Skip to main content

Evolutionary History of the Large Herbivores of South and Southeast Asia (Indomalayan Realm)

  • Chapter
  • First Online:
The Ecology of Large Herbivores in South and Southeast Asia

Part of the book series: Ecological Studies ((ECOLSTUD,volume 225))

Abstract

Modern day South and Southeast Asia falls almost entirely within a single biogeographic region, the Indomalayan Realm. Here, we review the Cenozoic geological and environmental history of the Indomalayan Realm, and the evolutionary history of the large herbivorous mammals that have inhabited it. For the most part bounded by major physical features, the cohesiveness of the Indomalayan Realm in its mammalian faunas can be recognized as far back as the middle Miocene or even earlier. Many of the extant large herbivores of the Indomalayan Realm have a diverse fossil record in this part of the world, though a few, such as cervids, are relative newcomers. Many extant clades that are not currently present in the Indomalayan Realm had records in the region up to the Pleistocene, including giraffids, hippopotamids, and reduncin antelopes. The island archipelago of Southeast Asia in particular witnessed radiative speciation of numerous clades including proboscideans and ruminants, at least through the climatic cycles of the Pleistocene, if not earlier. If there is a single common thread to the evolutionary history of Indomalaya’s large herbivores, it may be the loss of taxonomic diversity, with much greater taxonomic representation recorded at numerous times in the past in almost all large herbivore clades. Today, diversity loss continues at the hands of anthropogenic, rather than natural, environmental causes, which threaten to violently curtail millions of years of evolutionary heritage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Agustí J, Cabrera L, Garces M et al (1997) The Vallesian mammal succession in the Vallès-Penedès basin (northeast Spain): paleomagnetic calibration and correlation with global events. Palaeogeogr Palaeoclimatol Palaeoecol 133:149–180

    Article  Google Scholar 

  • Agustí J, Sanz De Siria A, Garcés M (2003) Explaining the end of the hominoid experiment in Europe. J Hum Evol 45:145–153

    Article  PubMed  Google Scholar 

  • Allen MB, Armstrong HA (2008) Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol 265:52–58

    Article  Google Scholar 

  • Alroy J (2001) A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292:1893–1896

    Article  CAS  PubMed  Google Scholar 

  • An Z, Kutzbach JE, Prell WL et al (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411:62–66

    Article  CAS  Google Scholar 

  • Antoine P-O (2012) Pleistocene and Holocene rhinocerotids (Mammalia, Perissodactyla) from the Indochinese Peninsula. CR Palevol 11:159–168

    Article  Google Scholar 

  • Antoine P-O, Ducrocq S, Marivaux L et al (2003a) Early rhinocerotids (Mammalia: Perissodactyla) from South Asia and a review of the Holarctic Paleogene rhinocerotid record. Can J Earth Sci 40:365–374

    Article  Google Scholar 

  • Antoine P-O, Welcomme J-L, Marivaux L et al (2003b) First record of Paleogene Elephantoidea (Mammalia, Proboscidea) from the Bugti Hills of Pakistan. J Vertebr Paleontol 23:977–980

    Article  Google Scholar 

  • Antoine P-O, Downing KF, Crochet JY et al (2010) A revision of Aceratherium blanfordi Lydekker, 1884 (Mammalia: Rhinocerotidae) from the early Miocene of Pakistan: postcranials as a key. Zoo J Linnean Soc 160:139–194

    Article  Google Scholar 

  • Antoine P-O, Métais G, Orliac M et al (2013) Mammalian Neogene biostratigraphy of the Sulaiman Province, Pakistan. In: Wang X, Flynn LJ, Fortelius M (eds) Fossil mammals of Asia: Neogene biostratigraphy and chronology. Columbia University Press, New York, pp 400–422

    Google Scholar 

  • Asher R, Lehmann T (2008) Dental eruption in afrotherian mammals. BMC Biol 6:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Ataabadi MM, Bernor Raymond L, Kostopoulos Dimitris S et al (2013) Recent advances in paleobiological research of the late Miocene Marageh fauna, northwest Iran. In: Wang X, Flynn LJ, Fortelius M (eds) Fossil mammals of Asia: Neogene biostratigraphy and chronology. Columbia University Press, New York, pp 546–565

    Google Scholar 

  • Azanza B (1993) Systématique et évolution du genre Procervulus, cervidé (Artiodactyla, Mammalia) du Miocène inférieur d’Europe. Comptes rendus de l’Académie des Sciences Paris, II 316:717–723

    CAS  Google Scholar 

  • Azzaroli A (1954) Critical observations upon Siwalik deer. Proc Linnean Soc Lond 165:75–83

    Article  Google Scholar 

  • Badam G (1977) First record of a Middle Palaeolithic fossil from Gujarat, India. J Palaeontol Soc India 20:314–319

    Google Scholar 

  • Badam G, Tewari B (1974) On the Zebrine affinities of the Pleistocene horse Equus sivalensis Falconer and Cautley. Bull Deccan College Res Inst 34:7–11

    Google Scholar 

  • Badgley C, Barry JC, Morgan ME et al (2008) Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. Proc Natl Acad Sci 105:12145–12149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bande MB, Prakash U (1986) The tertiary flora of Southeast Asia with remarks on its palaeoenvironment and phytogeography of the Indo-Malayan region. Rev Palaeobot Palynol 49:203–233

    Article  Google Scholar 

  • Barnosky AD, Koch PL, Feranec RS et al (2004) Assessing the causes of Late Pleistocene extinctions on the continents. Science 306:70–75

    Article  CAS  PubMed  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  CAS  PubMed  Google Scholar 

  • Barry JC, Lindsay EH, Jacobs LL (1982) A biostratigraphic zonation of the middle and upper Siwaliks of the Potwar Plateau of northern Pakistan. Palaeogeogr Palaeoclimatol Palaeoecol 37:95–130

    Article  Google Scholar 

  • Barry JC, Morgan ME, Flynn LJ et al (2002) Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan. Paleobiology 28(S2):1–71

    Article  Google Scholar 

  • Barry JC, Cote S, Maclatchy L et al (2005) Oligocene and Early Miocene Ruminants (Mammalia, Artiodactyla) from Pakistan and Uganda. Palaeontol Electron 8(22A):29p

    Google Scholar 

  • Barry JC, Behrensmeyer AK, Badgley CE et al (2013) The Neogene Siwaliks of the Potwar Plateau, Pakistan. In: Wang X, Flynn LJ, Fortelius M (eds) Fossil mammals of Asia: Neogene Biostratigraphy and Chronology. Columbia University Press, New York, pp 373–399

    Google Scholar 

  • Beck RA, Burbank DW, Sercombe WJ et al (1995) Stratigraphic evidence for an early collision between northwest India and Asia. Nature 373:55–58

    Article  CAS  Google Scholar 

  • Beden M, Brunet M (1986) Faunes de mammifères et paléobiogéographie des domaines indiens et péri-indiens au Néogène. Sci Terre 47:61–87

    Google Scholar 

  • Benammi M, Chaimanee Y, Jaeger J-J et al (2001) Eocene Krabi Basin (southern Thailand): paleontology and magnetostratigraphy. Bull Geol Soc Am 113:265–273

    Article  Google Scholar 

  • Benammi M, Urrutia-Fucugauchi J, Alva-Valdivia LM et al (2002) Magnetostratigraphy of the Middle Miocene continental sedimentary sequences of the Mae Moh Basin in northern Thailand: evidence for counterclockwise block rotation. Earth Planet Sci Lett 204:373–383

    Google Scholar 

  • Bender F (1983) Geology of Burma. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Bender F, Raza HA, (1995) Geology of Pakistan. Gebruder Borntraeger Verlagsbuchhandlung, Science Publishers, Stuttgart, Germany

    Google Scholar 

  • Bernor RL (1986) Mammalian biostratigraphy, geochronology, and zoogeographic relationships of the late Miocene Maragheh fauna, Iran. J Vertebr Paleontol 6:76–95

    Google Scholar 

  • Bernor RL, Armour-Chelu M (1999) Family Equidae. In: Rössner GE, Heissig K, Fahlbusch V (eds) Pfeil, Munich

    Google Scholar 

  • Bernor RL, Hussain ST (1985) An assessment of the systematic, phylogenetic and biogeographic relationships of Siwalik hipparionine horses. J Vertebr Paleontol 5:32–87

    Article  Google Scholar 

  • Bernor RL, Brunet M, Ginsburg L et al (1987) A consideration of some major topics concerning Old World Miocene mammalian chronology, migrations and paleogeography. Géobios 20:431–439

    Article  Google Scholar 

  • Bernor R, Armour-Chelu M, Gilbert H et al (2010) Equidae. In: Werdelin L, Sanders WJ (eds) Cenozoic Mammals of Africa. University of California Press, Berkeley, pp 691–727

    Google Scholar 

  • Bhandari A, Mohabey DM, Bajpai S et al (2010) Early Miocene mammals from central Kutch (Gujarat), Western India: implications for geochronology, biogeography, eustacy and intercontinental dispersals. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 256:69–97

    Article  Google Scholar 

  • Bibi F (2007) Origin, paleoecology, and paleobiogeography of early Bovini. Palaeogeogr Palaeoclimatol Palaeoecol 248:60–72

    Article  Google Scholar 

  • Bibi F (2009) Evolution, systematics, and paleoecology of Bovinae (Mammalia: Artiodactyla) from the Late Miocene to the recent. Dissertation, Yale University

    Google Scholar 

  • Bibi F (2011) Mio-Pliocene faunal exchanges and African biogeography: the record of fossil bovids. PLoS ONE 6:e16688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibi F (2013) A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evol Biol 13:166. http://www.biomedcentral.com/1471–2148/13/166

    Google Scholar 

  • Bibi F, Kraatz B, Craig N et al (2012) Early evidence for complex social structure in Proboscidea from a late Miocene trackway site in the United Arab Emirates. Biol Lett 8:670–673

    Article  PubMed  PubMed Central  Google Scholar 

  • Bibi F, Hill A, Beech M et al (2013) Late Miocene fossils from the Baynunah Formation, United Arab Emirates: summary of a decade of new work. In: Wang X, Flynn LJ, Fortelius M (eds) Fossil Mammals of Asia: Neogene biostratigraphy and chronology. Columbia University Press, New York, pp 583–594

    Google Scholar 

  • Bishop LC, Hill A (1999) Fossil Suidae from the Baynunah Formation, Emirate of Abu Dhabi, United Arab Emirates. In: Whybrow PJ, Hill A (eds) Fossil Vertebrates of Arabia, with Emphasis on the Late Miocene Faunas, Geology, and Palaeoenvironments of the Emirate of Abu Dhabi, United Arab Emirates. Yale University Press, New Haven, pp 254–270

    Google Scholar 

  • Blake S, Hedges S (2004) Sinking the flagship: the case of forest elephants in Asia and Africa. Conserv Biol 18:1191–1202

    Article  Google Scholar 

  • Blakey RC (2008) Gondwana paleogeography from assembly to breakup—a 500 my odyssey. In: Fielding CR, Frank TD, Isbell JL (eds) Resolving the late paleozoic ice age in time and space: geological society of America Special Paper 441, pp 1–28

    Google Scholar 

  • Blanford WT (1883) Geological notes on the hills in the neighbourhood of the Sind and Punjab Frontier between Quetta and Dera Ghazi Khan. Mem Geol Surv India 20:1–136

    Google Scholar 

  • Böhme M, Prieto J, Schneider S, Hung NV, Quang DD, Tran DN (2011) The Cenozoic on-shore basins of Northern Vietnam: Biostratigraphy, vertebrate and invertebrate faunas. J. Asian Earth Sci 40:672–687

    Google Scholar 

  • Böhme M, Aiglstorfer M, Antoine P-O et al (2013) Na Duong (northern Vietnam)–an exceptional window into Eocene ecosystems from Southeast Asia. Zitteliana A 53:121–167

    Google Scholar 

  • Boisserie J-R (2005) The phylogeny and taxonomy of Hippopotamidae (Mammalia: Artiodactyla): a review based on morphology and cladistic analysis. Zoo J Linnean Soc 143:1–26

    Article  Google Scholar 

  • Boisserie J-R, White TD (2004) A new species of pliocene hippopotamidae from the Middle Awash, Ethiopia. J Vertebr Paleontol 24:464–473

    Article  Google Scholar 

  • Boisserie J-R, Brunet F, Lihoreau M (2005) The position of Hippopotamidae within Cetartiodactyla. Proc Natl Acad Sci 102:1537–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisserie J-R, Lihoreau F, Orliac M et al (2010) Morphology and phylogenetic relationships of the earliest known hippopotamids (Cetartiodactyla, Hippopotamidae, Kenyapotaminae). Zoo J Linnean Soc 158:325–366

    Article  Google Scholar 

  • Brown B (1926) A new deer from the Siwaliks. Amer Mus Novit 242:1–6

    Google Scholar 

  • Brunet M, Sudre J (1987a) Evolution et systématique du genre Lophiomeryx Pomel 1853 (Mammalia, Artiodactyla). Münchner Geowissenschaftliche Abhandlungen (A) 10:225–242

    Google Scholar 

  • Brunet M, Sudre J (1987b) Evolution et systématique du genreLophiomeryxPomel 1853 (Mammalia, Artiodactyla). Münchner Geowissenschaftliche Abhandlungen (A) 10:225–242

    Google Scholar 

  • Brunet M, Heintz E, Battail B (1984) Molayan (Afghanistan) and the Khaur Siwaliks of Pakistan; an example of biogeographic isolation of late Miocene mammalian faunas. Geol Mijnbouw 63:31–38

    Google Scholar 

  • Campos PF, Willerslev E, Sher A et al (2010) Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proc Natl Acad Sci 107:5675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerling TE, Harris JM, Macfadden BJ et al (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158

    Article  CAS  Google Scholar 

  • Cerling TE, Harris JM, Leakey MG (1999) Browsing and grazing in elephants: the isotope record of modern and fossil proboscideans. Oecologia 120:364–374

    Article  Google Scholar 

  • Chaimanee Y, Jolly D, Benammi M et al (2003) A Middle Miocene hominoid from Thailand and orangutan origins. Nature 422:61–65

    Article  CAS  PubMed  Google Scholar 

  • Chaimanee Y, Suteethorn V, Jintasakul P et al (2004) A new orangutan relative from the Late Miocene of Thailand. Nature 427:439–441

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Goswami A, Scotese CR (2013) The longest voyage: tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res 23:238–267

    Article  Google Scholar 

  • Chauhan PR (2008) Large mammal fossil occurrences and associated archaeological evidence in the Pleistocene contexts of peninsular India and Sri Lanka. Quatern Int 192:20–42

    Article  Google Scholar 

  • Chavasseau O, Chaimanee Y, Tun ST et al (2006) Chaungtha, a new Middle Miocene mammal locality from the Irrawaddy Formation, Myanmar. J Asian Earth Sci 28:354–362

    Article  Google Scholar 

  • Chavasseau O, Chaimanee Y, Coster P et al (2009a) First record of a chalicothere from the Miocene of Myanmar. Acta Palaeontol Pol 55:13–22

    Article  Google Scholar 

  • Chavasseau O, Chaimanee Y, Yamee C et al (2009b) New Proboscideans (Mammalia) from the middle Miocene of Thailand. Zoo J Linnean Soc 155:703–721

    Article  Google Scholar 

  • Cifelli RL (1981a) Patterns of evolution among the Artiodacyla and Perissodactyla (Mammalia). Evolution 35:433–440

    Article  Google Scholar 

  • Cifelli RL (1981b) Patterns of evolution among the Artiodacyla and Perissodactyla (Mammalia). Evolution 433–440

    Google Scholar 

  • Claude J, Naksri W, Boonchai N et al (2011) Neogene reptiles of northeastern Thailand and their paleogeographical significance. Annales de Paléontologie 97:113–131

    Article  Google Scholar 

  • Clift PD, Plumb RA (2008) The Asian monsoon: causes, history and effects. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Colbert EH (1933) An upper Tertiary peccary from India. Amer Mus Novit 635:1–9

    Google Scholar 

  • Colbert EH (1934) A new rhinoceros from the Siwalik beds of India. Amer Mus Novit 749:1–13

    Google Scholar 

  • Colbert EH (1935a) Distributional and phylogenetic studies on Indian fossil mammals, V; the classification and the phylogeny of the Giraffidae American Museum of Natural History, New York, NY, United States

    Google Scholar 

  • Colbert EH (1935b) Siwalik mammals in the American Museum of Natural History. Trans Amer Philos Soc 26:278–294

    Article  Google Scholar 

  • Colbert EH (1936) Was the extinct giraffe (Sivatherium) known to the early Sumerians? Am Anthropol 38:605–608

    Article  Google Scholar 

  • Colbert EH (1938) Fossil mammals from Burma in the American Museum of Natural History. Bull Amer Mus Nat Hist 74:255–434

    Google Scholar 

  • Colbert EH (1942) Notes on the lesser one-horned rhinoceros, Rhinoceros sondaicus. Amer Mus Novit 1207:1–6

    Google Scholar 

  • Colbert EH (1943) Pleistocene vertebrates collected in Burma by the American Southeast Asiatic expedition. Trans Amer Philos Soc 32:395–429

    Google Scholar 

  • Colbert M, Schoch R (1998) Tapiroidea and other moropomorphs. In: Janis C, Scott KM, Jacobs LL (eds) Evolution of tertiary mammals of North America. Cambridge University Press, Cambridge, pp 569–582

    Google Scholar 

  • Coombs MC (1989) Interrelationships and diversity in the Chalicotheriidae. In: Prothero DR, Schoch RM (eds) The evolution of Perissodactyls. Oxford University Press, Oxford, pp 438–457

    Google Scholar 

  • Copley A, Avouac JP, Royer JY (2010) India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J Geophys Res 115:B03410. doi:10.1029/2009JB006634(1-14)

    Article  Google Scholar 

  • Coster P, Benammi M, Chaimanee Y et al (2010) A complete magnetic-polarity stratigraphy of the Miocene continental deposits of Mae Moh Basin, northern Thailand, and a reassessment of the age of hominoid-bearing localities in northern Thailand. Geol Soc Am Bull 122:1180–1191

    Article  Google Scholar 

  • Covert HH, Hamrick MW, Dzanh T et al (2001) Fossil mammals from the late Miocene of Vietnam. J Vertebr Paleontol 21:633–636

    Article  Google Scholar 

  • Croft DA, Heaney LR, Flynn JJ et al (2006) Fossil remains of a new, diminutive Bubalus (Artiodactyla: Bovidae: Bovini) from Cebu Island, Philippines. J Mammal 87:1037–1051

    Article  Google Scholar 

  • Dawson MR, Marivaux L, Li C-K, Beard KC, Métais G (2006) Laonastes and the “Lazarus Effect” in recent mammals. Science 311:1456–1458

    Google Scholar 

  • De Bonis L, Brunet M, Heintz E et al (1992) La province greco-irano-afghane et la répartition des faunes mammaliennes au Miocène supérieur. Paleontologia y Evolució 24–25:103–112

    Google Scholar 

  • Dennell R, Coard R, Turner A (2006) The biostratigraphy and magnetic polarity zonation of the Pabbi Hills, northern Pakistan: an Upper Siwalik (Pinjor Stage) Upper Pliocene-Lower Pleistocene fluvial sequence. Palaeogeogr Palaeoclimatol Palaeoecol 234:168–185

    Article  Google Scholar 

  • Dennell R, Coard R, Turner A (2008) Predators and scavengers in Early Pleistocene southern Asia. Quatern Int 192:78–88

    Article  Google Scholar 

  • Dewey JF, Pitman WC, Ryan WBF et al (1973) Plate tectonics and the evolution of the Alpine system. Geol Soc Am Bull 84:3137–3180

    Article  Google Scholar 

  • Dong W, Qi G-Q (2013) Hominoid-producing localities and biostratigraphy in Yunnan. In: Wang X, Flynn LJ, Fortelius M (eds) Fossil mammals of Asia: Neogene biostratigraphy and chronology. Columbia University Press, New York, pp 293–313

    Google Scholar 

  • Dong W, Pan Y, Liu J (2004) The earliest Muntiacus (Artiodactyla, Mammalia) from the Late Miocene of Yuanmou, southwestern China. CR Palevol 3:379–386

    Article  Google Scholar 

  • Downing KF, Lindsay EH, Downs WR et al (1993) Lithostratigraphy and vertebrate biostratigraphy of the early Miocene Himalayan Foreland, Zinda Pir Dome, Pakistan. Sed Geol 87:25–37

    Article  Google Scholar 

  • Dubost G (1978) Un aperçu sur l’écologie du chevrotain africain Hyemoschus aquaticus Ogilby, Artiodactyle Tragulidé. Mammalia 42:1–62

    Article  Google Scholar 

  • Ducrocq S (1994) An Eocene peccary from Thailand and the biogeographical origins of the artiodactyl family Tayassuidae. Palaeontology 37:765–780

    Google Scholar 

  • Ducrocq S (1996) The Eocene terrestrial mammal from Timor, Indonesia. Geol Mag 133:763–766

    Article  Google Scholar 

  • Ducrocq S (1997) The anthracotheriid genus Bothriogenys (Mammalia, Artiodactyla) in Africa and Asia during the Paleogene: phylogenetical and paleobiogeographical relationships. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 250:1–44

    Google Scholar 

  • Ducrocq S, Lihoreau F (2006a) The occurrence of bothriodontines (Artiodactyla, Mammalia) in the Paleogene of Asia with special reference to Elomeryx: Paleobiogeographical implications. J Asian Earth Sci 27:885–891

    Article  Google Scholar 

  • Ducrocq S, Benammi M, Chavasseau O, Chaimanee Y, Suraprasit K, Pha PD, Phuong Vl, Phach PV, Jaeger J-J (2015) New anthracotheres (Cetartiodactyla, Mammalia) from the Paleogene of northeastern Vietnam: biochronological implications. J Vert Paleont 35:e929139

    Google Scholar 

  • Ducrocq S, Chaimanee Y, Suteethorn V et al (1994) Ages and paleoenvironment of Miocene mammalian faunas from Thailand. Palaeogeogr Palaeoclimatol Palaeoecol 108:149–163

    Article  Google Scholar 

  • Ducrocq S, Chaimanee Y, Suteethorn V et al (1995) Mammalian faunas and the ages of the continental Tertiary fossiliferous localities from Thailand. J SE Asian Earth Sci 12:65–78

    Article  Google Scholar 

  • Ducrocq S, Chaimanee Y, Suteethorn V et al (1998) The earliest known pig from the upper Eocene of Thailand. Palaeontology 41:147–156

    Google Scholar 

  • Ducrocq S, Naing Soe A, Bo B et al (2000) First record of an Anthracobunidae (Mammalia,?Tethytheria) from the Eocene of the Pondaung Formation, Myanmar. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science 330:725–730

    Google Scholar 

  • Ducrocq S, Chaimanee Y, Suteethorn V et al (2003) Occurrence of the anthracotheriid Brachyodus (Artiodactyla, Mammalia) in the early Middle Miocene of Thailand. CR Palevol 2:261–268

    Article  Google Scholar 

  • Ducrocq S, Chaimanee Y, Jaeger J-J et al (2006) A new Ceratomorph (Perissodactyla, Mammalia) from the Late Eocene of Southeast Asia. J Vertebr Paleontol 26:1024–1027

    Article  Google Scholar 

  • Dung VV, Giao PM, Chinh NN et al (1993) A new species of living bovid from Vietnam. Nature 363:443–445

    Article  Google Scholar 

  • Ducrocq S, Soe AN, Sein C, Lazzari V, Chaimanee Y, Valentin X, Jaeger JJ (in press) First record of a diacodexeid artiodactyl in the middle Eocene Pondaung Formation (Myanmar)

    Google Scholar 

  • Edwards MA, Grasemann B (2009) Mediterranean snapshots of accelerated slab retreat: subduction instability in stalled continental collision. In: Van Hinsbergen DJJ, Edwards MA, Govers R (eds) Collision and collapse at the Africa-Arabia-Eurasia subduction zone. Geological Society Special Publication, London, pp 155–192

    Google Scholar 

  • Falconer H, Cautley P (1836a) Note on the fossil hippopotamus of the Siwalik Hills. Asiatic Res Calcutta 19:39–53

    Google Scholar 

  • Falconer H, Cautley PT (1836b) On the fossil camel of the Sewalik Hills. Asiatic Researches 19:115–134

    Google Scholar 

  • Falconer H, Cautley PT (1836c) Sivatherium giganteum, a new fossil ruminant genus, from the valley of the Markanda, in the Sivalik branch of the Sub-Himalayan Mountains. Asiatic Res 19:1–24

    Google Scholar 

  • Falconer H, Cautley PT (1843) On some fossil remains of Anoplotherium and giraffe, from the Sewalik Hills, in the north of India. Proc Geol Soc Lond 4:235–249

    Google Scholar 

  • Falconer H, Cautley PT (1844) On some fossil remains of Anoplotherium and giraffe, from the Sewalik Hills, in the north of India. Proc Geol Soc Lond 4:235–249

    Google Scholar 

  • Falconer H, Cautley P (1847) Fauna Antiqua Sivalensis, Part VIII, Suidae and Rhinocerotidae Smith, Elder, and Co, London

    Google Scholar 

  • Falconer H, Cautley P (1849) Equidae, Camelidae and Sivatherium. Fauna Antiqua Sivalensis Part 9

    Google Scholar 

  • Fernando P, Vidya TC, Payne J et al (2003) DNA analysis indicates that Asian elephants are native to Borneo and are therefore a high priority for conservation. PLoS Biol 1:110–115

    Article  CAS  Google Scholar 

  • Flower BP, Kennett JP (1994) The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108:537–555

    Article  Google Scholar 

  • Fluteau F, Ramstein G, Besse J (1999) Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J Geophys Res 104:11995–12018

    Article  Google Scholar 

  • Flynn LJ (1983) Sur l’âge de la faune de vertébrés du Bassin de Bamian, Afghanistan. Comptes Rendus de l’Académie des Sciences, Paris, séries II 297:687–690

    Google Scholar 

  • Flynn LJ, Qi GQ (1982) Age of the Lufeng, China, hominoid locality. Nature 298:746–747

    Article  Google Scholar 

  • Flynn LJ, Lindsay EH, Pilbeam D et al (2013) The Siwaliks and Neogene evolutionary biology in South Asia. In: Wang X, Flynn LJ, Fortelius M (eds) Fossil mammals of Asia: Neogene biostratigraphy and chronology. Columbia University Press, New York, pp 353–372

    Google Scholar 

  • Forster-Cooper C (1913) New anthracotheres and allied forms from Baluchistan. Ann Mag Nat Hist 19:514–522

    Article  Google Scholar 

  • Forster-Cooper C (1915) New genera and species of mammals from the Miocene deposits of Baluchistan. Ann Mag Nat Hist 16:404–410

    Article  Google Scholar 

  • Forster-Cooper C (1920) Chalicotheroidea from Baluchistan. Proc Zool Soc Lond 90:357–366

    Google Scholar 

  • Forster-Cooper C (1922) Macrotherium salinum, sp. n., a new Chalicothere from India. Ann Mag Nat Hist (Series 9) 10:542–544

    Google Scholar 

  • Forster-Cooper C (1922b) Miocene Proboscidia from Baluchistan. Proc Zoo Soc Lond 92:609–626

    Article  Google Scholar 

  • Forster-Cooper C (1924) The Anthracotheriidae of the Dera Bugti deposits in Baluchistan. Mem Geol Surv India 4:1–59

    Google Scholar 

  • Fortelius M, Kappelman J (1993) The largest land mammal ever imagined. Zoo J Linnean Soc 107:85–101

    Article  Google Scholar 

  • Friedman R, Gee J, Tauxe L et al (1992) The magnetostratigraphy of the Chitarwata and lower Vihowa formations of the Dera Ghazi Khan area, Pakistan. Sed Geol 81:253–268

    Article  Google Scholar 

  • Friend PF, Raza SM, Geehan G et al (2001) Intermediate-scale architectural features of the fluvial Chinji Formation (Miocene), Siwalik Group, northern Pakistan. J Geol Soc Lond 158:163–177

    Article  Google Scholar 

  • Froehlich DJ (1999) Phylogenetic systematics of basal perissodactyls. J Vertebr Paleontol 19:140–159

    Article  Google Scholar 

  • Froehlich DJ (2002) Quo vadis eohippus? The systematics and taxonomy of the early Eocene equids (Perissodactyla). Zoo J Linnean Soc 134:141–256

    Article  Google Scholar 

  • Galbreath G, Mordacq J, Weiler F (2006) Genetically solving a zoological mystery: was the kouprey (Bos sauveli) a feral hybrid? J Zool 270:561–564

    Article  Google Scholar 

  • Gatesy J, Arctander P (2000) Hidden morphological support for the phylogenetic placement of Pseudoryx nghetinhensis with bovine bovids: a combined analysis of gross anatomical evidence and DNA sequences from five genes. Syst Biol 49:515–538

    Article  CAS  PubMed  Google Scholar 

  • Geisler JH, Uhen MD (2005) Phylogenetic relationships of extinct cetartiodactyls: results of simultaneous analyses of molecular, morphological, and stratigraphic data. J Mammal Evol 12:145–160

    Article  Google Scholar 

  • Gentry AW (1967) Pelorovis oldowayensis Reck, an extinct bovid from East Africa. Bull Br Mus (Nat Hist) Geol Ser 14:245–299

    Google Scholar 

  • Gentry AW (1978) Bovidae. In: Maglio VJ, Cooke HBS (eds) Evolution of African Mammals. Harvard University Press, Cambridge, Massachusetts, pp 540–572

    Google Scholar 

  • Gentry AW (1994) The Miocene differentiation of Old World Pecora (Mammalia). Hist Biol 7:115–158

    Article  Google Scholar 

  • Gentry AW (1999) Fossil pecorans from the Baynunah Formation, Emirate of Abu Dhabi, United Arab Emirates. In: Whybrow PJ, Hill A (eds) Fossil Vertebrates of Arabia. Yale University Press, New Haven, pp 290–316

    Google Scholar 

  • Gentry AW (2003) Ruminantia (Artiodactyla). In: Fortelius M, Kappelman J, Sen S, Bernor RL (eds) Geology and paleontology of the Miocene Sinap formation, Turkey. Columbia University Press, New York

    Google Scholar 

  • Gentry AW (2010) Bovidae. In: Werdelin L, Sanders WJ (eds) Cenozoic mammals of Africa. University of California Press, Berkeley, pp 747–803

    Google Scholar 

  • Gentry AW, Rössner GE, Heizmann EPJ (1999) Suborder Ruminantia. In: Rössner GE, Heissig K (eds) The Miocene land mammals of Europe. Verlag Friedrich Pfeil, Munich, pp 225–258

    Google Scholar 

  • Gentry A, Clutton-Brock J, Groves CP (2004) The naming of wild species and their domestic derivatives. J Archaeol Sci 31:645–651

    Article  Google Scholar 

  • Ghaffar A, Khan MA, Akhtar M et al (2006) The oldest cervid from the Siwalik Hills of Pakistan. J Appl Sci 6:127–130

    Article  Google Scholar 

  • Ghaffar A, Khan M, Akhtar M (2010) Early Pliocene Cervids (Artiodactyla-Mammalia) from the Siwaliks of Pakistan. Yerbilimleri 31:217–231

    Google Scholar 

  • Ghaffar A, Akhtar M, Khan MA et al (2011a) Cervus cf. rewati (Cervidae, Mammalia) from the Pliocene Dhok Pathan Formation (Middle Siwaliks), Pakistan. Aust J Earth Sci 104:107–113

    Google Scholar 

  • Ghaffar A, Akhtar M, Nayyer A (2011b) Evidences of early Pliocene fossil remains of tribe Cervini (Mammalia, Artiodactyla, Cervidae) from the Siwaliks of Pakistan. J Anim Plant Sci 21:830–835

    Google Scholar 

  • Gheerbrant E, Rage J-C (2006) Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeogr Palaeoclimatol Palaeoecol 241:224–246

    Article  Google Scholar 

  • Gheerbrant E, Tassy P (2009) L’origine et l’évolution des éléphants. CR Palevol 8:281–294

    Article  Google Scholar 

  • Gheerbrant E, Sudre J, Iarochene M et al (2001) First ascertained African “Condylarth” mammals (primitive ungulates: cf. Bulbulodentata and cf. Phenacodonta) from the earliest Ypresian of the Ouled Abdoun Basin, Morocco. J Vertebrat Paleontol 21:107–118

    Article  Google Scholar 

  • Gilbert C, Ropiquet A, Hassanin A (2006) Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): systematics, morphology, and biogeography. Mol Phylogenet Evol 40:101–117

    Article  CAS  PubMed  Google Scholar 

  • Gingerich PD (2008) Early evolution of whales: a century of research in Egypt. In: Fleagle JG, Gilbert CC (eds) Elwyn Simons: a search for origins. Springer, New York, pp 107–124

    Chapter  Google Scholar 

  • Gingerich PD, Haq MU, Zalmout IS et al (2001) Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science 293:2239–2242

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg L (1984) Les faunes tertiaires du Nord de la Thaïlande. Mémoire de la Société Geologique de France 147:67–69

    Google Scholar 

  • Ginsburg L, Heintz E (1968) La plus ancienne antilope d’Europe, Eotragus artenensis du Burdigalien d’Artenay. Bulletin du Muséum National d’Histoire Naturelle 40:837–842

    Google Scholar 

  • Ginsburg L, Ukkakimapan Y (1983) Un Cervidé nouveau du Miocène d’Asie et l’âge des lignites des bassins intramontagneux du nord de la Thaïlande. Comptes Rendus des Séances de l’Académie des Sciences Sér 2(297):297–300

    Google Scholar 

  • Ginsburg L, Van Minh L, Qui Nam K et al (1992) Premières découvertes de vertébrés continentaux dans le Néogène du Nord du Vietnam. Comptes Rendus de l’Académie des Sciences de Paris, série IIa 314:627–630

    Google Scholar 

  • Ginsburg L, Morales J, Soria D (2001) Les Ruminantia (Artiodactyla, Mammalia) du Miocène des Bugti (Balouchistan, Pakistan). Estudios Geol 57:155–170

    Article  Google Scholar 

  • Göhlich UB (1999) Order Proboscidea. In: Rössner GE, Heissig K (eds) The Miocene land mammals of Europe. Verlag Friedrich Pfeil, Munich, pp 157–168

    Google Scholar 

  • Gongora J, Cuddahee RE, Nascimento FFd et al (2011) Rethinking the evolution of extant sub-Saharan African suids (Suidae, Artiodactyla). Zoolog Scr 40:327–335

    Article  Google Scholar 

  • Granger W, Gregory WK (1935) A revised restoration of the skeleton of Baluchitherium, gigantic fossil rhinoceros of Central Asia. Amer Mus Novit 787:1–3

    Google Scholar 

  • Grenyer R, Orme CDL, Jackson SF, Thomas GH, Davies RG, Davies TJ, Jones KE, Olson VA, Ridgely RS, Rasmussen PC, Ding T-S, Bennett PM, Blackburn TM, Gaston KJ, Gittleman JL, Owens IPF (2006) Global distribution and conservation of rare and threatened vertebrates. Nature 444:93–96

    Google Scholar 

  • Groves CP (1969) Systematics of the Anoa (Mammalia, Bovidae). Beaufortia 17:1–12

    Google Scholar 

  • Groves C (2001) Mammals in Sulawesi: where did they come from and when, and what happened to them when they got there. In: Metcalfe I, Smith JMB, Morwood MJ, Davidson I (eds) Faunal and floral migrations and evolution in SE Asia-Australia, Balkema, Lisse, pp 333–342

    Google Scholar 

  • Groves CP (2001b) Mammals in Sulawesi: where did they come from and when, and what happened to them when they got there. In: Metcalfe I, Smith JMB, Morwood MJ, Davidson I (eds) Faunal and floral migrations and evolution in SE Asia-Australia. Balkema, Lisse, pp 333–342

    Google Scholar 

  • Groves C (2007) Family Cervidae. In: Dr P, Se F (eds) The evolution of Artiodactyls. Johns Hopkins University Press, Baltimore, pp 249–256

    Google Scholar 

  • Groves CP, Wang Y, Grubb P (1995) Taxonomy of musk-deer, genus Moschus (Moschidae, Mammalia). Acta Theriol Sinica 15:181–197

    Google Scholar 

  • Guillot S, Garzanti E, Baratoux D, Marquer D, Mahéo G, De Sigoyer J (2003) Reconstructing the total shortening history of the NW Himalaya. Geochemistry, Geophysics, Geosystems 1064, doi:10.1029/2002GC000484, 1–22

  • Guo J, Dawson MR, Beard KC (2000) Zhailimeryx, a new lophiomerycid artiodactyl (Mammalia) from the late middle Eocene of Central China and the early evolution of ruminants. J Mammal Evol 7:239–258

    Article  Google Scholar 

  • Guo ZT, Sun B, Zhang ZS et al (2008) A major reorganization of Asian climate by the early Miocene. Clim Past 4:153–174

    Article  Google Scholar 

  • Han D (1986) Fossils of tragulidae from Lufeng, Yunnan. Acta Anthropologica Sinica 5:73–78.

    Google Scholar 

  • Hanta R, Ratanasthien B, Kunimatsu Y et al (2008) A new species of Bothriodontinae, Merycopotamus thachangensis (Cetartiodactyla, Anthracotheriidae) from the late Miocene of Nakhon Ratchasima, northeastern Thailand. J Vertebr Paleontol 28:1182–1188

    Article  Google Scholar 

  • Hardjasasmita H (1987) Taxonomy and phylogeny of the Suidae (Mammalia) in Indonesia. Scripta Geol 85:1–68

    Google Scholar 

  • Harris JM, Liu L (2007) Superfamily Suoidea. In: Prothero DR, Foss SE (eds) The evolution of Artiodactyls. Johns Hopkins University Press, Baltimore, pp 130–150

    Google Scholar 

  • Harzhauser M, Piller WE, Steininger FF (2002) Circum-Mediterranean Oligo-Miocene biogeographic evolution–the gastropods’ point of view. Palaeogeogr Palaeoclimatol Palaeoecol 183:103–133

    Article  Google Scholar 

  • Harzhauser M, Kroh A, Mandic O et al (2007) Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. Zoologischer Anzeiger—J Compar Zoo 246:241–256

    Article  Google Scholar 

  • Hassanin A, Douzery EJP (1999) Evolutionary affinities of the enigmatic saola (Pseudoryx nghetinhensis) in the context of the molecular phylogeny of Bovidae. Proc R Soc Lond Ser B-Biol Sci 266:893–900

    Article  CAS  Google Scholar 

  • Hassanin A, Douzery EJP (2003) Molecular and morphological phylogenies of Ruminantia and the alternative position of the Moschidae. Syst Biol 52:206–228

    Article  PubMed  Google Scholar 

  • Hassanin A, Ropiquet A (2004) Molecular phylogeny of the tribe Bovini (Bovidae, Bovinae) and the taxonomic status of the Kouprey, Bos sauveli Urbain 1937. Mol Phylogenet Evol 33:896–907

    Article  CAS  PubMed  Google Scholar 

  • Hassanin A, Ropiquet A (2007) Resolving a zoological mystery: the kouprey is a real species. Proc R Soc Lond Sers B-Biol Sci 274:2849–2855

    Article  CAS  Google Scholar 

  • Hassanin A, Delsuc F, Ropiquet A et al (2012) Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. CR Biol 335:32–50

    Article  Google Scholar 

  • Hassanin A, An J, Ropiquet A et al (2013) Combining multiple autosomal introns for studying shallow phylogeny and taxonomy of Laurasiatherian mammals: application to the tribe Bovini (Cetartiodactyla, Bovidae). Mol Phylogenet Evol 66:766–775

    Article  PubMed  Google Scholar 

  • Hay WW, Soeding E, Deconto RM et al (2002) The Late Cenozoic uplift-climate paradox. Int J Earth Sci 91:746–774

    Article  CAS  Google Scholar 

  • Heintz E, Brunet M (1982) Rôle de la Téthys et de la chaîne alpine asiatique dans la distribution spatio-temporelle des cervidés. Comptes Rendus de l’Académie des Sciences de Paris, série IIa 294:1391–1394

    Google Scholar 

  • Heintz E, Brunet M, Carbonnel J-P (1978a) Découverte du premier grand gisement à Mammifères fossiles d’Afghanistan. Comptes Rendus de l’Académie des Sciences de Paris, série IIa 286:945–947

    Google Scholar 

  • Heintz E, Ginsburg L, Hartenberger J-L (1978b) Mammifères fossiles en Afghanistan: état des connaissances et résultats d’une prospection. Bulletin du Museum d’Histoire naturelle, Paris 69:101–119

    Google Scholar 

  • Heissig K (1989) The Rhinocerotidae. In: Prothero DR, Schoch R (eds) The evolution of Perissodactyls. Oxford University Press, Oxford, pp 399–417

    Google Scholar 

  • Heissig K (1999) Family Tapiridae. In: Roessner G, Heissig K (eds) The Miocene land mammals of Europe. K. Verlag Dr. Friedrich Pfeil, Munich, pp 171–175

    Google Scholar 

  • Hernández Fernández M, Vrba ES (2005) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev Camb Philos Soc 80:269–302

    Article  PubMed  Google Scholar 

  • Hill A, Bibi F, Beech M et al (2012) Before archaeology: life and environments in the Miocene of Abu Dhabi. In: Potts D, Hellyer P (eds) Fifty years of emirates archaeology. Ministry of Culture, Youth and Community Development, Abu Dhabi, pp 20–23

    Google Scholar 

  • Holt BG, Lessard J-P, Borregaard MK et al (2013) An update of Wallace’s zoogeographic regions of the world. Science 339:74–78

    Article  CAS  PubMed  Google Scholar 

  • Honey JG, Harrison JA, Prothero DR et al (1998) Camelidae. In: Janis C, Scott KM, Jacobs LL (eds) Evolution of tertiary mammals of North America. Cambridge University Press, Cambridge, pp 439–462

    Google Scholar 

  • Hooijer DA (1947) On fossil and prehistoric remains of Tapirus from Java, Sumatra and China. Zoologische Mededelingen 27:253–299

    Google Scholar 

  • Hooijer DA (1948a) Pleistocene vertebrates from Celebes I. Celebochoerus heekereni nov. gen. nov. spec. Proceedings Koninklijke Nederlandse Akademie Van Wetenschappen Series B-Phys Sci 51:1024–1032

    Google Scholar 

  • Hooijer DA (1948b) Pleistocene vertebrates from Celebes I.Celebochoerus heekereninov. gen. nov. spec. Proceedings Koninklijke Nederlandse Akademie Van Wetenschappen Series B-Phys Sci 51:1024–1032

    Google Scholar 

  • Hooijer DA (1949) Pleistocene vertebrates from Celebes IV. Archidiskodon celebensis nov. spec. Zoologische Mededelingen 30:205–226

    Google Scholar 

  • Hooijer DA (1950) The fossil Hippopotamidae of Asia, with notes on the recent species. Zoologische Verhandelingen 8:1–123

    Google Scholar 

  • Hooijer DA (1953) Pleistocene vertebrates from Celebes: VI. Stegodon spec. Zoologische Mededelingen 32:107–112

    Google Scholar 

  • Hooijer DA (1964) Pleistocene vertebrates from Celebes XII–Notes on pygmy Stegodonts. Zoologische Mededelingen 40:37–44

    Google Scholar 

  • Hooker JJ, Sánchez-Villagra MR, Goin FJ et al (2008) The origin of Afro-arabian ‘didelphimorph’ marsupials. Palaeontology 51:635–648

    Article  Google Scholar 

  • Hoorn C, Ohja T, Quade J (2000) Palynological evidence for vegetation development and climatic change in the Sub-Himalayan Zone (Neogene, Central Nepal). Palaeogeogr Palaeoclimatol Palaeoecol 163:133–161

    Article  Google Scholar 

  • Huang Z, Zhang W (2006) The Quaternary faunas and climatic fluctuation in tropical China. Trop Geogr 26:6–11

    Google Scholar 

  • Huber M, Goldner A (2012) Eocene monsoons. J Asian Earth Sci 44:3–23

    Article  Google Scholar 

  • Hussain ST (1971) Revision of Hipparion (Equidae, Mammalia) from the Siwalik Hills of Pakistan and India. Bayerische Akademie der Wissenschaften, Abhandlungen 147:1–68

    Google Scholar 

  • Jaeger J-J, Naing Soe A, Chavasseau O et al (2012) First Hominoid from the late Miocene of the Irrawaddy formation (Myanmar). PLoS ONE 6:e17065

    Article  CAS  Google Scholar 

  • Janis CM (1989) A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Palaeontology 32:463–481

    Google Scholar 

  • Janis CM (1990) Correlation of cranial and dental variables with body size in ungulates and macropodoids. In: Damuth J, Macfadden BJ (eds) Body size in mammalian paleobiology. Cambridge University Press, Cambridge, pp 255–300

    Google Scholar 

  • Janis CM, Scott KM (1987) The interrelationships of higher ruminant families with special emphasis on the members of the Cervoidea. Amer Mus Novit 2893:1–85

    Google Scholar 

  • Ji H (1982) The living environment of the Quaternary mammalian faunas of South China. Vertebrata PalAsiatica 20:148–154

    Google Scholar 

  • Kappelman JW, Rasmussen DL, Sanders WJ et al (2003) Oligocene mammals from Ethiopia and faunal exchange between Afro-Arabia and Eurasia. Nature 426:549–552

    Article  CAS  PubMed  Google Scholar 

  • Khan E (1971) Punjabitherium gen. nov., an extinct rhinocerotid of the Siwaliks, Punjab, India. Proc Ind Nat Sci Acad 37:105–109

    Google Scholar 

  • Khan AM (2010) Taxonomy and distribution of Rhinoceroses from the Siwalik Hills, Pakistan. Dissertation, University of the Punjab

    Google Scholar 

  • Khan M, Khan A, Iqbal M et al (2008) Reduncine fossils from the Upper Siwaliks of Tatrot. J Anim Plant Sci 18:50–52

    Google Scholar 

  • Khan MA, Iqbal M, Akhtar M et al (2009) Chalicotheres in the Siwaliks of Pakistan. Pakistan J Zool 41:429–435

    Google Scholar 

  • Khan MA, Kostopoulos DS, Akhtar M et al (2010) Bison remains from the Upper Siwaliks of Pakistan. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 258:121–128

    Article  Google Scholar 

  • Khan A, Khan M, Iqbal M et al (2011) Sivatherium (Artiodactyla, Ruminantia, Giraffidae) from the Upper Siwaliks, Pakistan. J Anim Plant Sci 21:202–206

    Google Scholar 

  • Kundal YP, Kundal SN (2011) Elephas cf. E. maximus indicus (Elephantidae, Mammalia) from the post Siwalik deposits of Jammu Province, Jammu and Kashmir, India. Vertebrata Palasiatica 49:348–361

    Google Scholar 

  • Kunimatsu Y, Ratanasthien B, Nakaya H et al (2004) Hominoid fossils discovered from Chiang Muan, northern Thailand: the first step towards understanding hominoid evolution in Neogene Southeast Asia. Anthropological Science Published online in J-STAGE (www.jstage.jst.go.jp):1–9

  • Lang J, Lavocat R (1968) Première découverte d’une faune de vertébrés dans le tertiaire d’Afghanistan et datation de la série de Bamian. Comptes Rendus de l’Académie des Sciences, Paris 266:79–82

    Google Scholar 

  • Legendre S (1989) Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe Occidentale: structures, milieux et évolution. Münchner Geowissenschaftliche Abhandlungen (A) 16:1–100

    Google Scholar 

  • Li Y (1981) On the subdivisions and evolution of the Quaternary mammalian faunas of South China. Vertebrata Palasiatica 19:67–76

    Google Scholar 

  • Licht A, Van Cappelle M, Abels HA et al (2014) Asian monsoons in a late Eocene greenhouse world. Nature 513:501

    Google Scholar 

  • Licht A, Boura A, De Franceschi D, Utescher T, Sein C, Jaeger J-J (2015) Late middle eocene fossil wood of Myanmar: Implications for the landscape and the climate of the Eocene Bengal Bay. Rev Palaeobot Palynol 216:44–54

    Google Scholar 

  • Lihoreau F, Barry J, Blondel C et al (2007a) Anatomical revision of the genus Merycopotamus (Artiodactyla; Anthracotheriidae): its significance for Late Miocene mammal dispersal in Asia. Palaeontology 50:503–524

    Article  Google Scholar 

  • Lihoreau F, Ducrocq S, Prothero DR et al (2007b) Family Anthracotheriidae. In: Prothero DR, Foss SE (eds) The evolution of Artiodactyls. Johns Hopkins University Press, Baltimore, pp 89–105

    Google Scholar 

  • Lindsay EH, Opdyke ND, Johnson NM (1980) Pliocene dispersal of the horse Equus and late Cenozoic mammalian dispersal events. Nature 287:135–138

    Google Scholar 

  • Lindsay EH, Flynn LJ, Cheema IU et al (2005) Will Downs and the Zinda Pir Dome. Palaeontol Electron 8:1–19

    Google Scholar 

  • Lister AM (2013) The role of behaviour in adaptive morphological evolution of African proboscideans. Nature 331–334

    Google Scholar 

  • Liu L-P (2001) Eocene suoids (Artiodactyla, Mammalia) from Bose and Yongle basins, China, and the classification and evolution of the Paleogene suoids. Vert. PalAsia 39:115–128

    Google Scholar 

  • Loftus RT, Machugh E, Bradley DG et al (1994) Evidence for two independent domestications of cattle. Proc Natl Acad Sci USA 91:2757–2761

    Google Scholar 

  • Louys J (2007) Limited effect of the Quaternary’s largest super-eruption (Toba) on land mammals from Southeast Asia. Quatern Sci Rev 26:3108–3117

    Article  Google Scholar 

  • Louys J (2012a) The future of mammals in Southeast Asia: conservation insights from the fossil record. In: Louys J (ed) Paleontol Ecol Conserv. Springer, Berlin, pp 227–238

    Chapter  Google Scholar 

  • Louys J (2012b) Mammal community structure of Sundanese fossil assemblages from the Late Pleistocene, and a discussion on the ecological effects of the Toba eruption. Quatern Int 258:80–87

    Article  Google Scholar 

  • Louys J, Meijaard E (2010) Palaeoecology of Southeast Asian megafauna-bearing sites from the Pleistocene and a review of environmental changes in the region. J Biogeogr 37:1432–1449

    Google Scholar 

  • Louys J, Curnoe D, Tong H (2007) Characteristics of Pleistocene megafauna extinctions in Southeast Asia. Palaeogeogr Palaeoclimatol Palaeoecol 243:152–173

    Article  Google Scholar 

  • Lucas SG, Sobus JC (1989) The systematics of indricotheres. In: Prothero DR, Schoch RM (eds) The evolution of perissodactyls. Oxford University Press, New York, pp 358–378

    Google Scholar 

  • Lydekker R (1876) Molar teeth and other remains of mammalia. Palaeontologia Indica, Memoirs of the Geological Survey of India Ser 10, V.1:19–87

    Google Scholar 

  • Lydekker R (1876b) Notes on the fossil mammalian faunae of India and Burma. Rec Geol Surv Ind 9:86–106

    Google Scholar 

  • Lydekker R (1878) Crania of ruminants. Palaeontologia Indica. Mem Geol Surv Ind Ser 10, 1:88–171

    Google Scholar 

  • Lydekker R (1882a) Indian Tertiary and post-Tertiary vertebrata, Siwalik and Narbada Equidae. Palaeontologia Indica 2:67–98

    Google Scholar 

  • Lydekker R (1882b) Siwalik Camelopardalidae. Mem Geol Surv Ind 2:99–142

    Google Scholar 

  • Lydekker R (1885) Catalogue of the fossil mammalia in the British Museum. Part II Taylor and Francis, London

    Google Scholar 

  • Lydekker R (1898) Wild oxen, sheep & goats of all lands, living and extinct R. Ward, London

    Book  Google Scholar 

  • Lyell C (1830) Principles of geology. John Murray, London

    Google Scholar 

  • Macfadden B (1998) Equidae. In: Janis C, Scott KM, Jacobs LL (eds) Evolution of tertiary mammals of North America. Cambridge University Press, Cambridge, pp 537–559

    Google Scholar 

  • Macfadden BJ (2006) Extinct mammalian biodiversity of the ancient New World tropics. Trends Ecol Evol 21:157–165

    Article  PubMed  Google Scholar 

  • Macfadden BJ, Woodburne MO (1982) Systematics of the Neogene Siwalik hipparions (Mammalia, Equidae) based on cranial and dental morphology. J Vertebr Paleontol 2:185–218

    Article  Google Scholar 

  • Mackinnon JR, Stuart SN (1988) The kouprey: an action plan for its conservation IUCN. Glan, Switzerland

    Google Scholar 

  • Macphee RD (1999) Extinctions in near time: causes, contexts, and consequences. Kluwer Academic/ Plenum Publishers, New York

    Google Scholar 

  • Macphee RD, Marx PA (1997) The 40,000-year plague: humans, hyperdisease, and first-contact extinctions. In: Goodman SM, Patterson BD (eds) Natural change and human impact in Madagascar. Smithsonian Institution Press, Washington, DC, pp 169–217

    Google Scholar 

  • Madsen O, Scally M, Douady CJ et al (2001) Parallel adaptive radiations in two major clades of placental mammals. Nature 409:610–614

    Article  CAS  PubMed  Google Scholar 

  • Martin PS (1966) Africa and Pleistocene overkill. Nature 212:339–342

    Article  Google Scholar 

  • Martin PS (1967) Prehistoric overkill. In: Martin PS, Wright Jr HE (eds) Pleistocene extinctions: the search for a cause. Yale University Press, New Haven, pp 75–120

    Google Scholar 

  • Mattauer M, Matte P, Olivet J-L (1999) A 3D model of the India-Asia collision at plate scale. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science 328:499–508

    Google Scholar 

  • Matthew WD (1929) Critical observations upon Siwalik mammals. Bull Amer Mus Nat Hist 56:437–560

    Google Scholar 

  • Matthew WD, Granger W (1923) New fossil mammals from the Pliocene of Sze-Chuan, China. Bull Amer Mus Nat Hist 48:563–598

    Google Scholar 

  • Matthew WD, Granger W (1925) New ungulates from the Ardyn Obo Formation of Mongolia. Amer Mus Novit 195:1–12

    Google Scholar 

  • Mcquarrie N, Stock JM, Verdel C et al (2003) Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys Res Lett 30. doi:10.1029/2003GL017992 art. no. 2036

  • Mctavish EJ, Decker JE, Schnabel RD et al (2013) New World cattle show ancestry from multiple independent domestication events. Proc Natl Acad Sci 110:E1398–E1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meijer HJ, Van Den Hoek Ostende LW, Van Den Bergh GD et al (2010) The fellowship of the hobbit: the fauna surrounding Homo floresiensis. J Biogeogr 37:995–1006

    Article  Google Scholar 

  • Mein P, Ginsburg L (1997) Les mammifères du gisement miocène inférieur de Li Mae Long, Thaïlande: systématique, biostratigraphie et paléoenvironnement. Geodiversitas 19:783–844

    Google Scholar 

  • Mennessier G (1961) Les caractères structuraux des montagnes de la région de Kaboul (Afghanistan). Bulletin de la Société Géologique de France, Séries 3(7):40–49

    Google Scholar 

  • Merceron G, Blondel C, Brunet M et al (2004) The Late Miocene paleoenvironment of Afghanistan as inferred from dental microwear in artiodactyls. Palaeogeogr Palaeoclimatol Palaeoecol 207:143–163

    Article  Google Scholar 

  • Meredith RW, Janečka JE, Gatesy J et al (2011) Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification. Science 334:521–524

    Article  CAS  PubMed  Google Scholar 

  • Métais G, Antoine P-O, Marivaux L, Welcomme J-L, Ducrocq S (2003) New artiodactyl ruminant (Mammalia) from the late Oligocene of Pakistan. Acta Palaeontol Pol 48:375–382

    Google Scholar 

  • Métais G (2006) New basal selenodont artiodactyls from the Pondaung Formation (late middle Eocene, Myanmar) and the phylogenetic relationships of early ruminants. Ann Carnegie Mus Nat Hist 75:51–67

    Article  Google Scholar 

  • Métais G, Chaimanee Y, Jaeger J-J et al (2001) New remains of primitive ruminants from Thailand: evidence of the early evolution of the Ruminantia in Asia. Zoolog Scr 30:231–249

    Article  Google Scholar 

  • Métais G, Soe AN, Marivaux L et al (2007) Artiodactyls from the Pondaung Formation (Myanmar): new data, and new interpretations on the South Asian faunal Province during the middle Eocene. Naturwissenschaften 94:759–768

    Article  PubMed  CAS  Google Scholar 

  • Métais G, Chaimanee Y, Jaeger J-J, Ducrocq S (2007) Eocene bunoselenodont Artiodactyla from southern Thailand, and the early evolution of Ruminantia in South Asia. Naturwissenschaften 94:493–498

    Google Scholar 

  • Métais G, Vislobokova IA (2007) Basal Ruminants. In: Prothero DR, Foss SE (eds) The evolution of artiodactyls. The Johns Hopkins University Press, Baltimore, pp 189–212

    Google Scholar 

  • Métais G, Antoine P-O, Baqri SRH et al (2009a) Lithofacies, depositional environments, regional biostratigraphy and age of the Chitarwata formation in the Bugti Hills, Balochistan, Pakistan. J Asian Earth Sci 34:154–167

    Article  Google Scholar 

  • Métais G, Welcomme J-L, Ducrocq S (2009b) New lophiomerycid ruminants from the Oligocene of the Bugti Hills (Balochistan, Pakistan). J Vertebr Paleontol 29:231–241

    Article  Google Scholar 

  • Molnar P, Tapponnier P (1977) The collision between India and Asia. Sci Am 236:30–41

    Article  Google Scholar 

  • Molnar P, Boos WR, Battisti DS (2010) Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu Rev Earth Planet Sci 38:77–102

    Article  CAS  Google Scholar 

  • Montgelard C, Catzeflis F, Douzery E (1997) Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol Biol Evol 14:550–559

    Article  CAS  PubMed  Google Scholar 

  • Morley CK (2002) A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics 347:189–215

    Article  Google Scholar 

  • Murchison C (1868) Palaeontological memoirs and notes of the late hugh falconer robert hardwicke, London

    Google Scholar 

  • Najman Y, Pringle M, Godin L et al (2001) Dating of the oldest continental sediments from the Himalayan foreland basin. Nature 410:194–197

    Article  CAS  PubMed  Google Scholar 

  • Nanda AC (2002) Upper Siwalik mammalian faunas of India and associated events. J Asian Earth Sci 21:47–58

    Article  Google Scholar 

  • Nanda AC (2008) Comments on the Pinjor mammalian fauna of the Siwalik Group in relation to the post-Siwalik faunas of Peninsular India and Indo-Gangetic Plain. Quatern Int 192:6–13

    Article  Google Scholar 

  • Nelson SV (2007) Isotopic reconstructions of habitat change surrounding the extinction of Sivapithecus, a Miocene hominoid, in the Siwalik Group of Pakistan. Palaeogeogr Palaeoclimatol Palaeoecol 243:204–222

    Article  Google Scholar 

  • Ni X, Qiu Z (2002) The micromammalian fauna from the Leilao, Yuanmou hominoid locality: Implications for biochronology and paleoecology. J Hum Evol 42:535–546

    Article  Google Scholar 

  • Nicholson KN, Khan M, Mahmood K (2010) Geochemistry of the Chagai–Raskoh arc, Pakistan: Complex arc dynamics spanning the Cretaceous to the Quaternary. Lithos 118:338–348

    Google Scholar 

  • Ogino S, Egi N, Takai M (2011) New species of Agriotherium (Mammalia, Carnivora) from the late Miocene to early Pliocene of central Myanmar. J Asian Earth Sci 42:408–414

    Article  Google Scholar 

  • O’leary MA, Bloch JI, Flynn JJ et al (2013) The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339:662–667

    Google Scholar 

  • Olsen SJ (1990) Fossil ancestry of the yak, its cultural significance and domestication in Tibet. Proc Acad Nat Sci Philadelphia 142:73–100

    Google Scholar 

  • Orliac MJ, Antoine P-O, Roohi G et al (2010a) Suoidea (Mammalia, Cetartiodactyla) from the Early Oligocene of the Bugti Hills, Balochistan, Pakistan. J Vertebr Paleontol 30:1300–1305

    Article  Google Scholar 

  • Orliac MJ, Pierre-Olivier A, Ducrocq S (2010b) Phylogenetic relationships of the Suidae (Mammalia, Cetartiodactyla): new insights on the relationships within Suoidea. Zoolog Scr 39:315–330

    Article  Google Scholar 

  • Orliac M, Guy F, Chaimanee Y et al (2011) New remains of Egatochoerus jaegeri (Mammalia, Suoidea) from the late Eocene of peninsular Thailand. Palaeontology 54:1323–1335

    Article  Google Scholar 

  • Patnaik R (2013) Indian Neogene Siwalik mammalian biostratigraphy: an overview. In: Wang X, Flynn LJ, Fortelius M (eds) Fossil mammals of Asia: Neogene biostratigraphy and chronology. Columbia University Press, New York, pp 423–444

    Chapter  Google Scholar 

  • Patnaik R (2015) Diet and habitat changes among Siwalik herbivorous mammals in response to Neogene and Quaternary climate changes: an appraisal in the light of new data. Quatern Int. doi:10.1016/j.quaint.2014.11.025

    Google Scholar 

  • Patnaik R, Chauhan PR, Rao M et al (2009) New geochronological, paleoclimatological, and archaeological data from the Narmada Valley hominin locality, central India. J Hum Evol 56:114–133

    Article  PubMed  Google Scholar 

  • Patnaik R, Gupta AK, Naidu PD et al (2012) Indian monsoon variability at different time scales: marine and terrestrial proxy records. Proc Ind Nat Sci Acad 78:535–547

    CAS  Google Scholar 

  • Patriat P, Achache J (1984) India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311:615–621

    Article  Google Scholar 

  • Pickford M (1982) Miocene Chalicotheriidae of the Potwar Plateau, Pakistan. Tertiary Res 1:13–29

    Google Scholar 

  • Pickford M (2001) Africa’s smallest ruminant: a new tragulid from the Miocene of Kenya and the biostratigraphy of East African Tragulidae. Géobios 34:437–447

    Article  Google Scholar 

  • Pickford M, Nakaya H, Kunimatsu Y et al (2004) Age and taxonomic status of the Chiang Muan (Thailand) hominoids. CR Palevol 3

    Google Scholar 

  • Pilgrim GE (1907) Description of some new Suidae from the Bugti Hills, Baluchistan. Rec Geol Surv Ind 36:45–56 (1 plate)

    Google Scholar 

  • Pilgrim GE (1908) The Tertiary and Post-Tertiary freshwater deposits of Baluchistan and Sind with notices of new vertebrates. Rec Geol Surv Ind 37:139–167, 4 plates

    Google Scholar 

  • Pilgrim GE (1910a) Notices of new mammalian genera and species from the Tertiaries of India. Rec Geol Surv Ind 40:63–71

    Google Scholar 

  • Pilgrim GE (1910b) Preliminary note on a revised classification of the Tertiary freshwater deposits of India. Rec Geol Surv Ind 40:185–205

    Google Scholar 

  • Pilgrim GE (1911) The fossil Giraffidae of India. Mem Geol Surv Ind 4:1–29

    Google Scholar 

  • Pilgrim GE (1912) The vertebrate fauna of the Gaj series in the Bugti hills and the Punjab. Mem Geol Surv Ind 4:1–83

    Google Scholar 

  • Pilgrim GE (1928) The Artiodactyla of the Eocene of Burma. Palaeontologia Indica 13:1–39

    Google Scholar 

  • Pilgrim GE (1939) The fossil Bovidae of India. Palaeontologia Indica NS 26:1–356

    Google Scholar 

  • Pilgrim GE, Cotter GDP (1916) Some newly discovered Eocene mammals from Burma. Records of the Geological Survey of India 47:42–77

    Google Scholar 

  • Pitra C, Fickel J, Meijaard E et al (2004) Evolution and phylogeny of old world deer. Mol Phylogenet Evol 33:880–895

    Article  CAS  PubMed  Google Scholar 

  • Popov SV, Rögl F, Rozanov AY et al (2004) Lithological-paleogeographic maps of Paratethys. Courier Forschungsinstitut Senckenberg 250:1–46

    Google Scholar 

  • Prell WL, Kutzbach JE (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360:647–652

    Article  Google Scholar 

  • Prothero DR (1998a) Hyracodontidae. In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of tertiary mammals of North America. Cambridge University Press, Cambridge, pp 589–593

    Google Scholar 

  • Prothero DR (1998b) Rhinocerotidae. In: Janis C, Scott KM, Jacobs LL (eds) Evolution of tertiary mammals of North America. Cambridge Univesity Press, Cambridge, pp 595–605

    Google Scholar 

  • Prothero DR (2007) Family Moschidae. In: Prothero D, Foss S (eds) The evolution of artiodactyls. Johns Hopkins University Press, Baltimore, pp 221–226

    Google Scholar 

  • Prothero DR, Schoch RM (2002) Horns, tusks, and flippers: the evolution of hoofed mammals. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Prothero DR, Manning E, Hanson CB (1986) The phylogeny of the Rhinocerotoidea (Mammalia, Parissodactyla). Zoo J Linnean Soc 87:341–366

    Article  Google Scholar 

  • Prothero DR, Guérin C, Manning E (1989) The history of the Rhinocerotoidea. In: Prothero DR, Schoch RM (eds) The evolution of perissodactyls. Oxford University Press, Oxford, pp 321–340

    Google Scholar 

  • Pubellier M, Rangin C, Phach PV, Que BC, Sang CL (2008) The Cao Bang-Tien Yen Fault: Implications on the relationships between the Red River Fault and the South China Coastal Belt. Adv Nat Sci 4:347–361

    Google Scholar 

  • Qiu ZX, Qiu ZD (1995) Chronological sequence and subdivision of Chinese Neogene mammalian faunas. Palaeogeogr Palaeoclimatol Palaeoecol 116:41–70

    Article  Google Scholar 

  • Qiu Z-X, Qiu Z-D, Deng T et al (2013) Neogene land mammal stages/ages of China. In: Wang X, Flynn LJ, Fortelius M (eds) Fossil mammals of Asia: Neogene biostratigraphy and chronology. Columbia University Press, New York, pp 29–90

    Chapter  Google Scholar 

  • Quade J, Cerling TE (1995) Expansion of C-4 grasses in the late Miocene of northern Pakistan—evidence from stable isotopes in paleosols. Palaeogeogr Palaeoclimatol Palaeoecol 115:91–116

    Article  Google Scholar 

  • Quade J, Cerling TE, Bowman JR (1989) Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342:163–166

    Article  Google Scholar 

  • Quade J, Cerlinga TE, Barry JC et al (1992) A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chem Geol Isotope Geosci Sect 94:183–192

    Article  CAS  Google Scholar 

  • Radinsky LB (1967) Hyrachyus, Chasmotherium, and the early evolution of helaletid tapiroids. Amer Mus Novit 2313:1–23

    Google Scholar 

  • Ramstein G, Fluteau F, Besse J et al (1997) Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature 386:788–794

    Article  CAS  Google Scholar 

  • Rao AR, Nanda AC, Sharma UN et al (1995) Magnetic polarity stratigraphy of the Pinjor Formation (Upper Siwalik) near Pinjore, Haryana. Curr Sci 68:1231–1236

    Google Scholar 

  • Raufi F, Sickenberg O (1973) Zur Geologie der weiteren Umgebung von Tirin und Misan im Südosten des Hochlandes von Zentral-Afghanistan. Beih Geol Jb 96:63–99

    Google Scholar 

  • Reis KR, Garong AM (2001) Late Quaternary terrestrial vertebrates from Palawan Island, Philippines. Palaeogeogr Palaeoclimatol Palaeoecol 171:409–421

    Article  Google Scholar 

  • Reuter M, Kern AK, Harzhauser M et al (2013) Global warming and South Indian monsoon rainfall? Lessons from the Mid-Miocene. Gondwana Res 23:1172–1177

    Article  Google Scholar 

  • Rose KD (2006) The beginning of the age of mammals. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Rössner GE (2007) Family Tragulidae. In: Prothero DR, Foss SE (eds) The evolution of artiodactyls. Johns Hopkins University Press, Baltimore, pp 213–220

    Google Scholar 

  • Ruddiman WF (1997) Tectonic uplift and climate change. Plenum Press, New York

    Google Scholar 

  • Russell DE, Zhai RJ (1987) The Paleogene of Asia: mammals and stratigraphy. Mémoire du Museum Nationale d’Histoire Naturelle 53:1–488

    Google Scholar 

  • Rütimeyer L (1878) Die Rinder der Tertiär-Epoche. Abhandlungen der Schweizerischen Paläontologischen Gesellschaft 5:3–205

    Google Scholar 

  • Saegusa H (2001) Comparisons of stegodon and elephantid abundances in the Late Pleistocene of southern China. In: Cavarretta G, Gioia P, Mussi M, Palombo MR (eds) The world of elephants. Proceedings of the 1st international congress, Consiglio Nazionale delle Ricerche, Rome, pp 345–349

    Google Scholar 

  • Saegusa H, Thasod Y, Ratanasthien B (2005) Notes on Asian stegodontids. Quatern Int 126:31–48

    Article  Google Scholar 

  • Samiullah K, Akhtar M (2007) An evidence of Cervus punjabiensis from the Lower Siwaliks of the Punjab, Pakistan. Punjab Univ J Zoo 22:63–68

    Google Scholar 

  • Sánchez IM, Quiralte V, Morales J et al (2010) A new genus of tragulid ruminant from the early Miocene of Kenya. Acta Palaeontol Pol 55:177–187

    Article  Google Scholar 

  • Sánchez IM, Demiguel D, Quiralte V et al (2011) The first known Asian Hispanomeryx (Mammalia, Ruminantia, Moschidae). J Vertebr Paleontol 31:1397–1403

    Article  Google Scholar 

  • Sanders WJ, Kappelman J, Rasmussen DT (2004) New large-bodied mammals from the late Oligocene site of Chilga, Ethiopia. Acta Palaeontol Pol 49:365–392

    Google Scholar 

  • Sanders WJ, Gheerbrant E, Harris JM et al (2010) Proboscidea. In: Werdelin L, Sanders WJ (eds) Cenozoic Mammals of Africa. University of California Press, Berkeley, pp 161–251

    Chapter  Google Scholar 

  • Sandom C, Faurby S, Sandel B et al (2014) Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc R Soc B: Biol Sci 281:20133254

    Article  Google Scholar 

  • Schoch RM (1989) A review of the tapiroids. In: Prothero DR, Schoch RM (eds) The evolution of Perissodactyls. Oxford University Press, Oxford, pp 298–320

    Google Scholar 

  • Schweinfurth GA (1886) Reise in das Depressionsgebiet im Umkreise des Fajum im Januar 1886. Z Gesellschafte Erdkurde Berlin 21:96–149

    Google Scholar 

  • Sclater PL (1858) On the general geographic distribution of the members of the class Aves. J Proc Linnean Soc Lond Zoo 2:130–136

    Article  Google Scholar 

  • Seiffert ER (2006) Revised age estimates for the later Paleogene mammal faunas of Egypt and Oman. Proc Natl Acad Sci 103:5000–5005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiffert ER (2012) Early primate evolution in Afro-Arabia. Evol Anthropol 21:239–253

    Article  PubMed  Google Scholar 

  • Sen S (1998) The age of the Molayan mammal locality, Afghanistan. Géobios 31:385–391

    Article  Google Scholar 

  • Sen S (2001) Rodents and insectivores from the Upper Miocene of Molayan, Afghanistan. Palaeontology 44:913–932

    Article  Google Scholar 

  • Sen S, Blieck A, Bouvrain G et al (1997) Late Miocene mammals from Taghar, Khurdkabul Basin, Afghanistan. Annales de Paléontologie 83:233–266

    Google Scholar 

  • Şengör AMC, Kidd WSF (1979) Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics 55:361–376

    Article  Google Scholar 

  • Sepulchre P, Jolly D, Ducrocq S et al (2010) Mid-Tertiary paleoenvironments in Thailand: pollen evidence. Climate Past 6:461–473

    Article  Google Scholar 

  • Shoshani J, Walter RC, Abraha M et al (2006) A proboscidean from the late Oligocene of Eritrea, a ‘‘missing link’’ between early Elephantiformes and Elephantimorpha, and biogeographic implications. Proc Natl Acad Sci USA 103:17296–17301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kappelman J, Simons EL Swisher CC, III (1992) New age determinations for the Eocene-Oligocene boundary sediments in the Fayum Depression, Northern Egypt. J Geol 100:647–668

    Google Scholar 

  • Simpson GG (1977) Too many lines: the limits of the Oriental and Australian zoogeographic regions. Proc Am Philos Soc 121:107–120

    Google Scholar 

  • Sodhi NS, Posa MRC, Lee TM et al (2010) The state and conservation of Southeast Asian biodiversity. Biodivers Conserv 19:317–328

    Article  Google Scholar 

  • Soe AN, Myitta Tun ST et al (2002) Sedimentary facies of the late Middle Eocene Pondaung Formation (central Myanmar) and the palaeoenvironments of its Anthropoid Primates. CR Palevol 1:153–160

    Article  Google Scholar 

  • Solounias N (2007) Family Giraffidae. In: Prothero DR, Foss SE (eds) The evolution of artiodactyls. Johns Hopkins University Press, Baltimore, pp 257–277

    Google Scholar 

  • Solounias N, Barry JC, Bernor RL et al (1995) The oldest bovid from the Siwaliks, Pakistan. J Vertebr Paleontol 15:806–814

    Article  Google Scholar 

  • Spaulding M, O’leary MA, Gatesy J (2009) Relationships of Cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. PLoS ONE 4:e7062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steensma K, Hussain S (1992) Merycopotamus dissimilis [Artiodactyla, Mammalia] from the Upper Siwalik Subgroup and its affinities with Asian and African forms. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 95:97–108

    Google Scholar 

  • Stehlin HG (1909) Remarques sur les faunules de mammifères de l’Eocène et de l’Oligocène du Bassin de Paris. Bulletin de la Société Géologique de France 4(9):488–520

    Google Scholar 

  • Steiner CC, Ryder OA (2011) Molecular phylogeny and evolution of the Perissodactyla. Zoo J Linnean Soc 163:1289–1303

    Article  Google Scholar 

  • Steiner CC, Mitelberg A, Tursi R et al (2012) Molecular phylogeny of extant equids and effects of ancestral polymorphism in resolving species-level phylogenies. Mol Phylogenet Evol 65:573–581

    Article  PubMed  Google Scholar 

  • Stille P, Steinmann M, Riggs SR (1996) Nd isotope evidence for the evolution of the paleocurrents in the Atlantic and Tethys Oceans during the past 180 Ma. Earth Planet Sci Lett 144:9–19

    Article  CAS  Google Scholar 

  • Stuart A (1999) Late Pleistocene megafaunal extinctions. In: Macphee R (ed) Extinctions in near time: causes, contexts, and consequences. Kluwer Academic, New York, pp 257–269

    Chapter  Google Scholar 

  • Suganuma Y, Hamada T, Tanaka S et al (2006) Magnetostratigraphy of the Miocene Chiang Muan Formation, northern Thailand: implication for revised chronology of the earliest Miocene hominoid in Southeast Asia. Palaeogeogr Palaeoclimatol Palaeoecol 239:75–86

    Article  Google Scholar 

  • Sukumar R (2003) The living elephants: evolutionary ecology, behavior, and conservation. Oxford University Press, New York

    Google Scholar 

  • Sukumar R (2006) A brief review of the status, distribution and biology of wild Asian elephants Elephas maximus. International Zoo Yearbook 40:1–8

    Article  Google Scholar 

  • Sun X, Wang P (2005) How old is the Asian monsoon system? Paleobotanical records from China. Paleogeogr Paleoclimatol Paleoecol 222:181–222

    Article  Google Scholar 

  • Suraprasit K, Chaimanee Y, Bocherens H et al (2014) Systematics and phylogeny of middle Miocene Cervidae (Mammalia) from Mae Moh Basin (Thailand) and a paleoenvironmental estimate using enamel isotopy of sympatric herbivore species. J Vertebr Paleontol 34:179–194

    Article  Google Scholar 

  • Suraprasit K, Chaimanee Y, Chavasseau O, Jaeger JJ (2015) Middle Miocene bovids from Mae Moh Basin, Northern Thailand: The first record of the genus Eotragus from Southeast Asia. Acta Palaeontol Pol 60:67–78

    Google Scholar 

  • Swisher CC, Curtis GH, Jacob T et al (1994) Age of the earliest known hominids in Java, Indonesia. Science 263:1118–1121

    Article  CAS  PubMed  Google Scholar 

  • Tabbutt K, Sheikh K Johnson N (1997) A fission track age for the Bugti bonebeds. Baluchistan, Pakistan. Extended abstract, Proceedings of the third workshop on Siwaliks of South Asia. Rec Geol Surv Pakistan 109:53

    Google Scholar 

  • Takai M, Saegusa H, Thaung-Htike et al (2006) Neogene mammalian fauna in Myanmar. Asian Paleoprimatol 4:143–172

    Google Scholar 

  • Tanaka K, Solis CD, Masangkay JS et al (1996) Phylogenetic relationship among all living species of the genus Bubalus based on DNA sequences of the cytochrome b gene. Biochem Genet 34:443–452

    Article  CAS  PubMed  Google Scholar 

  • Tapponnier P, Peltzer G, Armijo R (1986) On the mecanism of collision between India and Asia. In: Tectonics Collision (ed) Coward M P Ries A C. Geological Society of London, Special, Publication, pp 115–157

    Google Scholar 

  • Tassy P (1983a) Les Elephantoidea Miocènes du plateau du Potwar, Groupe de Siwalik, Pakistan. Deuxième partie: Choerolophodontes et Gomphothères. Annales de Paléontologie 69:235–297

    Google Scholar 

  • Tassy P (1983b) Les Elephantoidea Miocènes du plateau du Potwar, Groupe de Siwalik, Pakistan. Premiere partie: introduction, cadre chronologique et géographie, mammutidés, amébélodontidés. Annales de Paléontologie 69:99–136

    Google Scholar 

  • Tassy P (1983c) Les Elephantoidea Miocènes du plateau du Potwar, Groupe de Siwalik, Pakistan. Troisième partie: Stégodontidés, Eléphantoïdes indéterminés. Restes postcraniens. Conclusions. Annales de Paléontologie 69:317–354

    Google Scholar 

  • Tassy P (1990) The ‘‘Proboscidean Datum Event’’: how many proboscideans and how many events? In: Lindsay EH, Fahlbusch V, Mein P (eds) European Neogene mammal chronology. Plenum Press, New York, pp 237–252

    Google Scholar 

  • Tassy P, Anupandhanant P, Ginsburg L et al (1992) A new Stegolophodon (Proboscidea, Mammalia) from the early Miocene of northern Thailand. Geobios 25:511–523

    Article  Google Scholar 

  • Thasod Y, Jintasakul P, Ratanasthien B (2012) Proboscidean Fossil from the Tha Chang Sand Pits, Nakhon Ratchasima Province, Thailand. J Sci Technol MSU 31:33–44

    Google Scholar 

  • Thenius E (1970) Zur evolution und verbreitungsgeschichte der Suidae (Artiodactyla, Mammalia). Zeitschrift für Säugetierkunde 35:321–342

    Google Scholar 

  • Thewissen JGM, Williams EM, Hussain ST (2001a) Eocene mammal faunas from Northern Indo-Pakistan. J Vertebr Paleontol 21:347–366

    Article  Google Scholar 

  • Thewissen JGM, Williams EM, Roe LJ et al (2001b) Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature 413:277–281

    Article  CAS  PubMed  Google Scholar 

  • Thewissen JGM, Cooper LN, Clementz MT et al (2007) Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450:1190–1194

    Article  CAS  PubMed  Google Scholar 

  • Thomas H (1984) Les Bovidae (Artiodactyla; Mammalia) du Miocène du sous-continent indien, de la péninsule arabique et de l’Afrique: biostratigraphie, biogéographie et écologie. Palaeogeogr Palaeoclimatol Palaeoecol 45:251–299

    Article  Google Scholar 

  • Thomas H, Sen S, Ligabue G (1980) La faune Miocene de la Formation Agha Jari du Jebel Hamri (Irak). Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, Series B 83:269–287

    Google Scholar 

  • Thomas H, Sen S, Khan M et al (1982) The lower Miocene fauna of Al-Sarrar (Eastern province, Saudi Arabia). J Saudi Arabian Archaeol 5:109–136

    Google Scholar 

  • Thomas H, Ginsburg L, Hintong C, Suteethorn V (1990) A new tragulid, Siamotragulus sanyathanai n.g., n.sp. (Artiodactyla, Mammalia) from the Miocene of Thailand (Amphoe Pong, Phayao Province). C R Acad Sci Paris, serie IIa 310:989–995

    Google Scholar 

  • Tobien H (1980) Cerviden-Reste (Ruminantia, Mammalia) aus dem Obermiozän von Maragheh (Iran). Annalen des Naturhistorischen Museums in Wien 83:329–341

    Google Scholar 

  • Tong H (2005) Dental characters of the Quaternary tapirs in China, their significance in classification and phylogenetic assessment. Geobios 38:139–150

    Article  Google Scholar 

  • Tong H-w Guérin C (2009) Early Pleistocene Dicerorhinus sumatrensis remains from the Liucheng Gigantopithecus Cave, Guangxi, China. Geobios 42:525–539

    Article  Google Scholar 

  • Tong Y, Wang J (2006) Fossil mammals from the early Eocene Wutu formation of Shandong province. Palaeontol Sinica 192:1–223

    Google Scholar 

  • Tougard C (2001) Biogeography and migration routes of large mammal faunas in South-East Asia during the Late Middle Pleistocene: focus on the fossil and extant faunas from Thailand. Palaeogeogr Palaeoclimatol Palaeoecol 168:337–358

    Article  Google Scholar 

  • Tripathi C (1986) Siwaliks of the Indian subcontinent. J Palaeontol Soc Ind 31:1–8

    Google Scholar 

  • Tsubamoto T (2010) Recognition of Microbunodon (Artiodactyla, Anthracotheriidae) from the Eocene of China. Paleontol Res 14:161–165

    Article  Google Scholar 

  • Tsubamoto T, Takai M, Egi N et al (2002) The Anthracotheriidae (Mammalia; Artiodactyla) from the Eocene Pondaung Formation (Myanmar) and comments on some other anthracotheres from the Eocene of Asia. Paleontol Res 6:363–384

    Google Scholar 

  • Tsubamoto T, Egi N, Takai M et al (2005) Middle Eocene ungulate mammals from Myanmar: a review with description of new specimens. Acta Palaeontol Pol 50:117–138

    Google Scholar 

  • Udvardy MDF (1975) A Classification of the Biogeographical Provinces of the World IUCN Occasional Paper No. 18. International Union for Conservation of Nature and Natural Resources, Morges, Switzerland

    Google Scholar 

  • Ungar P, Scott J, Curran S et al (2012) Early Neogene environments in East Africa: evidence from dental microwear of tragulids. Palaeogeogr Palaeoclimatol Palaeoecol 342:84–96

    Article  Google Scholar 

  • Uno KT, Cerling TE, Harris JM et al (2011) Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. Proc Natl Acad Sci 108:6509–6514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbain A (1937) Le kou prey ou boeuf sauvage Cambodgien. Mammalia: Morphologie. Biologie, Systématique des Mammifères 1:257–258

    Google Scholar 

  • Van Couvering JA, Berggren WA (1976) Biostratigraphical basis of the Neogene time scale. In: Hagel JE, Kauffman EH (eds) Concepts in biostratigraphy. The Paleontological Society, Lawrence, Kansas, pp 283–306

    Google Scholar 

  • Van Den Bergh GD (1999) The late Neogene elephantoid-bearing faunas of Indonesia and their palaeozoogeographic implications: a study of the terrestrial faunal succession of Sulawesi, Flores and Java, including evidence for early hominid dispersal east of Wallace’s Line. Scripta Geol 117:1–419

    Google Scholar 

  • Van Den Bergh GD, De Vos J, Aziz F et al (2001) Elephantoidea in the Indonesian region: new Stegodon findings from Flores. In: Cavarretta G, Gioia P, Mussi M, Palombo MR (eds) The world of elephants. Proceedings of the 1st international congress., Consiglio Nazionale delle Ricerche, Rome, pp 623–627

    Google Scholar 

  • Van Den Bergh GD, De Vos J, Sondaar PY (2001b) The late Quaternary palaeogeography of mammal evolution in the Indonesian Archipelago. Palaeogeogr Palaeoclimatol Palaeoecol 171:385–408

    Article  Google Scholar 

  • Van Den Bergh GD, Awe RD, Morwood MJ et al (2008) The youngest Stegodon remains in Southeast Asia from the Late Pleistocene archaeological site Liang Bua, Flores, Indonesia. Quatern Int 182:16–48

    Article  Google Scholar 

  • Van Der Geer A, Dermitzakis M De Vos J (2008) Fossil folklore from India: the Siwalik Hills and the Mahabharata. Folklore 119:71–92

    Google Scholar 

  • Van Der Voo R, Spakman W, Bijwaard H (1999) Tethyan subducted slabs under India. Earth Planet Sci Lett 171:7–20

    Article  Google Scholar 

  • Van Hinsbergen DJ, Edwards MA Govers R (2009) Collision and collapse at the Africa-Arabia-Eurasia subduction zone Geological Society Special Publication, London

    Google Scholar 

  • Vislobokova I, Lavrov A (2009) The earliest musk deer of the genus Moschus and their significance in clarifying of evolution and relationships of the family Moschidae. Paleontol J 43:326–338

    Article  Google Scholar 

  • Von Koenigswald GHR (1959) A mastodon and other fossil mammals from Thailand. Report Invest Roy Dept Mines 2:25–28

    Google Scholar 

  • Von Koenigswald GHR (1967) An upper Eocene mammal of the family Anthracotheriidae from the island of Timor, Indonesia. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B: Palaeontol Geol Phys Chem 70:529–533

    Google Scholar 

  • Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167

    Article  Google Scholar 

  • Vrba ES (1995) The fossil record of African antelopes (Mammalia, Bovidae) in relation to human evolution and paleoclimate. In: Vrba Elisabeth S, Denton George H, Partridge Timothy C, Burckle Lloyd H (ed) Paleoclimate and evolution, with emphasis on human origins. Yale University Press, New Haven, CT, United States, pp 385–424

    Google Scholar 

  • Vrba ES, Bibi F Costa AG (2015) First Asian record of a late Pleistocene reduncine (Artiodactyla, Bovidae, Reduncini), Sivacobus sankaliai, sp. nov., from Gopnath (Miliolite Formation) Gujarat, India, and a revision of the Asian genus Sivacobus Pilgrim, 1939. J Vertebr Paleontol 35:e943399

    Google Scholar 

  • Vrba ES, Gatesy J (1994) New antelope fossils from Awash, Ethiopia, and phylogenetic analysis of Hippotragini (Bovidae, Mammalia). Palaeontologia Africana 31:55–72

    Google Scholar 

  • Wall WP (1980) Cranial evidence for a proboscis in Cadurcodon and a review of snout structure in the family Amynodontidae (Perissodactyla: Rhinocerotoidae). J Paleontol 54:968–977

    Google Scholar 

  • Wall WP (1989) The phylogenetic history and adaptative radiation of the Amynodontidae. In: Prothero DR, Schoch RM (eds) The evolution of perissodactyls. Oxford University Press, New York, pp 341–354

    Google Scholar 

  • Wall WP, Manning E (1986) Rostriamynodon grangeri n. gen., n. sp. of amynodontid (Perissodactyla, Rhinocerotoidae) with comments on the phylogenetic history of Eocene Amynodontidae. J Paleontol 60:911–919

    Google Scholar 

  • Wallace AR (1876b) The geographical distribution of animals. Harper & Brothers, New York

    Google Scholar 

  • Wang X, Flynn LJ, Fortelius M (2013) Toward a continental Asian biostratigraphic and geochronologic framework. In: Wang X, Flynn LJ, Fortelius M (ed) Fossil Mammals of Asia: Neogene biostratigraphy and chronology. Columbia University Press, New York, pp 1–28

    Google Scholar 

  • Webb SD, Taylor BE (1980) The phylogeny of hornless ruminants and a description of the cranium of Archaeomeryx. Bull Amer Mus Nat Hist 167:117–158

    Google Scholar 

  • Wei D (1987) Miocene mammalian fauna of Xiaolongtan, Kaiyuan, Yunnan province. Vertebrata PalAsiatica 25:116–123

    Google Scholar 

  • Welcomme J-L, Benammi M, Crochet J-Y et al (2001) Himalayan Forelands: Palaeontological evidence for Oligocene detrital deposits in the Bugti Hills (Balochistan, Pakistan). Geol Mag 138:397–405

    Article  Google Scholar 

  • West RM (1980) A minute new species of Dorcatherium (Tragulidae: Mammalia) from the Chinji Formation near Daud Khel, Mianwali District, Pakistan. Contribut Biol Geol 33:1–6

    Google Scholar 

  • Whybrow PJ, Hill A (1999) Fossil Vertebrates of Arabia, with emphasis on the late Miocene Faunas, geology, and palaeoenvironments of the Emirate of Abu Dhabi, United Arab Emirates. Yale University Press, New Haven

    Google Scholar 

  • Woodruff DS (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodivers Conserv 19:919–941

    Article  Google Scholar 

  • Xia K, Su T, Liu Y-SC et al (2009) Quantitative climate reconstructions of the late Miocene Xiaolongtan megaflora from Yunnan, southwest China. Palaeogeogr Palaeoclimatol Palaeoecol 276:80–86

    Article  Google Scholar 

  • Xie Y, Li DM, Mackinnon J (2002) Preliminary researches on bio-geographical divisions of China. Acta Ecologica Sinica 22:1599–1615

    Google Scholar 

  • Yao Y-F, Bruch AA, Mosbrugger V et al (2011) Quantitative reconstruction of Miocene climate patterns and evolution in Southern China based on plant fossils. Palaeogeogr Palaeoclimatol Palaeoecol 304:291–307

    Article  Google Scholar 

  • Yin A (2010) Cenozoic tectonic evolution of Asia: a preliminary synthesis. Tectonophysics 488:293–325

    Article  Google Scholar 

  • You Y, Huber M, Müller RD et al (2009) Simulation of the Middle Miocene climate optimum. Geophys Res Lett 36:L04702. doi:10.1029/2008GL036571

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L et al (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

  • Zazzo A, Mariotti A, Lécuyer C et al (2002) Intra-tooth isotope variations in late Miocene bovid enamel from Afghanistan: paleobiological, taphonomic, and climatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 186:145–161

    Article  Google Scholar 

  • Zhang Z, Wang H, Guo Z et al (2007) What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeogr Palaeoclimatol Palaeoecol 245:317–331

    Article  Google Scholar 

  • Zheng H, Clift PD, Wang P et al (2013) Pre-Miocene birth of the Yangtze River. Proc Natl Acad Sci 110:7556–7561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang G, Najman Y, Guillot S, Roddaz M, Antoine P-O, Métais G, Carter A, Marivaux L, Solangi SH (2015) Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan. Earth Planet Sci Lett 432:363–373

    Google Scholar 

  • Zin-Maung-Maung-Thein Takai M, Tsubamoto T et al (2008) A new species of Dicerorhinus (Rhinocerotidae) from the Plio-Pleistocene of Myanmar. Palaeontology 51:1419–1433

    Article  Google Scholar 

  • Zin-Maung-Maung-Thein Takai M, Tsubamoto T et al (2010) A review of fossil rhinoceroses from the Neogene of Myanmar with description of new specimens from the Irrawaddy Sediments. J Asian Earth Sci 37:154–165

    Article  Google Scholar 

  • Zin-Maung-Maung-Thein Takai M, Uno H et al (2011) Stable isotope analysis of the tooth enamel of Chaingzauk mammalian fauna (late Neogene, Myanmar) and its implication to paleoenvironment and paleogeography. Palaeogeogr Palaeoclimatol Palaeoecol 300:11–22

    Article  Google Scholar 

  • Zu Dehm R, Oettingen-Spielberg T (1958) Paläontologische und geologische Untersuchungen im Tertiär von Pakistan. 2. Die mitteleocänen Saügetiere von Ganda Kas bei Basal in Nordwest-Pakistan. Abhandlungen der Bayerischen Akademie der Wissenschaften 91:1–54

    Google Scholar 

Download references

Acknowledgments

We would like to thank Farshid S. Ahrestani and Mahesh Sankaran for inviting us to contribute to this chapter and for their editorial work. Mikael Fortelius, Tang Hui, Ross MacPhee, Rajeev Patnaik, and Zhijie J. Tseng read and provided helpful comments that much improved the text. F.B. was supported at the AMNH by a Gerstner Fellowship. G.M. was supported by the National Geographic Society, and the CNRS-INSU-InterrVie and ATM-MNHN Programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faysal Bibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bibi, F., Métais, G. (2016). Evolutionary History of the Large Herbivores of South and Southeast Asia (Indomalayan Realm). In: Ahrestani, F., Sankaran, M. (eds) The Ecology of Large Herbivores in South and Southeast Asia. Ecological Studies, vol 225. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7570-0_2

Download citation

Publish with us

Policies and ethics