Skip to main content

Adoptive Cellular Therapy (ACT) for Cancer Treatment

  • Chapter
  • First Online:
Progress in Cancer Immunotherapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 909))

Abstract

Adoptive cellular therapy (ACT) with various lymphocytes or antigen-presenting cells is one stone in the pillar of cancer immunotherapy, which relies on the tumor-specific T cell. The transfusion of bulk T-cell population into patients is an effective treatment for regression of cancer. In this chapter, we summarize the development of various strategies in ACT for cancer immunotherapy and discuss some of the latest progress and obstacles in technical, safety, and even regulatory aspects to translate these technologies to the clinic. ACT is becoming a potentially powerful approach to cancer treatment. Further experiments and clinical trials are needed to optimize this strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi, M., King, J. W., et al. (2011). CD3 limits the efficacy of TCR gene therapy in vivo. Blood, 118(13), 3528–3537.

    Article  CAS  PubMed  Google Scholar 

  • Ahmadzadeh, M., Johnson, L. A., et al. (2009). Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 114(8), 1537–1544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Airoldi, I., Bertaina, A., et al. (2015). gammadelta T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-alphabeta+/CD19+ lymphocytes. Blood, 125(15), 2349–2358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander, S., & Friedl, P. (2012). Cancer invasion and resistance: Interconnected processes of disease progression and therapy failure. Trends in Molecular Medicine, 18(1), 13–26.

    Article  PubMed  Google Scholar 

  • Altvater, B., Landmeier, S., et al. (2009). 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clinical Cancer Research, 15(15), 4857–4866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amir, A. L., van der Steen, D. M., et al. (2011). PRAME-specific allo-HLA–restricted T cells with potent antitumor reactivity useful for therapeutic T-cell receptor gene transfer. Clinical Cancer Research, 17(17), 5615–5625.

    Article  CAS  PubMed  Google Scholar 

  • Amsen, D., Blander, J. M., et al. (2004). Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell, 117(4), 515–526.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, R. S., Thrue, C. A., et al. (2012). Dissection of T-cell antigen specificity in human melanoma. Cancer Research, 72(7), 1642–1650.

    Article  CAS  PubMed  Google Scholar 

  • Apetoh, L., Ghiringhelli, F., et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine, 13(9), 1050–1059.

    Article  CAS  PubMed  Google Scholar 

  • Arai, S., Meagher, R., et al. (2008). Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: A phase I trial. Cytotherapy, 10(6), 625–632.

    Article  CAS  PubMed  Google Scholar 

  • Araki, R., Uda, M., et al. (2013). Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature, 494(7435), 100–104.

    Article  CAS  PubMed  Google Scholar 

  • Atkins, M. B., Gould, J. A., et al. (1986). Phase I evaluation of recombinant interleukin-2 in patients with advanced malignant disease. Journal of Clinical Oncology, 4(9), 1380–1391.

    CAS  PubMed  Google Scholar 

  • Atkins, M. B., Kunkel, L., et al. (2000). High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: Long-term survival update. The Cancer Journal from Scientific American, 6(Suppl 1), S11–S14.

    PubMed  Google Scholar 

  • Attig, S., Hennenlotter, J., et al. (2009). Simultaneous infiltration of polyfunctional effector and suppressor T cells into renal cell carcinomas. Cancer Research, 69(21), 8412–8419.

    Article  CAS  PubMed  Google Scholar 

  • Awwad, M., & North, R. J. (1988). Cyclophosphamide (Cy)-facilitated adoptive immunotherapy of a Cy-resistant tumour. Evidence that Cy permits the expression of adoptive T-cell mediated immunity by removing suppressor T cells rather than by reducing tumour burden. Immunology, 65(1), 87–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, J., Verneris, M. R., et al. (2001). Expansion of cytolytic CD8(+) natural killer T cells with limited capacity for graft-versus-host disease induction due to interferon gamma production. Blood, 97(10), 2923–2931.

    Article  CAS  PubMed  Google Scholar 

  • Bansal, R. R., Mackay, C. R., et al. (2012). IL-21 enhances the potential of human gammadelta T cells to provide B-cell help. European Journal of Immunology, 42(1), 110–119.

    Article  CAS  PubMed  Google Scholar 

  • Bendle, G. M., Linnemann, C., et al. (2010). Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nature Medicine, 16(5), 565–570. 561p following 570.

    Article  CAS  PubMed  Google Scholar 

  • Benson, D. M., Jr., Bakan, C. E., et al. (2010). The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: A therapeutic target for CT-011, a novel monoclonal anti–PD-1 antibody. Blood, 116(13), 2286–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berdeja, J. G., Hess, A., et al. (2007). Systemic interleukin-2 and adoptive transfer of lymphokine-activated killer cells improves antibody-dependent cellular cytotoxicity in patients with relapsed B-cell lymphoma treated with rituximab. Clinical Cancer Research, 13(8), 2392–2399.

    Article  CAS  PubMed  Google Scholar 

  • Besser, M. J., Shapira-Frommer, R., et al. (2009). Minimally cultured or selected autologous tumor-infiltrating lymphocytes after a lympho-depleting chemotherapy regimen in metastatic melanoma patients. Journal of Immunotherapy, 32(4), 415–423.

    Article  CAS  PubMed  Google Scholar 

  • Besser, M. J., Shapira-Frommer, R., et al. (2010). Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clinical Cancer Research, 16(9), 2646–2655.

    Article  CAS  PubMed  Google Scholar 

  • Besser, M. J., Shapira-Frommer, R., et al. (2013). Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: Intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clinical Cancer Research, 19(17), 4792–4800.

    Article  CAS  PubMed  Google Scholar 

  • Bindea, G., Mlecnik, B., et al. (2014). The immune landscape of human tumors: Implications for cancer immunotherapy. Oncoimmunology, 3(1), e27456.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blankenstein, T., Leisegang, M., et al. (2015). Targeting cancer-specific mutations by T cell receptor gene therapy. Current Opinion in Immunology, 33, 112–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock, A. M., Knorr, D., et al. (2013). Development, expansion, and in vivo monitoring of human NK cells from human embryonic stem cells (hESCs) and and induced pluripotent stem cells (iPSCs). Journal of Visualized Experiments, 74, e50337.

    PubMed  Google Scholar 

  • Boissel, L., Betancur, M., et al. (2009). Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leukemia Research, 33(9), 1255–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boissel, L., Betancur, M., et al. (2012). Comparison of mRNA and lentiviral based transfection of natural killer cells with chimeric antigen receptors recognizing lymphoid antigens. Leukemia and Lymphoma, 53(5), 958–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boissel, L., Betancur-Boissel, M., et al. (2013). Retargeting NK-92 cells by means of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent cellular cytotoxicity. Oncoimmunology, 2(10), e26527.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boldt, D. H., Mills, B. J., et al. (1988). Laboratory correlates of adoptive immunotherapy with recombinant interleukin-2 and lymphokine-activated killer cells in humans. Cancer Research, 48(15), 4409–4416.

    CAS  PubMed  Google Scholar 

  • Bollard, C. M., Gottschalk, S., et al. (2014). Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. Journal of Clinical Oncology, 32(8), 798–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahmer, J. R., Tykodi, S. S., et al. (2012). Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. New England Journal of Medicine, 366(26), 2455–2465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brentjens, R. J., Santos, E., et al. (2007). Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clinical Cancer Research, 13(18 Pt 1), 5426–5435.

    Article  CAS  PubMed  Google Scholar 

  • Brentjens, R. J., Riviere, I., et al. (2011). Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, 118(18), 4817–4828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridgeman, J. S., Hawkins, R. E., et al. (2010). Building better chimeric antigen receptors for adoptive T cell therapy. Current Gene Therapy, 10(2), 77–90.

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann, O. A., Bruns, F., et al. (1999). Possible synergy of radiotherapy and chemo-immunotherapy in metastatic renal cell carcinoma (RCC). Anticancer Research, 19(2C), 1583–1587.

    CAS  PubMed  Google Scholar 

  • Burns, L. J., Weisdorf, D. J., et al. (2003). IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: A phase I/II trial. Bone Marrow Transplantation, 32(2), 177–186.

    Article  CAS  PubMed  Google Scholar 

  • Butler, M. O., Friedlander, P., et al. (2011). Establishment of antitumor memory in humans using in vitro-educated CD8+ T cells. Science Translational Medicine, 3, 80ra34.

    Article  PubMed  CAS  Google Scholar 

  • Caccamo, N., Todaro, M., et al. (2012). IL-21 regulates the differentiation of a human gammadelta T cell subset equipped with B cell helper activity. PLoS One, 7(7), e41940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron, B. J., Gerry, A. B., et al. (2013). Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Science Translational Medicine, 5(197), 197ra103.

    Article  PubMed  CAS  Google Scholar 

  • Capobianco, A., Rovere-Querini, P., et al. (2006). Melanoma cells interfere with the interaction of dendritic cells with NK/LAK cells. International Journal of Cancer, 119(12), 2861–2869.

    Article  CAS  PubMed  Google Scholar 

  • Carpenito, C., Milone, M. C., et al. (2009a). Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proceedings of the National Academy of Sciences, 106(9), 3360–3365.

    Article  CAS  Google Scholar 

  • Carpenito, C., Milone, M. C., et al. (2009b). Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3360–3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carreno, B. M., Magrini, V., et al. (2015). Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 348(6236), 803–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cecco, S., Muraro, E., et al. (2011). Cancer vaccines in phase II/III clinical trials: State of the art and future perspectives. Current Cancer Drug Targets, 11(1), 85–102.

    Article  CAS  PubMed  Google Scholar 

  • Chambers, J. D., & Neumann, P. J. (2011). Listening to provenge – What a costly cancer treatment says about future medicare policy. New England Journal of Medicine, 364(18), 1687–1689.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., & Flies, D. B. (2013). Molecular mechanisms of T cell co-stimulation and co-inhibition. Nature Reviews Immunology, 13(4), 227–242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chhabra, A. (2011). TCR-engineered, customized, antitumor T cells for cancer immunotherapy: Advantages and limitations. ScientificWorldJournal, 11, 121–129.

    Article  CAS  PubMed  Google Scholar 

  • Chi, K. H., Liu, S. J., et al. (2005). Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. Journal of Immunotherapy, 28(2), 129–135.

    Article  PubMed  Google Scholar 

  • Chia, W. K., Teo, M., et al. (2014). Adoptive T-cell transfer and chemotherapy in the first-line treatment of metastatic and/or locally recurrent nasopharyngeal carcinoma. Molecular Therapy, 22(1), 132–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chmielewski, M., & Abken, H. (2012). CAR T cells transform to trucks: Chimeric antigen receptor-redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer. Cancer Immunology, Immunotherapy, 61(8), 1269–1277.

    Article  CAS  PubMed  Google Scholar 

  • Chmielewski, M., & Abken, H. (2015). TRUCKs: The fourth generation of CARs. Expert Opinion on Biological Therapy, 15(8), 1145–1154.

    Google Scholar 

  • Chmielewski, M., Hombach, A. A., et al. (2014). Of CARs and TRUCKs: Chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunology Reviews, 257(1), 83–90.

    Article  CAS  Google Scholar 

  • Chometon, G., & Jendrossek, V. (2009). Targeting the tumour stroma to increase efficacy of chemo-and radiotherapy. Clinical and Translational Oncology, 11(2), 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Chu, J., Deng, Y., et al. (2014). CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia, 28(4), 917–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay, T. M., Custer, M. C., et al. (1999). Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. The Journal of Immunology, 163(1), 507–513.

    CAS  PubMed  Google Scholar 

  • Coffelt, S. B., Kersten, K., et al. (2015). IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature, 522(7556), 345–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, C. J., Zheng, Z., et al. (2005). Recognition of fresh human tumor by human peripheral blood lymphocytes transduced with a bicistronic retroviral vector encoding a murine anti-p53 TCR. Journal of Immunology, 175(9), 5799–5808.

    Article  CAS  Google Scholar 

  • Cohen, C. J., Zhao, Y., et al. (2006). Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Research, 66(17), 8878–8886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, C. J., Li, Y. F., et al. (2007). Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Research, 67(8), 3898–3903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordova, A., Toia, F., et al. (2012). Characterization of human gammadelta T lymphocytes infiltrating primary malignant melanomas. PLoS One, 7(11), e49878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia, D. V., Fogli, M., et al. (2011). Differentiation of human peripheral blood Vdelta1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood, 118(4), 992–1001.

    Article  CAS  PubMed  Google Scholar 

  • Corrigan-Curay, J., Kiem, H. P., et al. (2014). T-cell immunotherapy: Looking forward. Molecular Therapy, 22(9), 1564–1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couper, K. N., Lanthier, P. A., et al. (2009). Anti-CD25 antibody-mediated depletion of effector T cell populations enhances susceptibility of mice to acute but not chronic Toxoplasma gondii infection. Journal of Immunology, 182(7), 3985–3994.

    Article  CAS  Google Scholar 

  • Crompton, J. G., Sukumar, M., et al. (2015). Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Research, 75(2), 296–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curran, M. A., Kim, M., et al. (2011). Combination CTLA-4 blockade and 4-1BB activation enhances tumor rejection by increasing T-cell infiltration, proliferation, and cytokine production. PLoS One, 6(4), e19499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curti, A., Ruggeri, L., et al. (2011). Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood, 118(12), 3273–3279.

    Article  CAS  PubMed  Google Scholar 

  • Dao, T., Yan, S., et al. (2013). Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Science Translational Medicine, 5(176), 176ra133–176ra133.

    Article  CAS  Google Scholar 

  • Darcy, P. K., Neeson, P., et al. (2014). Manipulating immune cells for adoptive immunotherapy of cancer. Current Opinion in Immunology, 27, 46–52.

    Article  CAS  PubMed  Google Scholar 

  • de la Cruz-Merino, L., Illescas-Vacas, A., et al. (2014). Radiation for awakening the dormant immune system, a promising challenge to be explored. Frontiers in Immunology, 5, 102.

    PubMed  PubMed Central  Google Scholar 

  • DembiĆ, Z., Haas, W., et al. (1985). Transfer of specificity by murine alpha and beta T-cell receptor genes. Nature, 320(6059), 232–238.

    Article  Google Scholar 

  • Dembic, Z., Haas, W., et al. (1986). Transfer of specificity by murine alpha and beta T-cell receptor genes. Nature, 320(6059), 232–238.

    Article  CAS  PubMed  Google Scholar 

  • Derre, L., Bruyninx, M., et al. (2007). In vivo persistence of codominant human CD8+ T cell clonotypes is not limited by replicative senescence or functional alteration. Journal of Immunology, 179(4), 2368–2379.

    Article  CAS  Google Scholar 

  • Di Mitri, D., Toso, A., et al. (2015). Molecular pathways: Targeting tumor-infiltrating myeloid-derived suppressor cells for cancer therapy. Clinical Cancer Research, 21(14), 3108–3112.

    Article  PubMed  CAS  Google Scholar 

  • Dieli, F., Vermijlen, D., et al. (2007). Targeting human {gamma}delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Research, 67(15), 7450–7457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillman, R. O., Duma, C. M., et al. (2004). Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma. Journal of Immunotherapy, 27(5), 398–404.

    Article  PubMed  Google Scholar 

  • Dillman, R. O., Duma, C. M., et al. (2009). Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma. Journal of Immunotherapy, 32(9), 914–919.

    Article  PubMed  Google Scholar 

  • Ding, Z. C., Lu, X., et al. (2014). Immunosuppressive myeloid cells induced by chemotherapy attenuate antitumor CD4+ T-cell responses through the PD-1-PD-L1 axis. Cancer Research, 74(13), 3441–3453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley, M. E., Wunderlich, J. R., et al. (2002a). Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science, 298(5594), 850–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley, M. E., Wunderlich, J. R., et al. (2002b). A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. Journal of Immunotherapy, 25(3), 243–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley, M. E., Wunderlich, J. R., et al. (2005). Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. Journal of Clinical Oncology, 23(10), 2346–2357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley, M. E., Yang, J. C., et al. (2008). Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens. Journal of Clinical Oncology, 26(32), 5233–5239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley, M. E., Gross, C. A., et al. (2010). CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clinical Cancer Research, 16(24), 6122–6131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley, M. E., Gross, C. A., et al. (2013). Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. Journal of Clinical Oncology, 31(17), 2152–2159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn, G. P., Old, L. J., et al. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 21(2), 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Duong, C. P., Yong, C. S., et al. (2015). Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Molecular Immunology, 67(2 Pt A), 46–57.

    Article  CAS  PubMed  Google Scholar 

  • Eguizabal, C., Zenarruzabeitia, O., et al. (2014). Natural killer cells for cancer immunotherapy: Pluripotent stem cells-derived NK cells as an immunotherapeutic perspective. Frontiers in Immunology, 5, 439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellebaek, E., Iversen, T. Z., et al. (2012). Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. Journal of Translational Medicine, 10, 169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errico, A. (2015). Genetics: Clonal and subclonal events in cancer evolution – Optimizing cancer therapy. Nature Reviews Clinical Oncology, 12(7), 372.

    Article  PubMed  Google Scholar 

  • Esser, R., Muller, T., et al. (2012). NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. Journal of Cellular and Molecular Medicine, 16(3), 569–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finke, S., Trojaneck, B., et al. (1998). Increase of proliferation rate and enhancement of antitumor cytotoxicity of expanded human CD3+ CD56+ immunologic effector cells by receptor-mediated transfection with the interleukin-7 gene. Gene Therapy, 5(1), 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Finney, H. M., Lawson, A. D., et al. (1998). Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. Journal of Immunology, 161(6), 2791–2797.

    CAS  Google Scholar 

  • Finney, H. M., Akbar, A. N., et al. (2004). Activation of resting human primary T cells with chimeric receptors: Costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRζ chain. The Journal of Immunology, 172(1), 104–113.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, R. I., Rosenberg, S. A., et al. (2000). Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. The Cancer Journal from Scientific American, 6(Suppl 1), S55–S57.

    PubMed  Google Scholar 

  • Flanigan, R. C., Mickisch, G., et al. (2004). Cytoreductive nephrectomy in patients with metastatic renal cancer: A combined analysis. Journal of Urology, 171(3), 1071–1076.

    Article  PubMed  Google Scholar 

  • Fourcade, J., Sun, Z., et al. (2010). Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. Journal of Experimental Medicine, 207(10), 2175–2186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frantz, S. (2011). Engineered T-cell therapy shows efficacy in blood cancer. Nature Biotechnology, 29(10), 853–855.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, R. S., Spies, A. G., et al. (2004). Identification of naturally processed CD8 T cell epitopes from prostein, a prostate tissue-specific vaccine candidate. European Journal of Immunology, 34(4), 1091–1101.

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi, L., Vacchelli, E., et al. (2014). Classification of current anticancer immunotherapies. Oncotarget, 5(24), 12472–12508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasser, S., Orsulic, S., et al. (2005). The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature, 436(7054), 1186–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gattinoni, L., Finkelstein, S. E., et al. (2005). Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. The Journal of Experimental Medicine, 202(7), 907–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geller, M. A., & Miller, J. S. (2011). Use of allogeneic NK cells for cancer immunotherapy. Immunotherapy, 3(12), 1445–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geller, M. A., Cooley, S., et al. (2011). A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy, 13(1), 98–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiringhelli, F., Menard, C., et al. (2007). Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunology, Immunotherapy, 56(5), 641–648.

    Article  CAS  PubMed  Google Scholar 

  • Gooden, M. J., de Bock, G. H., et al. (2011). The prognostic influence of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. British Journal of Cancer, 105(1), 93–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorelik, L., & Flavell, R. A. (2001). Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Medicine, 7(10), 1118–1122.

    Article  CAS  PubMed  Google Scholar 

  • Grada, Z., Hegde, M., et al. (2013). TanCAR: A novel bispecific chimeric antigen receptor for cancer immunotherapy. Molecular Therapy: Nucleic Acids, 2(7), e105.

    PubMed  PubMed Central  Google Scholar 

  • Grimm, E. A., Mazumder, A., et al. (1982). Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. The Journal of Experimental Medicine, 155(6), 1823–1841.

    Article  CAS  PubMed  Google Scholar 

  • Gross, G., Waks, T., et al. (1989). Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proceedings of the National Academy of Sciences of the United States of America, 86(24), 10024–10028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grupp, S. A., Kalos, M., et al. (2013). Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. New England Journal of Medicine, 368(16), 1509–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guha, P., Morgan, J. W., et al. (2013). Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell, 12(4), 407–412.

    Article  CAS  PubMed  Google Scholar 

  • Haabeth, O. A., Lorvik, K. B., et al. (2011). Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nature Communications, 2, 240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hadrup, S. R., Bakker, A. H., et al. (2009). Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nature Methods, 6(7), 520–526.

    Article  CAS  PubMed  Google Scholar 

  • Halapi, E., Yamamoto, Y., et al. (1993). Restricted T cell receptor V-beta and J-beta usage in T cells from interleukin-2-cultured lymphocytes of ovarian and renal carcinomas. Cancer Immunology, Immunotherapy, 36(3), 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Hami, L. S., Green, C., et al. (2004). GMP production and testing of Xcellerated T cells for the treatment of patients with CLL. Cytotherapy, 6(6), 554–562.

    Article  CAS  PubMed  Google Scholar 

  • Hamid, O., Robert, C., et al. (2013). Safety and tumor responses with lambrolizumab (anti–PD-1) in melanoma. New England Journal of Medicine, 369(2), 134–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, S., Zhang, C., et al. (2014). Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. British Journal of Cancer, 110(10), 2560–2568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

    Article  CAS  PubMed  Google Scholar 

  • Hao, J., Dong, S., et al. (2011). Regulatory role of Vgamma1 gammadelta T cells in tumor immunity through IL-4 production. Journal of Immunology, 187(10), 4979–4986.

