Skip to main content

Introduction to properties of ionic liquid mixtures

  • Chapter
Physicochemical Properties of Ionic Liquid Mixtures
  • 412 Accesses

Abstract

In this chapter introduction to various properties of ionic liquid mixtures is described. The properties discussed here include volumetric properties, transport properties and refractive Index. The vapor-liquid, liquid-liquid and solid-liquid equilibriums of the mixtures are also presented. Henry's constant, speed of sound and viscosity of different ionic liquids are also discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References:

  1. Geppert-Rybczynska M, Heintz A, Lehmann JK, Golus A (2010) Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents. Journal of Chemical and Engineering Data 55 (9):4114-4120.

    Article  CAS  Google Scholar 

  2. Connors KA, Wright JL (1989) DEPENDENCE OF SURFACE-TENSION ON COMPOSITION OF BINARY AQUEOUS ORGANIC SOLUTIONS. Analytical Chemistry 61 (3):194-198.

    Article  CAS  Google Scholar 

  3. Ren R, Zuo Y, Zhou Q, Zhang HL, Zhang SJ (2011) Density, Excess Molar Volume and Conductivity of Binary Mixtures of the Ionic Liquid 1,2-Dimethyl-3-hexylimidazolium Bis(trifluoromethylsulfonyl)imide and Dimethyl Carbonate. Journal of Chemical and Engineering Data 56 (1):27-30.

    Article  CAS  Google Scholar 

  4. Rodriguez H, Brennecke JF (2006) Temperature and composition dependence of the density and viscosity of binary mixtures of water plus ionic liquid. Journal of Chemical and Engineering Data 51 (6):2145-2155.

    Article  CAS  Google Scholar 

  5. Zhou Q, Wang LS, Chen HP (2006) Densities and Viscosities of 1-butyl-3-methylimidazolium tetrafluoroborate + H2O binary mixtures from (303.15 to 353.15) K. Journal of Chemical and Engineering Data 51 (3):905-908.

    Article  CAS  Google Scholar 

  6. Matkowska D, Hofman T (2013) Volumetric properties of the ionic liquids: [C6mim][MeSO4], [C6mim][EtSO4], [C4mim][EtSO4] and their mixtures with methanol or ethanol. Journal of Molecular Liquids 177:301-305.

    Article  CAS  Google Scholar 

  7. Matkowska D, Hofman T (2013) Volumetric Properties of the { [Cmim][MeSO] + (1 - )MeOH} System at Temperatures from (283.15 to 333.15) K and Pressures from (0.1 to 35) MPa. J Solution Chem 42 (5):979-990.

    Article  CAS  Google Scholar 

  8. Hosseini SM, Papari MM, Fadaei-Nobandegani F, Moghadasi J (2013) A Simple Equation for Predicting the Volumetric Properties of Mixtures Involving Ionic Liquids. J Solution Chem 42 (9):1854-1862.

    Article  CAS  Google Scholar 

  9. Spencer CF, Danner RP (1972) Improved equation for prediction of saturated liquid density. Journal of Chemical and Engineering Data 17 (2):236-241.

    Article  CAS  Google Scholar 

  10. BE P, JM P, JP. OC (2001) The Properties of gases and liquids. 5th edn. McGraw-Hill, New York.

    Google Scholar 

  11. Yousefi F (2012) Correlation of volumetric properties of binary mixtures of some ionic liquids with alcohols using equation of state. Ionics 18 (8):769-775.

    Article  CAS  Google Scholar 

  12. Tao FM, Mason EA (1994) Statistical-Mechanical equation of state for Nanpolar fluids: Prediction of phase boundaries. Journal of Chemical Physics 100 (12):9075-9087.

    Article  CAS  Google Scholar 

  13. Hosseini SM (2010) A perturbed hard-sphere equation of state for phosphonium-, pyridinium-, and pyrrolidinium-based ionic liquids. Ionics 16 (6):571-575.

    Article  CAS  Google Scholar 

  14. Hosseini SM, Moghadasi J, Papari MM (2010) A perturbed hard-sphere equation of state extended to imidazolium-based ionic liquids. Ionics 16 (8):757-761.

    Article  CAS  Google Scholar 

  15. Hosseini SM, Moghadasi J, Papari MM, Nobandegani FF (2011) Modeling the volumetric properties of mixtures involving ionic liquids using perturbed hard-sphere equation of state. Journal of Molecular Liquids 160 (2):67-71.

    Article  CAS  Google Scholar 

  16. Boublik T (1970) Hard-sphere equation of state. Journal of Chemical Physics 53 (1):471-&.

    Article  CAS  Google Scholar 

  17. Hosseini SM, Moghadasi J, Papari MM, Nobandegani FF (2012) Modeling the Volumetric Properties of Ionic Liquids Using Modified Perturbed Hard-Sphere Equation of State: Application to Pure and Binary Mixtures. Industrial & Engineering Chemistry Research 51 (2):758-766.

    Article  CAS  Google Scholar 

  18. Letcher TM, Baxter RC (1989) Application of the Prigogine-Flory-Patterson theory part I. Mixtures ofn-alkanes with bicyclic compounds, benzene, cyclohexane andn-hexane. J Solution Chem 18 (1):65-80.

    Article  CAS  Google Scholar 

  19. Treszczanowicz AJ, Benson GC (1985) Excess volumes of alkanol + alkane binary systems in terms of an association model with a Flory Contribution Term. Fluid Phase Equilibria 23 (2-3):117-135.

    Article  CAS  Google Scholar 

  20. Q. Z, X. L, S. Z, L. G (2014) Physicochemical Properties of Ionic Liquids. Ionic Liquids Further UnCOILed: Critical Expert Overviews. Wiley.

    Google Scholar 

  21. Tomida D, Kumagai A, Qiao K, Yokoyama C (2006) Viscosity of bmim PF6 and bmim BF4 at high pressure. International Journal of Thermophysics 27 (1):39-47.

    Article  CAS  Google Scholar 

  22. Tomida D, Kumagai A, Kenmochi S, Qiao K, Yokoyama C (2007) Viscosity of 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium hexafluorophosphate at high pressure. Journal of Chemical and Engineering Data 52 (2):577-579.

    Article  CAS  Google Scholar 

  23. Tomida D, Kumagai A, Qiao K, Yokoyama C (2007) Viscosity of 1-butyl-3-methylimidazolium hexafluorophosphate plus CO2 mixture. Journal of Chemical and Engineering Data 52 (5):1638-1640.

    Article  CAS  Google Scholar 

  24. Harris KR, Woolf LA, Kanakubo M (2005) Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexaftuorophosphate. Journal of Chemical and Engineering Data 50 (5):1777-1782.

    Article  CAS  Google Scholar 

  25. Harris KR, Kanakubo M, Woolf LA (2006) Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. Journal of Chemical and Engineering Data 51 (3):1161-1167.

    Article  CAS  Google Scholar 

  26. Harris KR, Kanakubo M, Woolf LA (2007) Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Journal of Chemical and Engineering Data 52 (3):1080-1085.

    Article  CAS  Google Scholar 

  27. Harris KR, Kanakubo M, Woolf LA (2007) Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: Viscosity and density relationships in ionic liquids. Journal of Chemical and Engineering Data 52 (6):2425-2430.

    Article  CAS  Google Scholar 

  28. Harris KR, Woolf LA, Kanakubo M, Ruther T (2011) Transport Properties of N-Butyl-N-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide. Journal of Chemical and Engineering Data 56 (12):4672-4685.

    Article  CAS  Google Scholar 

  29. Aparicio S, Alcalde R, Garcia B, Leal JM (2009) High-Pressure Study of the Methylsulfate and Tosylate Imidazolium Ionic Liquids. Journal of Physical Chemistry B 113 (16):5593-5606.

    Article  CAS  Google Scholar 

  30. Ahosseini A, Scurto AM (2008) Viscosity of imidazolium-based ionic liquids at elevated pressures: Cation and anion effects. International Journal of Thermophysics 29 (4):1222-1243.

    Article  CAS  Google Scholar 

  31. Zhu AL, Wang JJ, Han LJ, Fan MH (2009) Measurements and correlation of viscosities and conductivities for the mixtures of imidazolium ionic liquids with molecular solutes. Chemical Engineering Journal 147 (1):27-35.

    Article  CAS  Google Scholar 

  32. Tomida D, Kenmochi S, Qiao K, Bao QX, Yokoyama C (2011) Viscosity of ionic liquid mixtures of 1-alkyl-3-methylimidazolium hexafluorophosphate + CO2. Fluid Phase Equilibria 307 (2):185-189.

    Article  CAS  Google Scholar 

  33. Domanska U, Laskowska M (2009) Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of {1-Butyl-3-methylimidazolium Thiocyanate + 1-Alcohols}. Journal of Chemical and Engineering Data 54 (7):2113-2119.

    Article  CAS  Google Scholar 

  34. Domanska U, Krolikowska M (2010) Density and Viscosity of Binary Mixtures of {1-Butyl-3-methylimidazolium Thiocyanate + 1-Heptanol, 1-Octanol, 1-Nonanol, or 1-Decanol}. Journal of Chemical and Engineering Data 55 (9):2994-3004.

    Article  CAS  Google Scholar 

  35. Domanska U, Laskowska M (2009) Effect of Temperature and Composition on the Density and Viscosity of Binary Mixtures of Ionic Liquid with Alcohols. J Solution Chem 38 (6):779-799.

    Article  CAS  Google Scholar 

  36. Shao DB, Lu XX, Fang WJ, Guo YS, Xu L (2012) Densities and Viscosities for Binary Mixtures of the Ionic Liquid N-Ethyl Piperazinium Propionate with n-Alcohols at Several Temperatures. Journal of Chemical and Engineering Data 57 (3):937-942.

    Article  CAS  Google Scholar 

  37. Gomez E, Gonzalez B, Dominguez A, Tojo E, Tojo J (2006) Dynamic viscosities of a series of 1-alkyl-3-methylimidazolium chloride ionic liquids and their binary mixtures with water at several temperatures. Journal of Chemical and Engineering Data 51 (2):696-701.

    Article  CAS  Google Scholar 

  38. Vila J, Gines P, Pico JM, Franjo C, Jimenez E, Varela LM, Cabeza O (2006) Temperature dependence of the electrical conductivity in EMIM-based ionic liquids - Evidence of Vogel-Tamman-Fulcher behavior. Fluid Phase Equilibria 242 (2):141-146.

    Article  CAS  Google Scholar 

  39. Lashkarblooki M, Hezave AZ, Al-Ajmi AM, Ayatollahi S (2012) Viscosity prediction of ternary mixtures containing ILs using multi-layer perceptron artificial neural network. Fluid Phase Equilibria 326:15-20.

    Article  CAS  Google Scholar 

  40. Peng XM, Hu YF, Chu HD, Miao C, Li ZY, Wang ZX (2012) Prediction of density and viscosity of ternary systems C(2)q Br + C(4)q Br + H2O, C(2)q Br + C(6)q Br + H2O, and C(4)q Br + C(6)q Br + H2O at different temperatures using their binary subsystems data. Petroleum Science 9 (2):242-250.

    Article  CAS  Google Scholar 

  41. AJ B, LR F (2001) Electrochemical Methods, Fundamentals and Applications, vol Chapter 5 and 9. Wiley & Sons, New York.

    Google Scholar 

  42. JE B (2007) Handbook of Electrochemistry, vol Chapter 19. Elsevier, Amsterdam.

    Google Scholar 

  43. Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble R (2004) Gas separations using non-hexafluorophosphate PF6 (-) anion supported ionic liquid membranes. Journal of Membrane Science 238 (1-2):57-63.

    Article  CAS  Google Scholar 

  44. Haumann M, Dentler K, Joni J, Riisager A, Wasserscheid P (2007) Continuous gas-phase hydroformylation of 1-butene using supported ionic liquid phase (SILP) catalysts. Advanced Synthesis & Catalysis 349 (3):425-431.

    Article  CAS  Google Scholar 

  45. Chauvin Y, Mußmann L, Olivier H (1995) Flüssige 1,3-Dialkylimidazoliumsalze als Lösungsmittel für die Katalyse in Zweiphasensystemen: durch Rhodiumkomplexe katalysierte Hydrierung, Isomerisierung und Hydroformylierung von Alkenen. Angewandte Chemie 107 (23-24):2941-2943.

    Article  Google Scholar 

  46. Steines S, Wasserscheid P, Driessen-Holscher B (2000) An ionic liquid as catalyst medium for stereoselective hydrogenations of sorbic acid with ruthenium complexes. Journal Fur Praktische Chemie-Chemiker-Zeitung 342 (4):348-354.

    Article  CAS  Google Scholar 

  47. Papageorgiou N, Athanassov Y, Armand M, Bonhote P, Pettersson H, Azam A, Gratzel M (1996) The performance and stability of ambient temperature molten salts for solar cell applications. Journal of the Electrochemical Society 143 (10):3099-3108.

    Article  CAS  Google Scholar 

  48. Hauch A, Georg A (2001) Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta 46 (22):3457-3466.

    Article  CAS  Google Scholar 

  49. Baur JE, Wightman RM (1991) Diffusion coefficients determined with microelectrodes. Journal of Electroanalytical Chemistry 305 (1):73-81.

    Article  CAS  Google Scholar 

  50. Evans RG, Klymenko OV, Price PD, Davies SG, Hardacre C, Compton RG (2005) A comparative electrochemical study of diffusion in room temperature ionic liquid solvents versus acetonitrile. Chemphyschem 6 (3):526-533.

    Article  CAS  Google Scholar 

  51. Stokes RH (1950) An improved diaphragm-cell for diffusion studies, and some tests of the method. Journal of the American Chemical Society 72 (2):763-767.

    Article  CAS  Google Scholar 

  52. Gosting LJ (1950) A study of the diffusion of potassium chloride in water at 25oC with the Gouy interference method. Journal of the American Chemical Society 72 (10):4418-4422.

    Article  CAS  Google Scholar 

  53. Taylor G (1953) ispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 219 (1137):186-203.

    Article  CAS  Google Scholar 

  54. Taylor G (1954) Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 225 (1163):473-477.

    Article  CAS  Google Scholar 

  55. Gulari E, Brown RJ, Pings CJ (1973) Measurement of mutual diffusion coefficients and thermal diffusivities by quasi-elastic light scattering. Aiche Journal 19 (6):1196-1204.

    Article  CAS  Google Scholar 

  56. Czworniak KJ, Andersen HC, Pecora R (1975) Light-scattering measurement and theoretical interpretation of mutual diffusion-coefficients in binary liquid mixtures. Chemical Physics 11 (3):451-473.

    Article  CAS  Google Scholar 

  57. Krahn W, Schweiger G, Lucas K (1983) Light scattering measurements of mutual diffusion coefficients in binary liquid mixtures. Journal of Physical Chemistry 87 (22):4515-4519.

    Article  CAS  Google Scholar 

  58. Siddiqi MA, Krahn W, Lucas K (1987) Mutual diffusion coefficients in some binary liquid mixtures. Journal of Chemical and Engineering Data 32 (1):48-50.

    Article  CAS  Google Scholar 

  59. Rausch MH, Lehmann J, Leipertz A, Froba AP (2011) Mutual diffusion in binary mixtures of ionic liquids and molecular liquids by dynamic light scattering (DLS). Physical Chemistry Chemical Physics 13 (20):9525-9533.

    Article  CAS  Google Scholar 

  60. Rausch MH, Hopf L, Heller A, Leipertz A, Froba AP (2013) Binary Diffusion Coefficients for Mixtures of Ionic Liquids EMIM N(CN)(2)), EMIM NTf2 , and HMIM NTf2 with Acetone and Ethanol by Dynamic Light Scattering (DLS). Journal of Physical Chemistry B 117 (8):2429-2437.

    Article  CAS  Google Scholar 

  61. Tokuda H, Hayamizu K, Ishii K, Susan M, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. Journal of Physical Chemistry B 109 (13):6103-6110.

    Article  CAS  Google Scholar 

  62. Tokuda H, Ishii K, Susan M, Tsuzuki S, Hayamizu K, Watanabe M (2006) Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures 10.1021/jpO53396f. Journal of Physical Chemistry B 110 (6):2833-2839.

    Article  CAS  Google Scholar 

  63. Tsuzuki S, Shinoda W, Saito H, Mikami M, Tokuda H, Watanabe M (2009) Molecular Dynamics Simulations of Ionic Liquids: Cation and Anion Dependence of Self-Diffusion Coefficients of Ions. Journal of Physical Chemistry B 113 (31):10641-10649.

    Article  CAS  Google Scholar 

  64. Sarraute S, Gomes MFC, Padua AAH (2009) Diffusion Coefficients of 1-Alkyl-3-methylimidazolium Ionic Liquids in Water, Methanol, and Acetonitrile at Infinite Dilution. Journal of Chemical and Engineering Data 54 (9):2389-2394.

    Article  CAS  Google Scholar 

  65. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. Aiche Journal 1 (2):264-270.

    Article  CAS  Google Scholar 

  66. R.A. R, R.H. S (1965) Electrolyte Solutions. Butterworths, London.

    Google Scholar 

  67. D. R, J. J, R. G (2009) Thermophysical properties of ionic liquids. Topics in Current Chemistry. Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  68. Xu AR, Wang JJ, Zhang YJ, Chen QT (2012) Effect of Alkyl Chain Length in Anions on Thermodynamic and Surface Properties of 1-Butyl-3-methylimidazolium Carboxylate Ionic Liquids. Industrial & Engineering Chemistry Research 51 (8):3458-3465.

    Article  CAS  Google Scholar 

  69. Wang Y, Zhao FY, Liu YM, Hu YQ (2007) Study on surface tension of a series of 1-alkyl-3-methylimidazolium room temperature ionic liquids. Acta Chimica Sinica 65 (15):1443-1448.

    CAS  Google Scholar 

  70. A.W. A, A.P. G (1997) Physical chemistry of surfaces. Wiley, New York.

    Google Scholar 

  71. Law G, Watson PR (2001) Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir 17 (20):6138-6141.

    Article  CAS  Google Scholar 

  72. Macleod DB (1923) On a relation between surface tension and density. Transactions of the Faraday Society 19 (1):38-41.

    Article  Google Scholar 

  73. Deetlefs M, Seddon KR, Shara M (2006) Predicting physical properties of ionic liquids. Physical Chemistry Chemical Physics 8 (5):642-649.

    Article  CAS  Google Scholar 

  74. Knotts TA, Wilding WV, Oscarson JL, Rowley RL (2001) Use of the DIPPR database for development of QSPR correlations: Surface tension. Journal of Chemical and Engineering Data 46 (5):1007-1012.

    Article  CAS  Google Scholar 

  75. Gardas RL, Coutinho JAP (2008) Applying a QSPR correlation to the prediction of surface tensions of ionic liquids. Fluid Phase Equilibria 265 (1-2):57-65.

    Article  CAS  Google Scholar 

  76. Mousazadeh MH, Faramarzi E (2011) Corresponding states theory for the prediction of surface tension of ionic liquids. Ionics 17 (3):217-222.

    Article  CAS  Google Scholar 

  77. Gharagheizi F, Ilani-Kashkouli P, Mohammadi AH (2012) Group contribution model for estimation of surface tension of ionic liquids. Chemical Engineering Science 78:204-208.

    Article  CAS  Google Scholar 

  78. Wu KJ, Zhao CX, He CH (2012) A simple corresponding-states group-contribution method for estimating surface tension of ionic liquids. Fluid Phase Equilibria 328:42-48.

    Article  CAS  Google Scholar 

  79. Domanska U, Pobudkowska A, Rogalski M (2008) Surface tension of binary mixtures of imidazolium and ammonium based ionic liquids with alcohols, or water: Cation, anion effect. Journal of Colloid and Interface Science 322 (1):342-350.

    Article  CAS  Google Scholar 

  80. Rilo E, Pico J, Garcia-Garabal S, Varela LM, Cabeza O (2009) Density and surface tension in binary mixtures of CnMIM-BF4 ionic liquids with water and ethanol. Fluid Phase Equilibria 285 (1-2):83-89.

    Article  CAS  Google Scholar 

  81. Jiang HC, Zhao Y, Wang JY, Zhao FY, Liu RJ, Hu YQ (2013) Density and surface tension of pure ionic liquid 1-butyl-3-methyl-imidazolium L-lactate and its binary mixture with alcohol and water. Journal of Chemical Thermodynamics 64:1-13.

    Article  CAS  Google Scholar 

  82. Ahosseini A, Sensenich B, Weatherley LR, Scurto AM (2010) Phase Equilibrium, Volumetric, and Interfacial Properties of the Ionic Liquid, 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide and 1-Octene. Journal of Chemical and Engineering Data 55 (4):1611-1617.

    Article  CAS  Google Scholar 

  83. Tariq M, Freire MG, Saramago B, Coutinho JAP, Lopes JNC, Rebelo LPN (2012) Surface tension of ionic liquids and ionic liquid solutions. Chemical Society Reviews 41 (2):829-868.

    Article  CAS  Google Scholar 

  84. Gardas RL, Coutinho JAP (2008) Estimation of speed of sound of ionic liquids using surface tensions and densities: A volume based approach. Fluid Phase Equilibria 267 (2):188-192.

    Article  CAS  Google Scholar 

  85. Paulechka YU, Zaitsau DH, Kabo GJ (2004) On the difference between isobaric and isochoric heat capacities of liquid cyclohexyl esters. Journal of Molecular Liquids 115 (2-3):105-111.

    Article  CAS  Google Scholar 

  86. Dzida M, Chorazewski M, Geppert-Rybczynska M, Zorebski E, Zorebski M, Zarska M, Czech B (2013) Speed of Sound and Adiabatic Compressibility of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide under Pressures up to 100 MPa. Journal of Chemical and Engineering Data 58 (6):1571-1576.

    Article  CAS  Google Scholar 

  87. Auerbach R (1948) Surface tension and sound velocity. Ezperientia 4:473-474.

    Article  CAS  Google Scholar 

  88. Gardas RL, Dagade DH, Terdale SS, Coutinho JAP, Patil KJ (2008) Acoustic and volumetric properties of aqueous solutions of imidazolium based ionic liquids at 298.15 K. Journal of Chemical Thermodynamics 40 (4):695-701.

    Article  CAS  Google Scholar 

  89. Govinda V, Reddy PM, Attri P, Venkatesu P, Venkateswarlu P (2013) Influence of anion on thermophysical properties of ionic liquids with polar solvent. Journal of Chemical Thermodynamics 58:269-278.

    Article  CAS  Google Scholar 

  90. Gonzalez EJ, Gonzalez B, Macedo EA (2013) Thermophysical Properties of the Pure Ionic Liquid 1-Butyl-1-methylpyrrolidinium Dicyanamide and Its Binary Mixtures with Alcohols. Journal of Chemical and Engineering Data 58 (6):1440-1448.

    Article  CAS  Google Scholar 

  91. Singh S (2002) Refractive index measurement and its applications. Physica Scripta 65 (2):167-180.

    Article  CAS  Google Scholar 

  92. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry 3 (4):156-164.

    Article  CAS  Google Scholar 

  93. Seki S, Tsuzuki S, Hayamizu K, Umebayashi Y, Serizawa N, Takei K, Miyashiro H (2012) Comprehensive Refractive Index Property for Room-Temperature Ionic Liquids. Journal of Chemical and Engineering Data 57 (8):2211-2216.

    Article  CAS  Google Scholar 

  94. Vercher E, Llopis FJ, Gonzalez-Alfaro V, Miguel PJ, Martinez-Andreu A (2011) Refractive Indices and Deviations in Refractive Indices of Trifluoromethanesulfonate-Based Ionic Liquids in Water. Journal of Chemical and Engineering Data 56 (12):4499-4504.

    Article  CAS  Google Scholar 

  95. Iglesias-Otero MA, Troncoso J, Carballo E, Romani L (2007) Density and refractive index for binary systems of the ionic liquid Bmim BF4 with methanol, 1,3-dichloropropane, and dimethyl carbonate. J Solution Chem 36 (10):1219-1230.

    Article  CAS  Google Scholar 

  96. Shekaari H, Mousavi SS, Mansoori Y (2009) Thermophysical Properties of Ionic Liquid, 1-Pentyl-3-methylimidazolium Chloride in Water at Different Temperatures. International Journal of Thermophysics 30 (2):499-514.

    Article  CAS  Google Scholar 

  97. Rilo E, Dominguez-Perez M, Vila J, Segade L, Garcia M, Varela LM, Cabeza O (2012) Easy prediction of the refractive index for binary mixtures of ionic liquids with water or ethanol. Journal of Chemical Thermodynamics 47:219-222.

    Article  CAS  Google Scholar 

  98. Kurnia KA, Taib MM, Mutalib MIA, Murugesan T (2011) Densities, refractive indices and excess molar volumes for binary mixtures of protic ionic liquids with methanol at T = 293.15 to 313.15 K. Journal of Molecular Liquids 159 (3):211-219.

    Article  CAS  Google Scholar 

  99. Soriano AN, Doma BT, Li MH (2009) Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids. Journal of Chemical Thermodynamics 41 (3):301-307.

    Article  CAS  Google Scholar 

  100. Soriano AN, Doma BT, Li MH (2010) Density and refractive index measurements of 1-ethyl-3-methylimidazolium-based ionic liquids. Journal of the Taiwan Institute of Chemical Engineers 41 (1):115-121.

    Article  CAS  Google Scholar 

  101. Cota I, Gonzalez-Olmos R, Iglesias M, Medina F (2007) New short aliphatic chain ionic liquids: Synthesis, physical properties, and catalytic activity in aldol condensations. Journal of Physical Chemistry B 111 (43):12468-12477.

    Article  CAS  Google Scholar 

  102. Vercher E, Llopis FJ, Gonzalez-Alfaro V, Martinez-Andreu A (2010) Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate with Methanol, Ethanol, I-Propanol, and 2-Propanol at Several Temperatures. Journal of Chemical and Engineering Data 55 (3):1430-1433.

    Article  CAS  Google Scholar 

  103. Brocos P, Pineiro A, Bravo R, Amigo A (2003) Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations. Physical Chemistry Chemical Physics 5 (3):550-557.

    Article  CAS  Google Scholar 

  104. Iglesias-Otero MA, Troncoso J, Carballo E, Romani L (2008) Density and refractive index in mixtures of ionic liquids and organic solvents: Correlations and predictions. Journal of Chemical Thermodynamics 40 (6):949-956.

    Article  CAS  Google Scholar 

  105. Reis JCR, Lampreia IMS, Santos AFS, Moita M, Douheret G (2010) Refractive Index of Liquid Mixtures: Theory and Experiment. Chemphyschem 11 (17):3722-3733.

    Article  CAS  Google Scholar 

  106. Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Industrial and Engineering Chemistry 40 (2):345-348.

    Article  Google Scholar 

  107. Gonzalez EJ, Gonzalez B, Calvar N, Dominguez A (2007) Physical properties of binary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate with several alcohols at T = (298.15, 313.15, and 328.15) K and atmospheric pressure. Journal of Chemical and Engineering Data 52 (5):1641-1648.

    Article  CAS  Google Scholar 

  108. Arce A, Rodil E, Soto A (2006) Physical and excess properties for binary mixtures of 1-methyl-3-octylimidazolium tetrafluoroborate, Omim BF4 , ionic liquid with different alcohols. J Solution Chem 35 (1):63-78.

    Article  CAS  Google Scholar 

  109. McNaught AD, A W (1997) IUPAC Compendium of Chemical Terminology. Blackwell Science.

    Google Scholar 

  110. Z L, B C, Z D (2005) Special distillation processes. Elsevier, Amsterdam.

    Google Scholar 

  111. Pitzer KS (1973) Thermodynamics of electrolytes. 1. Theoretical basis and general equations. Journal of Physical Chemistry 77 (2):268-277.

    Article  CAS  Google Scholar 

  112. KS P (1991) Ion interaction approach: Theory and data correlation. In Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton.

    Google Scholar 

  113. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) Why is CO2 so soluble in imidazolium-based ionic liquids? Journal of the American Chemical Society 126 (16):5300-5308.

    Article  CAS  Google Scholar 

  114. Shi W, Maginn EJ (2008) Molecular Simulation and Regular Solution Theory Modeling of Pure and Mixed Gas Absorption in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Bis(Trifluoromethylsulfonyl)amide ( hmim Tf2N ). Journal of Physical Chemistry B 112 (51):16710-16720.

    Article  CAS  Google Scholar 

  115. Shi W, Maginn EJ (2008) Atomistic Simulation of the Absorption of Carbon Dioxide and Water in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]. The Journal of Physical Chemistry B 112 (7):2045-2055.

    Article  CAS  Google Scholar 

  116. Aki S, Mellein BR, Saurer EM, Brennecke JF (2004) High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. Journal of Physical Chemistry B 108 (52):20355-20365.

    Article  CAS  Google Scholar 

  117. Shiflett MB, Yokozeki A (2007) Solubility of CO2 in room temperature ionic liquid hmim Tf2N. Journal of Physical Chemistry B 111 (8):2070-2074.

    Article  CAS  Google Scholar 

  118. Zhang YQ, Zhang SJ, Lu XM, Zhou Q, Fan W, Zhang XP (2009) Dual Amino-Functionalised Phosphonium Ionic Liquids for CO2 Capture. Chemistry-a European Journal 15 (12):3003-3011.

    Article  CAS  Google Scholar 

  119. Zhang JM, Zhang SJ, Dong K, Zhang YQ, Shen YQ, Lv XM (2006) Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chemistry-a European Journal 12 (15):4021-4026.

    Article  CAS  Google Scholar 

  120. Condemarin R, Scovazzo P (2009) Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data. Chemical Engineering Journal 147 (1):51-57.

    Article  CAS  Google Scholar 

  121. Ferguson L, Scovazzo P (2007) Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids: Data and correlations. Industrial & Engineering Chemistry Research 46 (4):1369-1374.

    Article  CAS  Google Scholar 

  122. Anderson JL, Dixon JK, Brennecke JF (2007) Solubility of CO2,CH4, C2H6, C2H4, O-2, and N-2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: Comparison to other ionic liquids. Accounts of Chemical Research 40 (11):1208-1216.

    Article  CAS  Google Scholar 

  123. Jork C, Kristen C, Pieraccini D, Stark A, Chiappe C, Beste YA, Arlt W (2005) Tailor-made ionic liquids. Journal of Chemical Thermodynamics 37 (6):537-558.

    Article  CAS  Google Scholar 

  124. Lei ZG, Arlt W, Wasserscheid P (2006) Separation of 1-hexene and n-hexane with ionic liquids. Fluid Phase Equilibria 241 (1-2):290-299.

    Article  CAS  Google Scholar 

  125. Doker M, Gmehling J (2005) Measurement and prediction of vapor-liquid equilibria of ternary systems containing ionic liquids. Fluid Phase Equilibria 227 (2):255-266.

    Article  CAS  Google Scholar 

  126. Zhao J, Jiang XC, Li CX, Wang ZH (2006) Vapor pressure measurement for binary and ternary systems containing a phosphoric ionic liquid. Fluid Phase Equilibria 247 (1-2):190-198.

    Article  CAS  Google Scholar 

  127. Jiang XC, Wang JF, Li CX, Wang LM, Wang ZH (2007) Vapour pressure measurement for binary and ternary systems containing water methanol ethanol and an ionic liquid 1-ethyl-3-ethylimidazolium diethylphosphate. Journal of Chemical Thermodynamics 39 (6):841-846.

    Article  CAS  Google Scholar 

  128. Wang JF, Li CX, Wang ZH, Li ZJ, Jiang YB (2007) Vapor pressure measurement for water, methanol, ethanol, and their binary mixtures in the presence of an ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate. Fluid Phase Equilibria 255 (2):186-192.

    Article  CAS  Google Scholar 

  129. Orchilles AV, Miguel PJ, Vercher E, Martinez-Andreu A (2008) Isobaric Vapor-Liquid Equilibria for 1-Propanol plus Water plus 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa. Journal of Chemical and Engineering Data 53 (10):2426-2431.

    Article  CAS  Google Scholar 

  130. Domanska U, Paduszynski K (2008) Phase equilibria study in binary systems (tetra-n-butylphosphonium tosylate ionic liquid + 1-alcohol, or benzene, or n-alkylbenzene). Journal of Physical Chemistry B 112 (35):11054-11059.

    Article  CAS  Google Scholar 

  131. Domanska U, Krolikowski M, Paduszynski K (2009) Phase equilibria study of the binary systems (N-butyl-3-methylpyridinium tosylate ionic liquid plus an alcohol). Journal of Chemical Thermodynamics 41 (8):932-938.

    Article  CAS  Google Scholar 

  132. Domanska U, Krolikowska M, Paduszynski K (2011) Physico-chemical properties and phase behaviour of piperidinium-based ionic liquids. Fluid Phase Equilibria 303 (1):1-9.

    Article  CAS  Google Scholar 

  133. Wang TF, Peng CJ, Liu HL, Hu Y, Jiang JW (2007) Equation of state for the vapor-liquid equilibria of binary systems containing imidazolium-based ionic liquids. Industrial & Engineering Chemistry Research 46 (12):4323-4329.

    Article  CAS  Google Scholar 

  134. Xu XC, Peng CJ, Liu HL, Hu Y (2009) Modeling pVT Properties and Phase Equilibria for Systems Containing Ionic Liquids Using a New Lattice-Fluid Equation of State. Industrial & Engineering Chemistry Research 48 (24):11189-11201.

    Article  CAS  Google Scholar 

  135. Xu XC, Peng CJ, Liu HL, Hu Y (2011) A lattice-fluid model for multi-component ionic-liquid systems. Fluid Phase Equilibria 302 (1-2):260-268.

    Article  CAS  Google Scholar 

  136. Tsioptsias C, Tsivintzelis I, Panayiotou C (2010) Equation-of-state modeling of mixtures with ionic liquids. Physical Chemistry Chemical Physics 12 (18):4843-4851.

    Article  CAS  Google Scholar 

  137. Paduszynski K, Chiyen J, Ramjugernath D, Letcher TM, Domanska U (2011) Liquid-liquid phase equilibrium of (piperidinium-based ionic liquid plus an alcohol) binary systems and modelling with NRHB and PCP-SAFT. Fluid Phase Equilibria 305 (1):43-52.

    Article  CAS  Google Scholar 

  138. Paduszynski K, Domanska U (2011) Solubility of Aliphatic Hydrocarbons in Piperidinium Ionic Liquids: Measurements and Modeling in Terms of Perturbed-Chain Statistical Associating Fluid Theory and Nonrandom Hydrogen-Bonding Theory. Journal of Physical Chemistry B 115 (43):12537-12548.

    Article  CAS  Google Scholar 

  139. Xu X, Liu H, Peng C, Hu Y (2008) A new molecular-thermodynamic model based on lattice fluid theory: Application to pure fluids and their mixtures. Fluid Phase Equilibria 265 (1-2):112-121.

    Article  CAS  Google Scholar 

  140. Lei ZG, Chen BH, Li CY (2007) COSMO-RS modeling on the extraction of stimulant drugs from urine sample by the double actions of supercritical carbon dioxide and ionic liquid. Chemical Engineering Science 62 (15):3940-3950.

    Article  CAS  Google Scholar 

  141. Diedenhofen M, Eckert F, Klamt A (2003) Prediction of infinite dilution activity coefficients of organic compounds in ionic liquids using COSMO-RS. Journal of Chemical and Engineering Data 48 (3):475-479.

    Article  CAS  Google Scholar 

  142. Kato R, Gmehling J (2005) Systems with ionic liquids: Measurement of VLE and gamma(infinity) data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(O1). Journal of Chemical Thermodynamics 37 (6):603-619.

    Article  CAS  Google Scholar 

  143. Eike DM, Brennecke JF, Maginn EJ (2004) Predicting infinite-dilution activity coefficients of organic solutes in ionic liquids. Industrial & Engineering Chemistry Research 43 (4):1039-1048.

    Article  CAS  Google Scholar 

  144. Carlisle TK, Bara JE, Gabriel CJ, Noble RD, Gin DL (2008) Interpretation of CO2 solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach. Industrial & Engineering Chemistry Research 47 (18):7005-7012.

    Article  CAS  Google Scholar 

  145. Camper D, Becker C, Koval C, Noble R (2005) Low pressure hydrocarbon solubility in room temperature ionic liquids containing imidazolium rings interpreted using regular solution theory. Industrial & Engineering Chemistry Research 44 (6):1928-1933.

    Article  CAS  Google Scholar 

  146. Finotello A, Bara JE, Camper D, Noble RD (2008) Room-temperature ionic liquids: Temperature dependence of gas solubility selectivity. Industrial & Engineering Chemistry Research 47 (10):3453-3459.

    Article  CAS  Google Scholar 

  147. Kilaru PK, Condemarin PA, Scovazzo P (2008) Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based room-temperature ionic Liquids. Part 1. Using surface tension. Industrial & Engineering Chemistry Research 47 (3):900-909.

    Article  CAS  Google Scholar 

  148. Kilaru PK, Scovazzo P (2008) Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based room-temperatuire ionic liquids. Part 2. using activation energy of viscosity. Industrial & Engineering Chemistry Research 47 (3):910-919.

    Article  CAS  Google Scholar 

  149. Skjoldjorgensen S, Kolbe B, Gmehling J, Rasmussen P (1979) Vapor-liquid equilibria by UNIFAC group contribution. Industrial & Engineering Chemistry Process Design and Development 18 (4):714-722.

    Article  Google Scholar 

  150. Gmehling J, Rasmussen P, Fredenslund A (1982) Vapor-liquid equilibria by UNIFAC group contribution. 2. Revision and extension. Industrial & Engineering Chemistry Process Design and Development 21 (1):118-127.

    Article  CAS  Google Scholar 

  151. Macedo EA, Weidlich U, Gmehling J, Rasmussen P (1983) Vapor-liquid equilibria by UNIFAC group contribution. 3. Revision and extension. Industrial & Engineering Chemistry Process Design and Development 22 (4):676-678.

    Article  CAS  Google Scholar 

  152. Tiegs D, Gmehling J, Rasmussen P, Fredenslund A (1987) Vapor-liquid equilibria by UNIFAC group contribution. 4. Revision and extension. Industrial & Engineering Chemistry Research 26 (1):159-161.

    Article  CAS  Google Scholar 

  153. Hansen HK, Rasmussen P, Fredenslund A, Schiller M, Gmehling J (1991) Vapor-liquid equilibria by UNIFAC group contribution. 5. Revision and extension. Industrial & Engineering Chemistry Research 30 (10):2352-2355.

    Article  CAS  Google Scholar 

  154. Wittig R, Lohmann J, Gmehling J (2003) Vapor-liquid equilibria by UNIFAC group contribution. 6. Revision and extension. Industrial & Engineering Chemistry Research 42 (1):183-188.

    Article  CAS  Google Scholar 

  155. Yang L, Sandler SI, Peng CJ, Liu HL, Hu Y (2010) Prediction of the Phase Behavior of Ionic Liquid Solutions. Industrial & Engineering Chemistry Research 49 (24):12596-12604.

    Article  CAS  Google Scholar 

  156. Kojima K, Zhang SJ, Hiaki T (1997) Measuring methods of infinite dilution activity coefficients and a database for systems including water. Fluid Phase Equilibria 131 (1-2):145-179.

    Article  CAS  Google Scholar 

  157. Sandler SI (1996) Infinite dilution activity coefficients in chemical, environmental and biochemical engineering. Fluid Phase Equilibria 116 (1-2):343-353.

    Article  CAS  Google Scholar 

  158. Eckert CA, Sherman SR (1996) Measurement and prediction of limiting activity coefficients. Fluid Phase Equilibria 116 (1-2):333-342.

    Article  CAS  Google Scholar 

  159. Krummen M, Wasserscheid P, Gmehling J (2002) Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique. Journal of Chemical and Engineering Data 47 (6):1411-1417.

    Article  CAS  Google Scholar 

  160. Heintz A, Kulikov DV, Verevkin SP (2001) Thermodynamic properties of mixtures containing ionic liquids. 1. Activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes in 4-methyl-n-butylpyridinium tetrafluoroborate using gas-liquid chromatography. Journal of Chemical and Engineering Data 46 (6):1526-1529.

    Article  CAS  Google Scholar 

  161. Wang LS, Wang XX, Li Y, Jiang K, Shao XZ, Du CJ (2013) Ionic liquids: Solubility parameters and selectivities for organic solutes. Aiche Journal 59 (8):3034-3041.

    Article  CAS  Google Scholar 

  162. Everett DH (1965) Effect of gas imperfection on G.L.C. measurements : a refined method for determining activity coefficients and second virial coefficients. Transactions of the Faraday Society 61 (0):1637-1645.

    Article  CAS  Google Scholar 

  163. Cruickshank AJB, Windsor ML, Young CL (1966) The Use of Gas-Liquid Chromatography to Determine Activity Coefficients and Second Virial Coefficients of Mixtures. I. Theory and Verification of Method of Data Analysis. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 295 (1442):259-270.

    CAS  Google Scholar 

  164. DW G (1971) Gas-Liquid Chromatography. Van Nostrand Reinhold, London, U.K.

    Google Scholar 

  165. Xue ZM, Mu TC, Gmehling J (2012) Comparison of the a Priori COSMO-RS Models and Group Contribution Methods: Original UNIFAC, Modified UNIFAC(Do), and Modified UNIFAC(Do) Consortium. Industrial & Engineering Chemistry Research 51 (36):11809-11817.

    Article  CAS  Google Scholar 

  166. Weidlich U, Gmehling J (1987) A Modified UNIFAC Model. 1. Prediction of VLE, hE, and γ∞. Industrial & Engineering Chemistry Research 26 (7):1372-1381.

    Article  CAS  Google Scholar 

  167. Gmehling J, Li JD, Schiller M (1993) A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Industrial & Engineering Chemistry Research 32 (1):178-193.

    Article  CAS  Google Scholar 

  168. Gmehling J, Lohmann J, Jakob A, Li JD, Joh R (1998) A modified UNIFAC (Dortmund) model. 3. Revision and extension. Industrial & Engineering Chemistry Research 37 (12):4876-4882.

    Article  CAS  Google Scholar 

  169. Gmehling J, Wittig R, Lohmann J, Joh R (2002) A modified UNIFAC (Dortmund) model. 4. Revision and extension. Industrial & Engineering Chemistry Research 41 (6):1678-1688.

    Article  CAS  Google Scholar 

  170. Jakob A, Grensemann H, Lohmann J, Gmehling J (2006) Further development of modified UNIFAC (Dortmund): Revision and extension 5. Industrial & Engineering Chemistry Research 45 (23):7924-7933.

    Article  CAS  Google Scholar 

  171. Klamt A, Jonas V, Burger T, Lohrenz JCW (1998) Refinement and parametrization of COSMO-RS. Journal of Physical Chemistry A 102 (26):5074-5085.

    Article  CAS  Google Scholar 

  172. Klamt A, Eckert F (2000) COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilibria 172 (1):43-72.

    Article  CAS  Google Scholar 

  173. Klamt A (1995) Conductor-like screening model for real solvents a new approach to the quantitative calculation of solvation phenomena. Journal of Physical Chemistry 99 (7):2224-2235.

    Article  CAS  Google Scholar 

  174. Gutierrez JP, Meindersma GW, de Haan AB (2012) COSMO-RS-Based Ionic-Liquid Selection for Extractive Distillation Processes. Industrial & Engineering Chemistry Research 51 (35):11518-11529.

    Article  CAS  Google Scholar 

  175. Anantharaj R, Banerjee T (2011) COSMO-RS based predictions for the desulphurization of diesel oil using ionic liquids: Effect of cation and anion combination. Fuel Processing Technology 92 (1):39-52.

    Article  CAS  Google Scholar 

  176. Diedenhofen M, Klamt A (2010) COSMO-RS as a tool for property prediction of IL mixtures-A review. Fluid Phase Equilibria 294 (1-2):31-38.

    Article  CAS  Google Scholar 

  177. D T, J G, A M, M S, J B, P A, I K (1986) DECHEMA Chemistry Data. vol Series IX. DECHEMA, Frankfurt/Main.

    Google Scholar 

  178. Foco GM, Bottini SB, Quezada N, de la Fuente JC, Peters CJ (2006) Activity coefficients at infinite dilution in 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids. Journal of Chemical and Engineering Data 51 (3):1088-1091.

    Article  CAS  Google Scholar 

  179. Kikic I, Alessi P, Rasmussen P, Fredenslund A (1980) On the combinatorial part of the UNIFAC and UNIQUAC models. Canadian Journal of Chemical Engineering 58 (2):253-258.

    Article  CAS  Google Scholar 

  180. CL Y (1999) Chemical properties handbook. McGraw-Hill Book Co., New York.

    Google Scholar 

  181. A B (1968) Physical Properties of Molecular Crystals, Liquids and Glasses. Wiley, New York.

    Google Scholar 

  182. de los Rios AP, Fernandez FJH, Gomez D, Rubio M, Villora G (2012) (Liquid plus Liquid) Equilibrium for Ternary Systems Containing of an Ionic Liquid, n-Hexane and an Organic Compound Involved in the Kinetic Resolution of rac-2-Pentanol. Separation Science and Technology 47 (2):300-311.

    Article  CAS  Google Scholar 

  183. Renon H, Prausnit.Jm (1968) Local compositions in thermodynamic excess functions for liquid mixtures. Aiche Journal 14 (1):135-144.

    Article  CAS  Google Scholar 

  184. Abrams DS, Prausnitz JM (1975) Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. Aiche Journal 21 (1):116-128.

    Article  CAS  Google Scholar 

  185. De Sousa HC, Rebelo LPN (2000) A continuous polydisperse thermodynamic algorithm for a modified Flory-Huggins model: The (polystyrene plus nitroethane) example. Journal of Polymer Science Part B-Polymer Physics 38 (4):632-651.

    Article  Google Scholar 

  186. Rebelo LPN, Najdanovic-Visak V, Visak ZP, da Ponte MN, Szydlowski J, Cerdeirina CA, Troncoso J, Romani L, Esperanca J, Guedes HJR, de Sousa HC (2004) A detailed thermodynamic analysis of C(4)mim BF4 plus water as a case study to model ionic liquid aqueous solutions. Green Chemistry 6 (8):369-381.

    Article  CAS  Google Scholar 

  187. Y. Q, J.M. P (2005) Solubilities of solutes in ionic liquids from a simple Perturbed-Hard-Sphere Theory. Zeitschrift für Physikalische Chemie 219:1223-1241.

    Article  Google Scholar 

  188. Yang JY, Peng CJ, Liu HL, Hu Y (2006) Calculation of vapor-liquid and liquid-liquid phase equilibria for systems containing ionic liquids using a lattice model. Industrial & Engineering Chemistry Research 45 (20):6811-6817.

    Article  CAS  Google Scholar 

  189. Arce A, Earle MJ, Katdare SP, Rodriguez H, Seddon KR (2008) Application of mutually immiscible ionic liquids to the separation of aromatic and aliphatic hydrocarbons by liquid extraction: a preliminary approach. Physical Chemistry Chemical Physics 10 (18):2538-2542.

    Article  CAS  Google Scholar 

  190. Arce A, Earle MJ, Rodriguez H, Seddon KR (2007) Separation of benzene and hexane by solvent extraction with 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ionic liquids: Effect of the alkyl-substituent length. Journal of Physical Chemistry B 111 (18):4732-4736.

    Article  CAS  Google Scholar 

  191. Ferreira AR, Freire MG, Ribeiro JC, Lopes FM, Crespo JG, Coutinho JAP (2012) Overview of the Liquid-Liquid Equilibria of Ternary Systems Composed of Ionic Liquid and Aromatic and Aliphatic Hydrocarbons, and Their Modeling by COSMO-RS. Industrial & Engineering Chemistry Research 51 (8):3483-3507.

    Article  CAS  Google Scholar 

  192. Ferreira AR, Freire MG, Ribeiro JC, Lopes FM, Crespo JG, Coutinho JAP (2011) An Overview of the Liquid-Liquid Equilibria of (Ionic Liquid plus Hydrocarbon) Binary Systems and Their Modeling by the Conductor-like Screening Model for Real Solvents. Industrial & Engineering Chemistry Research 50 (9):5279-5294.

    Article  CAS  Google Scholar 

  193. Domanska U, Pobudkowska A, Eckert F (2006) Liquid-liquid equilibria in the binary systems (1,3-dimethylimidazolium, or 1-butyl-3-methylimidazolium methylsulfate plus hydrocarbons). Green Chemistry 8 (3):268-276.

    Article  CAS  Google Scholar 

  194. A K (2005) Summary, limitations, and perspectives In COSMO-RS. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  195. JY Y, QL Y, HL L, Y H (2006) A molecular thermodynamic model for compressible lattice polymers. Polymer 47 (14):5187-5195.

    Article  CAS  Google Scholar 

  196. Yang JY, Peng CJ, Liu HL, Hu Y, Jiang JW (2006) A generic molecular thermodynamic model for linear and branched polymer solutions in a lattice. Fluid Phase Equilibria 244 (2):188-192.

    Article  CAS  Google Scholar 

  197. K K, K T (1979) Prediction of Vapor–Liquid Equilibria by the ASOG Method. Elsevier, Tokyo.

    Google Scholar 

  198. Tochigi K, Tiegs D, Gmehling J, Kojima K (1990) Determination of new ASOG parameters. Journal of Chemical Engineering of Japan 23 (4):453-463.

    Article  CAS  Google Scholar 

  199. Tochigi K, Yoshida K, Kurihara K, Ochi K, Murata J, Yasumoto M, Sako T (2001) Prediction of vapor-liquid equilibrium for systems containing hydrofluoroethers using ASOG group contribution method. Fluid Phase Equilibria 183:173-182.

    Article  Google Scholar 

  200. Tochigi K, Yoshida K, Kurihara K, Ochi K, Murata J, Urata S, Otake K (2002) Determination of ASOG parameters for selecting azeotropic mixtures containing hydrofluoroethers. Fluid Phase Equilibria 194:653-662.

    Article  Google Scholar 

  201. Banerjee T, Verma KK, Khanna A (2008) Liquid-liquid equilibrium for ionic liquid systems using COSMO-RS: Effect of cation and anion dissociation. Aiche Journal 54 (7):1874-1885.

    Article  CAS  Google Scholar 

  202. Robles PA, Graber TA, Aznar M (2009) Prediction by the ASOG method of liquid-liquid equilibrium for binary and ternary systems containing 1-alkyl-3-methylimidazolium hexafluorophosphate. Fluid Phase Equilibria 287 (1):43-49.

    Article  CAS  Google Scholar 

  203. Verma NR, Gopal G, Anantharaj R, Banerjee T (2012) (Solid plus liquid) equilibria predictions of ionic liquid containing systems using COSMO-RS. Journal of Chemical Thermodynamics 48:246-253.

    Article  CAS  Google Scholar 

  204. Domanska U (1987) Solid-liquid phase relations of some normal long-chain fatty acids in selected organic one- and two-component solvents. Industrial & Engineering Chemistry Research 26 (6):1153-1162.

    Article  CAS  Google Scholar 

  205. JM P, RN L, EG dA (1999) Molecular thermodynamics of fluid-phase equilibria. 3rd ed. edn. Prentice Hall, NJ.

    Google Scholar 

  206. Wilson GM (1964) Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society 86 (2):127-130.

    CAS  Google Scholar 

  207. Domanska U, Zolek-Tryznowska Z, Krolikowski M (2007) Thermodynamic phase behavior of ionic liquids. Journal of Chemical and Engineering Data 52 (5):1872-1880.

    Article  CAS  Google Scholar 

  208. Domanska U, Bogel-Lukasik E (2004) Solid-liquid equilibria for systems containing 1-butyl-3-methylimidazolium chloride. Fluid Phase Equilibria 218 (1):123-129.

    Article  CAS  Google Scholar 

  209. Domanska U, Bogel-Lukasik E, Bogel-Lukasik R (2003) Solubility of 1-dodecyl-3-methylimidazolium chloride in alcohols (C-2-C-12). Journal of Physical Chemistry B 107 (8):1858-1863.

    Article  CAS  Google Scholar 

  210. Domanska U, Bogel-Lukasik E, Bogel-Lukasik R (2003) 1-octanol/water partition coefficients of 1-alkyl-3-methylimidazolium chloride. Chemistry-a European Journal 9 (13):3033-3041.

    Article  CAS  Google Scholar 

  211. Domanska U, Bogel-Lukasik E (2003) Measurements and correlation of the (solid plus liquid) equilibria of 1-decyl-3-methylimidazolium chloride plus Alcohols (C-2-C-12). Industrial & Engineering Chemistry Research 42 (26):6986-6992.

    Article  CAS  Google Scholar 

  212. Domanska U (2005) Solubilities and thermophysical properties of ionic liquids. Pure and Applied Chemistry 77 (3):543-557.

    Article  CAS  Google Scholar 

  213. Domanska U, Mazurowska L (2004) Solubility of 1,3-dialkylimidazolium chloride or hexafluorophosphate or methylsulfonate in organic solvents: effect of the anions on solubility. Fluid Phase Equilibria 221 (1-2):73-82.

    Article  CAS  Google Scholar 

  214. Eckert F, Klamt A (2002) Fast solvent screening via quantum chemistry: COSMO-RS approach. Aiche Journal 48 (2):369-385.

    Article  CAS  Google Scholar 

  215. Lin ST, Sandler SI (2002) A priori phase equilibrium prediction from a segment contribution solvation model. Industrial & Engineering Chemistry Research 41 (5):899-913.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, S., Zhou, Q., Lu, X., Song, Y., Wang, X. (2016). Introduction to properties of ionic liquid mixtures. In: Zhang, S., Zhou, Q., Lu, X., Song, Y., Wang, X. (eds) Physicochemical Properties of Ionic Liquid Mixtures. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7573-1_1

Download citation

Publish with us

Policies and ethics