google Scholar 

  • Yashin, A. I., Arbeev, K. G., Akushevich, I., Kulminski, A., Ukraintseva, S. V., Stallard, E., & Land, K. C. (2012). The quadratic hazard model for analyzing longitudinal data on aging, health, and the life span. Physics of Life Reviews, 9(2), 177–188.

    Article  Google Scholar 

Download references

Acknowledgements

This chapter was partly supported by the National Institute on Aging of the National Institutes of Health under Award Numbers R01AG030198, R01AG032319, R01AG030612, R01AG046860, P01AG043352, and P30AG034424. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin G. Arbeev .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Arbeev, K.G., Land, K.C., Yashin, A.I. (2016). The Latent Class Stochastic Process Model for Evaluation of Hidden Heterogeneity in Longitudinal Data. In: Biodemography of Aging. The Springer Series on Demographic Methods and Population Analysis, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7587-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7587-8_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7585-4

  • Online ISBN: 978-94-017-7587-8

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics