Skip to main content

Large Amplitude Oscillatory Shear

  • Chapter
  • First Online:
Book cover Viscoelasticity of Polymers

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 241))

Abstract

This chapter includes a short review of large amplitude oscillatory shear (LAOS), the details on the analysis methods for LAOS, and the fluid mechanics of LAOS. The first section is the short review of LAOS. The second one deals with analysis methods for the interpretation of LAOS data such as FT-rheology and stress decomposition. The third one introduces how to calculate the analytical solution of LAOS for various constitutive models and the problems involved in the analytical solutions. The last one introduces semi-analytical method for LAOS which is a trial to overcome the limitation of the analytical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J.-E. Bae, K.S. Cho, Semi-analytical methods for the determination of the nonlinear parameter of nonlinear viscoelastic constitutive equations from LAOS data. J. Rheol. 59, 525–555 (2015)

    Article  CAS  Google Scholar 

  • J.-E. Bae, M. Lee, K.S. Cho, K.H. Seo, D.G. Kang, Comparison of stress-controlled and strain-controlled rheometers for large amplitude oscillatory shear. Rheol. Acta 52, 841–857 (2013)

    Article  CAS  Google Scholar 

  • N.A. Bharadwaj, R.H. Ewoldt, The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear. J. Rheol. 58, 891–910 (2014)

    Article  CAS  Google Scholar 

  • M. Boisly, M. Kästner, J. Brummund, V. Ulbricht, Large Amplitude Oscillatory Shear of the Prandtl Element Analysed by Fourier Transform Rheology. Appl. Rheol. 24, 1–11 (2014)

    Google Scholar 

  • A. Calin, M. Wilhelm, C. Balan, Determination of the nonlinear parameter (mobility factor) of the Giesekus constitutive model using LAOS procedure. J. Non-Newtonian Fluid Mech. 165, 1564–1577 (2010)

    Article  CAS  Google Scholar 

  • K.S. Cho, K. Hyun, K.H. Ahn, S.J. Lee, A geometrical interpretation of large amplitude oscillatory shear response. J. Rheol. 49, 747–758 (2005)

    Article  CAS  Google Scholar 

  • K.S. Cho, K.-W. Song, G.-S. Chang, Scaling relations in nonlinear viscoelastic behavior of aqueous peo solutions under large amplitude oscillatory shear flow. J. Rheol. 54, 27–63 (2010)

    Article  CAS  Google Scholar 

  • K.S. Cho, J.W. Kim, J.-E. Bae, J.H. Youk, H.J. Jeon, K.-W. Song, Effect of temporary network structure on linear and nonlinear viscoelasticity of polymer solutions. Korea–Aust. Rheol. J. 27, 151–161 (2015)

    Article  Google Scholar 

  • C.J. Dimitriou, R.H. Ewoldt, G.H. McKinley, Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress). J. Rheol. 57, 27–70 (2013)

    Article  CAS  Google Scholar 

  • B.M. Erwin, S.A. Rogers, M. Cloitre, D. Vlassopoulos, Examining the validity of strain-rate frequency superposition when measuring the linear viscoelastic properties of soft materials. J. Rheol. 54, 187–195 (2010)

    Article  CAS  Google Scholar 

  • R.H. Ewoldt, Defining nonlinear rheological material functions for oscillatory shear. J. Rheol. 57, 177–195 (2013)

    Article  CAS  Google Scholar 

  • R.H. Ewoldt, N.A. Bharadwaj, Low-dimensional intrinsic material functions for nonlinear viscoelasticity. Rheol. Acta 52, 201–219 (2013)

    Article  CAS  Google Scholar 

  • R.H. Ewoldt, G.H. McKinley, On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves. Rheol. Acta 49, 213–219 (2010)

    Article  CAS  Google Scholar 

  • R.H. Ewoldt, A.E. Hosoi, G.H. McKinley, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52, 1427–1458 (2008)

    Article  CAS  Google Scholar 

  • R.H. Ewoldt, P. Winter, J. Maxey, G.H. McKinley, Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol. Acta 49, 191–212 (2010)

    Article  CAS  Google Scholar 

  • A.J. Giacomin, J.G. Oakley, Obtaining Fourier series graphically from large amplitude oscillatory shear loops. Rheol. Acta 32, 328–332 (1993)

    Article  CAS  Google Scholar 

  • A.J. Giacomin, T. Samurkas, J.M. Dealy, A novel sliding plate rheometer for molten plastics. Polym. Eng. Sci. 29, 499–504 (1989)

    Article  CAS  Google Scholar 

  • A.J. Giacomin, R.B. Bird, L.M. Johnson, A.W. Mix, Large–Amplitude oscillatory shear flow from the co-rotational maxwell model. J. Non-Newtonian Fluid Mech. 166, 1081–1099 (2011)

    Article  CAS  Google Scholar 

  • A.J. Giacomin, C. Saengow, M. Guay, C. Kolitawong, Padé approximants for large amplitude oscillatory shear flow. Rheol. Acta 54, 679–693 (2015)

    Article  CAS  Google Scholar 

  • X. Gong, Y. Xu, S. Xuan, C. Guo, L. Zong, W. Jiang, The investigation on the nonlinearity of plasticine-like magnetorehological material under oscillatory shear rheometry. J. Rheol. 56, 1375–1391 (2012)

    Article  CAS  Google Scholar 

  • A.K. Gurnon, N.J. Wagner, Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: giesekus model of banding and nonbanding wormlike micelles. J. Rheol. 56, 333–351 (2012)

    Article  CAS  Google Scholar 

  • E. Helfand, D.C. Pearson, Calculation of the nonlinear stress of polymers in oscillatory shear fields. J. Polym. Sci. Polym. Phys. Ed. 20, 1249–1258 (1982)

    Article  CAS  Google Scholar 

  • K. Hyun, A study on the nonlinear response of viscoelastic complex fluids under large amplitude oscillatory shear flow, Ph.D. thesis supervised by Prof. S. J. Lee, (Seoul National University, Seoul, 2005)

    Google Scholar 

  • K. Hyun, M. Wilhelm, Establishing a new mechanical nonlinear coefficient Q from FT-Rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules 42, 411–422 (2009)

    Article  CAS  Google Scholar 

  • K. Hyun, S.H. Kim, K.H. Ahn, S.J. Lee, Large amplitude oscillatory shear as a way to classify the complex fluids. J. Non-Newtonian Fluid Mech. 107, 51–65 (2002)

    Article  CAS  Google Scholar 

  • K. Hyun, K.H. Ahn, S.J. Lee, M. Sugimoto, K. Koyama, Degree of branching of polypropylene measured from Fourier-transform rheology. Rheol. Acta 46, 123–129 (2006)

    Article  Google Scholar 

  • K. Hyun, E.S. Baik, K.H. Ahn, S.J. Lee, M. Sugimoto, K. Koyama, Fourier–transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts. J. Rheol. 51, 1319–1342 (2007)

    Article  CAS  Google Scholar 

  • K. Hyun, M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, G.H. McKinley, A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 36, 1697–1753 (2011)

    Article  CAS  Google Scholar 

  • K. Hyun, W. Kim, S.J. Park, M. Wilhelm, Numerical simulation results of the nonlinear coefficient Q from FT-rheology using a single mode pom-pom model. J. Rheol. 57, 1–25 (2013)

    Article  CAS  Google Scholar 

  • A.I. Isayev, C.M. Wong, Parallel superposition of small- and large-amplitude oscillations upon steady shear flow of polymer fluids. J. Polym. Sci. Polym. Phys. Ed. 26, 2303–2327 (1988)

    Article  CAS  Google Scholar 

  • M. Kempf, D. Ahirwal, M. Cziep, M. Wilhelm, Synthesis and linear and nonlinear melt rheology of well-defined comb architectures of PS and PpMS with a low and controlled degree of long-chain branching. Macromolecules 46, 4978–4994 (2013)

    Article  CAS  Google Scholar 

  • H. Kim, K. Hyun, D.-J. Kim, K.S. Cho, Comparison of interpretation methods for large amplitude oscillatory shear response. Korea–Aust. Rheol. J. 18, 91–98 (2006)

    Google Scholar 

  • R.G. Larson, Constitutive equations for polymer melts and solutions (Butterworths, UK, 1988)

    Google Scholar 

  • J. Läuger, H. Stettin, Differences between stress and strain control in the non-linear behavior of complex fluids. Rheol. Acta 49, 909–930 (2010)

    Article  Google Scholar 

  • X. Li, S.-Q. Wang, X. Wang, Nonlinearity in large amplitude oscillatory shear (LAOS) of different viscoelastic materials. J. Rheol. 53, 1255–1274 (2009)

    Article  CAS  Google Scholar 

  • H.T. Lim, K.H. Ahn, J.S. Hong, K. Hyun, Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow. J. Rheol. 57, 767–789 (2013)

    Article  CAS  Google Scholar 

  • T. Matsumoto, Y. Segawa, Y. Warashina, S. Onogi, Nonlinear behavior of viscoelastic materials. II. the method of analysis and temperature dependence of nonlinear viscoelastic functions. Trans. Soc. Rheol. 17, 47–62 (1973)

    Article  CAS  Google Scholar 

  • J.G. Nam, K. Hyun, K.H. Ahn, S.J. Lee, Prediction of normal stresses under large amplitude oscillatory shear flow. J. Non-Newtonian Fluid Mech. 150, 1–10 (2008)

    Article  CAS  Google Scholar 

  • J.G. Nam, K.H. Ahn, S.J. Lee, K. Hyun, First normal stress difference of entangled polymer solutions in large amplitude oscillatory shear flow. J. Rheol. 54, 1243–1266 (2010)

    Article  CAS  Google Scholar 

  • T. Neidhöfer, M. Wilhelm, B. Debbaut, Fourier-transform rheology experiments and finite-element simulations on linear polystyrene solutions. J. Rheol. 47, 1351–1371 (2003)

    Article  Google Scholar 

  • A. Papon, S. Merabia, L. Guy, F. Lequeux, H. Montes, P. Sotta, D.L. Long, Unique nonlinear behavior of nano-filled elastomers: from the onset of strain softening to large amplitude shear deformations. Macromolecules 45, 2891–2904 (2012)

    Article  CAS  Google Scholar 

  • E.-K. Park, K.-W. Song, Rheological evaluation of petroleum jelly as a base material in ointment and cream formulations with respect to rubbing onto the human body. Korea–Aust. Rheol. J. 22, 279–289 (2010)

    Google Scholar 

  • A.R. Payne, The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J. Appl. Polym. Sci. 6, 57–63 (1962)

    Article  CAS  Google Scholar 

  • D.S. Pearson, W.E. Rochefort, Behavior of concentrated polystyrene solutions in large-amplitude oscillatory shear fields, J. Polym. Sci., Part B: Polym. Phys. Ed., 20, 83–98 (1982)

    Google Scholar 

  • W. Pilippoff, Vibrational measurements with large amplitudes. Trans. Soc. Rheol. 10, 317–334 (1966)

    Article  Google Scholar 

  • F. Renou, J. Stellbrink, G. Petekidis, Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS). J. Rheol. 54, 1219–1242 (2010)

    Article  CAS  Google Scholar 

  • S.A. Rogers, A sequence of physical processes determined and quantified in LAOS: An instantaneous local 2D/3D approach. J. Rheol. 56, 1129–1151 (2012)

    Article  CAS  Google Scholar 

  • S.A. Rogers, B.M. Erwin, D. Vlassopoulos, M. Cloitre, A sequence of physical processes and quantified in LAOS: application to a yield stress fluid. J. Rheol. 55, 435–458 (2011)

    Article  CAS  Google Scholar 

  • C. Saengow, A.J. Giacomin, C. Kolitawong, Exact analytical solution for large-amplitude oscillatory shear flow. Macromol. Theory Simul. 24, 352–392 (2015)

    Article  CAS  Google Scholar 

  • R. Salehiyan, Y. Yoo, W.J. Choi, K. Hyun, Characterization of morphologies of compatibilized polypropylene/ polystyrene blends with nanoparticles via nonlinear rheological properties from FT-rheology. Macromolecules 47, 4066–4076 (2014)

    Article  CAS  Google Scholar 

  • E. Senses, P. Akcora, An interface-driven stiffening mechanism in polymer nanocomposites. Macromolecules 46, 1868–1874 (2013)

    Article  CAS  Google Scholar 

  • H.G. Sim, K.H. Ahn, S.J. Lee, Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: a guide for classification. J. Non-Newtonian Fluid Mech. 112, 237–250 (2003)

    Article  CAS  Google Scholar 

  • J.W. Swan, R.N. Zia, J.F. Brady, Large amplitude oscillatory microrheology. J. Rheol. 58, 1–41 (2014)

    Article  CAS  Google Scholar 

  • T.T. Tee, J.M. Dealy, Nonlinear viscoelasticity of polymer melts. J. Rheol. 19, 595–615 (1975)

    Article  CAS  Google Scholar 

  • D. van Dusschoten, M. Wilhelm, H.W. Spiess, Two-dimensional Fourier transform rheology. J. Rheol. 45, 1319–1339 (2001a)

    Article  Google Scholar 

  • D. van Dusschoten, M. Wilhelm, H.W. Spiess, Two-dimensional Fourier transform rheology. J. Rheol. 45, 1319–1339 (2001b)

    Article  Google Scholar 

  • I. Vittorias, M. Parkinson, K. Klimke, B. Debbaut, M. Wilhelm, Detection and quantification of industrial polyethylene branching topologies via Fourier-transform rheology, NMR and simulation using the pom-pom model. Rheol. Acta 46, 321–340 (2007)

    Article  CAS  Google Scholar 

  • M.H. Wagner, R. Rubio, H. Bastian, The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J. Rheol. 45, 1387–1412 (2001)

    Article  CAS  Google Scholar 

  • M.H. Wagner, V.H. Rolón-Garrido, K. Hyun, M. Wilhelm, Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymer. J. Rheol. 55, 495–516 (2011)

    Article  CAS  Google Scholar 

  • M. Wilhelm, D. Maring, H.-W. Spiess, Fourier-transform rheology. Rheol. Acta 37, 399–405 (1998)

    Article  CAS  Google Scholar 

  • M. Wilhelm, P. Reinheimer, M. Ortseifer, High sensitivity Fourier-transform rheology. Rheol. Acta 38, 349–356 (1999)

    Article  CAS  Google Scholar 

  • M. Wilhelm, P. Reinheimer, M. Ortseifer, T. Neidhöfer, H.W. Spiess, The crossover between linear and nonlinear mechanical behavior in polymer solutions as detected by Fourier-transform rheology. Rheol. Acta 39, 241–247 (2000)

    Article  CAS  Google Scholar 

  • H.M. Wyss, K. Miyazaki, J. Mattsson, Z. Hu, D.R. Reichman, D.A. Weitz, Strain-rate frequency superposition: a rheological probe of structural relaxation in soft materials. Phys. Rev. Lett. 98, 238303 (2007)

    Article  Google Scholar 

  • W. Yu, P. Wang, C. Zhou, General Stress decomposition in nonlinear oscillatory shear flow. J. Rheol. 53, 215–238 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Soo Cho .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cho, K.S. (2016). Large Amplitude Oscillatory Shear. In: Viscoelasticity of Polymers. Springer Series in Materials Science, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7564-9_11

Download citation

Publish with us

Policies and ethics