    Article  CAS  Google Scholar 

  • Hart, D., Xue, S., et al. (2008). Retroviral transfer of a dominant TCR prevents surface expression of a large proportion of the endogenous TCR repertoire in human T cells. Gene Therapy, 15(8), 625–631.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, K., Yonamine, K., et al. (1999). Clonal expansion of T cells that are specific for autologous ovarian tumor among tumor-infiltrating T cells in humans. Gynecologic Oncology, 74(1), 86–92.

    Article  CAS  PubMed  Google Scholar 

  • Haynes, N. M., van der Most, R. G., et al. (2008). Immunogenic anti-cancer chemotherapy as an emerging concept. Current Opinion in Immunology, 20(5), 545–557.

    Article  CAS  PubMed  Google Scholar 

  • Herberman, R. B., Nunn, M. E., et al. (1975). Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. International Journal of Cancer, 16(2), 216–229.

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs, C. S., Borman, Z. A., et al. (2009). Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17469–17474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodi, F. S., O’Day, S. J., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 363(8), 711–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogquist, K. A., Baldwin, T. A., et al. (2005). Central tolerance: Learning self-control in the thymus. Nature Reviews Immunology, 5(10), 772–782.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, E. C. (1985). Immunology of tumor infiltrating lymphocytes. Annals of Surgery, 201(2), 158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hombach, A. A., & Abken, H. (2011). Costimulation by chimeric antigen receptors revisited the T cell antitumor response benefits from combined CD28-OX40 signalling. International Journal of Cancer, 129(12), 2935–2944.

    Article  CAS  PubMed  Google Scholar 

  • Hombach, A. A., Heiders, J., et al. (2012). OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4+ T cells. Oncoimmunology, 1(4), 458–466.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hongeng, S., Petvises, S., et al. (2003). Generation of CD3+ CD56+ cytokine-induced killer cells and their in vitro cytotoxicity against pediatric cancer cells. International Journal of Hematology, 77(2), 175–179.

    Article  PubMed  Google Scholar 

  • Huang, J., Khong, H. T., et al. (2005). Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. Journal of Immunotherapy, 28(3), 258–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudecek, M., Lupo-Stanghellini, M. T., et al. (2013). Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clinical Cancer Research, 19(12), 3153–3164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui, D., Qiang, L., et al. (2009). A randomized, controlled trial of postoperative adjuvant cytokine-induced killer cells immunotherapy after radical resection of hepatocellular carcinoma. Digestive and Liver Disease, 41(1), 36–41.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, W. T., Adams, S. F., et al. (2012). Prognostic significance of tumor-infiltrating T cells in ovarian cancer: A meta-analysis. Gynecologic Oncology, 124(2), 192–198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ismail-Zade, R. S., Zhavrid, E. A., et al. (2010). Use of LAK-cells and systemic chemotherapy with hyperthermia in the management of chemo-resistant tumors. Voprosy Onkologii, 56(6), 681–686.

    CAS  PubMed  Google Scholar 

  • Itzhaki, O., Hovav, E., et al. (2011). Establishment and large-scale expansion of minimally cultured “young” tumor infiltrating lymphocytes for adoptive transfer therapy. Journal of Immunotherapy, 34(2), 212–220.

    Article  PubMed  Google Scholar 

  • Jain, R. K. (2013). Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. Journal of Clinical Oncology, 31(17), 2205–2218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen, E. M., Lemmens, E. E., et al. (2003). CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature, 421(6925), 852–856.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, G., Yang, H. R., et al. (2008). Hepatic stellate cells preferentially expand allogeneic CD4+ CD25+ FoxP3+ regulatory T cells in an IL-2-dependent manner. Transplantation, 86(11), 1492–1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, H., Zhang, W., et al. (2014). Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Molecular Oncology, 8(2), 297–310.

    Article  CAS  PubMed  Google Scholar 

  • John, L. B., Devaud, C., et al. (2013). Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clinical Cancer Research, 19(20), 5636–5646.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, L. A., Morgan, R. A., et al. (2009). Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood, 114(3), 535–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorritsma, A., Gomez-Eerland, R., et al. (2007). Selecting highly affine and well-expressed TCRs for gene therapy of melanoma. Blood, 110(10), 3564–3572.

    Article  CAS  PubMed  Google Scholar 

  • Junker, N., Andersen, M. H., et al. (2011). Characterization of ex vivo expanded tumor infiltrating lymphocytes from patients with malignant melanoma for clinical application. Journal of Skin Cancer, 2011, 574695.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kageyama, S., Ikeda, H., et al. (2015). Adoptive transfer of MAGE-A4 T-cell receptor gene-transduced lymphocytes in patients with recurrent esophageal cancer. Clinical Cancer Research, 21(10), 2268–2277.

    Article  CAS  PubMed  Google Scholar 

  • Kalaitsidou, M., Kueberuwa, G., et al. (2015). CAR T-cell therapy: Toxicity and the relevance of preclinical models. Immunotherapy, 7(5), 487–497.

    Article  CAS  PubMed  Google Scholar 

  • Kalos, M., Levine, B. L., et al. (2011). T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Science Translational Medicine, 3(95), 95ra73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko, S., Mastaglio, S., et al. (2009). IL-7 and IL-15 allow the generation of suicide gene-modified alloreactive self-renewing central memory human T lymphocytes. Blood, 113(5), 1006–1015.

    Article  CAS  PubMed  Google Scholar 

  • Kato, M., Goto, S., et al. (2010). Lymphokine-activated killer cell therapy combined with high-dose glucocorticoid showed clinical efficacy towards advanced lung carcinoma. Anticancer Research, 30(8), 3125–3128.

    CAS  PubMed  Google Scholar 

  • Keilholz, U., Scheibenbogen, C., et al. (1994). Regional adoptive immunotherapy with interleukin-2 and lymphokine-activated killer (LAK) cells for liver metastases. European Journal of Cancer, 30A(1), 103–105.

    Article  CAS  PubMed  Google Scholar 

  • Kershaw, M. H., Teng, M. W., et al. (2005). Supernatural T cells: Genetic modification of T cells for cancer therapy. Nature Reviews Immunology, 5(12), 928–940.

    Article  CAS  PubMed  Google Scholar 

  • Kershaw, M. H., Westwood, J. A., et al. (2006). A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clinical Cancer Research, 12(20), 6106–6115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kershaw, M. H., Westwood, J. A., et al. (2014). Clinical application of genetically modified T cells in cancer therapy. Clinical Translational Immunology, 3(5), e16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kessler, B., Hudrisier, D., et al. (1998). Peptide modification or blocking of CD8, resulting in weak TCR signaling, can activate CTL for Fas- but not perforin-dependent cytotoxicity or cytokine production. Journal of Immunology, 161(12), 6939–6946.

    CAS  Google Scholar 

  • Kiessling, R., Klein, E., et al. (1975). “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. European Journal of Immunology, 5(2), 112–117.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Iizuka, K., et al. (2000). In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 97(6), 2731–2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. Y., Son, Y. O., et al. (2006). Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Experimental and Molecular Medicine, 38(5), 474–484.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, H., & Yamaguchi, Y. (1997). A phase III randomized study of interleukin-2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma. Cancer, 80(1), 42–49.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, H., Iizasa, T., et al. (2008). Prospective phase II study of post-surgical adjuvant chemo-immunotherapy using autologous dendritic cells and activated killer cells from tissue culture of tumor-draining lymph nodes in primary lung cancer patients. Anticancer Research, 28(2B), 1229–1238.

    CAS  PubMed  Google Scholar 

  • Klaver, Y., Kunert, A., et al. (2015). Adoptive T-cell therapy: A need for standard immune monitoring. Immunotherapy, 7(5), 513–533.

    Article  CAS  PubMed  Google Scholar 

  • Kloss, C. C., Condomines, M., et al. (2013). Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nature Biotechnology, 31(1), 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Knorr, D. A., & Kaufman, D. S. (2010). Pluripotent stem cell-derived natural killer cells for cancer therapy. Translational Research, 156(3), 147–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knorr, D. A., Ni, Z., et al. (2013). Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Translation Medicine, 2(4), 274–283.

    Article  CAS  Google Scholar 

  • Kobayashi, H., Tanaka, Y., et al. (2011). A new indicator of favorable prognosis in locally advanced renal cell carcinomas: Gamma delta T-cells in peripheral blood. Anticancer Research, 31(3), 1027–1031.

    PubMed  Google Scholar 

  • Kochenderfer, J. N., Dudley, M. E., et al. (2015). Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. Journal of Clinical Oncology, 33(6), 540–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono, K., Takahashi, A., et al. (2002). Prognostic significance of adoptive immunotherapy with tumor-associated lymphocytes in patients with advanced gastric cancer: A randomized trial. Clinical Cancer Research, 8(6), 1767–1771.

    CAS  PubMed  Google Scholar 

  • Kowalczyk, D., Skorupski, W., et al. (1997). Flow cytometric analysis of tumour-infiltrating lymphocytes in patients with renal cell carcinoma. British Journal of Urology, 80(4), 543–547.

    Article  CAS  PubMed  Google Scholar 

  • Krause, S. W., Gastpar, R., et al. (2004). Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: A clinical phase i trial. Clinical Cancer Research, 10(11), 3699–3707.

    Article  CAS  PubMed  Google Scholar 

  • Kuball, J., Dossett, M. L., et al. (2007). Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood, 109(6), 2331–2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuball, J., Hauptrock, B., et al. (2009). Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain. Journal of Experimental Medicine, 206(2), 463–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhl, A. A., Pawlowski, N. N., et al. (2009). Human peripheral gammadelta T cells possess regulatory potential. Immunology, 128(4), 580–588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunert, A., Straetemans, T., et al. (2013). TCR-engineered T cells meet new challenges to treat solid tumors: Choice of antigen, T cell fitness, and sensitization of tumor milieu. Frontiers in Immunology, 4, 363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kvistborg, P., Philips, D., et al. (2014). Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Science Translational Medicine, 6(254), 254ra128.

    Article  PubMed  CAS  Google Scholar 

  • Labrecque, N., Whitfield, L. S., et al. (2001). How much TCR does a T cell need? Immunity, 15(1), 71–82.

    Article  CAS  PubMed  Google Scholar 

  • Lacuesta, K., Buza, E., et al. (2006). Assessing the safety of cytotoxic T lymphocytes transduced with a dominant negative transforming growth factor-beta receptor. Journal of Immunotherapy, 29(3), 250–260.

    Article  CAS  PubMed  Google Scholar 

  • Lamb, L. S., Jr., Musk, P., et al. (2001). Human gammadelta(+) T lymphocytes have in vitro graft vs leukemia activity in the absence of an allogeneic response. Bone Marrow Transplantation, 27(6), 601–606.

    Article  PubMed  Google Scholar 

  • Lamers, C. H., Gratama, J. W., et al. (2005). Parallel detection of transduced T lymphocytes after immunogene therapy of renal cell cancer by flow cytometry and real-time polymerase chain reaction: Implications for loss of transgene expression. Human Gene Therapy, 16(12), 1452–1462.

    Article  CAS  PubMed  Google Scholar 

  • Lamers, C. H., Sleijfer, S., et al. (2006). Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience. Journal of Clinical Oncology, 24(13), e20–e22.

    Article  PubMed  Google Scholar 

  • Larkin, J., Chiarion-Sileni, V., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. New England Journal of Medicine, 373(1), 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, M., Fonteneau, J. F., et al. (2001). Dendritic cells resurrect antigens from dead cells. Trends in Immunology, 22(3), 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, S., Queirolo, P., et al. (2013). The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-alpha production. Journal of Translational Medicine, 11(108.10), 1186.

    Google Scholar 

  • Leavy, O. (2010). Therapeutic antibodies: Past, present and future. Nature Reviews Immunology, 10(5), 297–297.

    Article  CAS  PubMed  Google Scholar 

  • Lee, A. J., Kim, S. G., et al. (2012). gammadelta T cells are increased in the peripheral blood of patients with gastric cancer. Clinica Chimica Acta, 413(19–20), 1495–1499.

    Article  CAS  Google Scholar 

  • Lee, D. W., Kochenderfer, J. N., et al. (2015a). T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet, 385(9967), 517–528.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. H., Lim, Y. S., et al. (2015b). Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology, 148, 1383.

    Article  CAS  PubMed  Google Scholar 

  • Leisegang, M., Engels, B., et al. (2008a). Enhanced functionality of T cell receptor-redirected T cells is defined by the transgene cassette. Journal of Molecular Medicine, 86(5), 573–583.

    Article  CAS  PubMed  Google Scholar 

  • Leisegang, M., Engels, B., et al. (2008b). Enhanced functionality of T cell receptor-redirected T cells is defined by the transgene cassette. Journal Molecule Medicine (Berlin), 86(5), 573–583.

    Article  CAS  Google Scholar 

  • Lesterhuis, W. J., Haanen, J. B., et al. (2011). Cancer immunotherapy–revisited. Nature Reviews Drug Discovery, 10(8), 591–600.

    Article  CAS  PubMed  Google Scholar 

  • Leuci, V., Mesiano, G., et al. (2014). Genetically redirected T lymphocytes for adoptive immunotherapy of solid tumors. Current Gene Therapy, 14(1), 52–62.

    Article  CAS  PubMed  Google Scholar 

  • Li, L.-P., Lampert, J. C., et al. (2010). Transgenic mice with a diverse human T cell antigen receptor repertoire. Nature Medicine, 16(9), 1029–1034.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Meng, F. D., et al. (2014). Impact of IL-2 and IL-2R SNPs on proliferation and tumor- killing activity of lymphokine-activated killer cells from healthy chinese blood donors. Asian Pacific Journal of Cancer Prevention, 15(18), 7965–7970.

    Article  PubMed  Google Scholar 

  • Linette, G. P., Stadtmauer, E. A., et al. (2013). Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood, 122(6), 863–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipowska-Bhalla, G., Gilham, D. E., et al. (2012). Targeted immunotherapy of cancer with CAR T cells: Achievements and challenges. Cancer Immunology, Immunotherapy, 61(7), 953–962.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., Zhang, W., et al. (2012). Randomized study of autologous cytokine-induced killer cell immunotherapy in metastatic renal carcinoma. Clinical Cancer Research, 18(6), 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  • Long, E. O., Kim, H. S., et al. (2013). Controlling natural killer cell responses: Integration of signals for activation and inhibition. Annual Review of Immunology, 31, 227–258.

    Article  CAS  PubMed  Google Scholar 

  • Loskog, A., Giandomenico, V., et al. (2006). Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia, 20(10), 1819–1828.

    Article  CAS  PubMed  Google Scholar 

  • Lozupone, F., Pende, D., et al. (2004). Effect of human natural killer and gammadelta T cells on the growth of human autologous melanoma xenografts in SCID mice. Cancer Research, 64(1), 378–385.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y. C., Yao, X., et al. (2014). Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clinical Cancer Research, 20(13), 3401–3410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutsiak, M. E., Semnani, R. T., et al. (2005). Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood, 105(7), 2862–2868.

    Article  CAS  PubMed  Google Scholar 

  • Ma, C., & Armstrong, A. W. (2014). Severe adverse events from the treatment of advanced melanoma: A systematic review of severe side effects associated with ipilimumab, vemurafenib, interferon alfa-2b, dacarbazine and interleukin-2. The Journal of Dermatological Treatment, 25(5), 401–408.

    Article  PubMed  CAS  Google Scholar 

  • Ma, C., Zhang, Q., et al. (2012). Tumor-infiltrating gammadelta T lymphocytes predict clinical outcome in human breast cancer. Journal of Immunology, 189(10), 5029–5036.

    Article  CAS  Google Scholar 

  • Ma, S., Cheng, Q., et al. (2014). IL-17A produced by gammadelta T cells promotes tumor growth in hepatocellular carcinoma. Cancer Research, 74(7), 1969–1982.

    Article  CAS  PubMed  Google Scholar 

  • Maher, J., Brentjens, R. J., et al. (2002). Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nature Biotechnology, 20(1), 70–75.

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud, S. M., Paish, E. C., et al. (2011). Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. Journal of Clinical Oncology, 29(15), 1949–1955.

    Article  PubMed  Google Scholar 

  • Maker, A. V., Phan, G. Q., et al. (2005). Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte–associated antigen 4 blockade and interleukin 2: A phase I/II study. Annals of Surgical Oncology, 12(12), 1005–1016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Märten, A., Ziske, C., et al. (2001). Interactions between dendritic cells and cytokine-induced killer cells lead to an activation of both populations. Journal of Immunotherapy, 24(6), 502–510.

    Article  PubMed  Google Scholar 

  • Marx, J. (2008). All in the stroma: Cancer’s Cosa Nostra. Science, 320(5872), 38–41.

    Article  CAS  PubMed  Google Scholar 

  • Maude, S. L., Frey, N., et al. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. New England Journal of Medicine, 371(16), 1507–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazumder, A., & Rosenberg, S. A. (1984). Successful immunotherapy of natural killer-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin 2. The Journal of Experimental Medicine, 159(2), 495–507.

    Article  CAS  PubMed  Google Scholar 

  • Melder, R. J., Whiteside, T. L., et al. (1988). A new approach to generating antitumor effectors for adoptive immunotherapy using human adherent lymphokine-activated killer cells. Cancer Research, 48(12), 3461–3469.

    CAS  PubMed  Google Scholar 

  • Menard, C., Martin, F., et al. (2008). Cancer chemotherapy: Not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunology, Immunotherapy, 57(11), 1579–1587.

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe, W., Anderson, J., et al. (2015). Anti-programmed cell death-1 (PD-1) monoclonal antibodies in treating advanced melanoma. Discovery Medicine, 19(106), 393–401.

    PubMed  Google Scholar 

  • Miller, J. S., Tessmer-Tuck, J., et al. (1997). Low dose subcutaneous interleukin-2 after autologous transplantation generates sustained in vivo natural killer cell activity. Biology of Blood and Marrow Transplantation, 3(1), 34–44.

    CAS  PubMed  Google Scholar 

  • Milone, M. C., Fish, J. D., et al. (2009). Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Molecular Therapy, 17(8), 1453–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchison, N. (1955). Studies on the immunological response to foreign tumor transplants in the mouse I. The role of lymph node cells in conferring immunity by adoptive transfer. The Journal of Experimental Medicine, 102(2), 157–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan, R. A., Dudley, M. E., et al. (2006). Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 314(5796), 126–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan, R. A., Chinnasamy, N., et al. (2013). Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. Journal of Immunotherapy, 36(2), 133–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motoyoshi, Y., Kaminoda, K., et al. (2006). Different mechanisms for anti-tumor effects of low- and high-dose cyclophosphamide. Oncology Reports, 16(1), 141–146.

    CAS  PubMed  Google Scholar 

  • Mule, J. J., Shu, S., et al. (1984). Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science, 225(4669), 1487–1489.

    Article  CAS  PubMed  Google Scholar 

  • Muller, T., Uherek, C., et al. (2008). Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunology, Immunotherapy, 57(3), 411–423.

    Article  PubMed  CAS  Google Scholar 

  • Muranski, P., Boni, A., et al. (2006). Increased intensity lymphodepletion and adoptive immunotherapy – How far can we go? Nature Clinical Practice Oncology, 3(12), 668–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muul, L. M., Spiess, P. J., et al. (1987). Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. Journal of Immunology, 138(3), 989–995.

    CAS  Google Scholar 

  • Nagaraj, S., Ziske, C., et al. (2004). Human cytokine-induced killer cells have enhanced in vitro cytolytic activity via non-viral interleukin-2 gene transfer. Genet Vaccines Therapy, 2(1), 12.

    Article  CAS  Google Scholar 

  • Nagorsen, D., Scheibenbogen, C., et al. (2003). Natural T cell immunity against cancer. Clinical Cancer Research, 9(12), 4296–4303.

    CAS  PubMed  Google Scholar 

  • Ni, Z., Knorr, D. A., et al. (2013). Hematopoietic and nature killer cell development from human pluripotent stem cells. Methods in Molecular Biology, 1029, 33–41.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, E., Ghorashian, S., et al. (2012). Improving TCR gene therapy for treatment of haematological malignancies. Advance Hematology, 2012, 404081.

    Google Scholar 

  • North, R. J. (1982). Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. Journal of Experimental Medicine, 155(4), 1063–1074.

    Article  CAS  PubMed  Google Scholar 

  • O’Brien, S. G., Guilhot, F., et al. (2003). Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. New England Journal of Medicine, 348(11), 994–1004.

    Article  PubMed  Google Scholar 

  • Obeid, M., Tesniere, A., et al. (2007). Ecto-calreticulin in immunogenic chemotherapy. Immunology Reviews, 220, 22–34.

    Article  CAS  Google Scholar 

  • Oberoi, P., & Wels, W. S. (2013). Arming NK cells with enhanced antitumor activity: CARs and beyond. Oncoimmunology, 2(8), e25220.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochi, T., Fujiwara, H., et al. (2011). Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood, 118(6), 1495–1503.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto, S., Mineno, J., et al. (2009). Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Research, 69(23), 9003–9011.

    Article  CAS  PubMed  Google Scholar 

  • Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, 12(4), 252–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, J. R., DiGiusto, D. L., et al. (2007). Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Molecular Therapy, 15(4), 825–833.

    CAS  PubMed  Google Scholar 

  • Park, T. S., Rosenberg, S. A., et al. (2011). Treating cancer with genetically engineered T cells. Trends in Biotechnology, 29(11), 550–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhurst, M. R., Riley, J. P., et al. (2011a). Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clinical Cancer Research, 17(19), 6287–6297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhurst, M. R., Yang, J. C., et al. (2011b). T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Molecular Therapy, 19(3), 620–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parolaro, D., Patrini, G., et al. (1990). Pertussis toxin inhibits morphine analgesia and prevents opiate dependence. Pharmacology Biochemistry and Behavior, 35(1), 137–141.

    Article  CAS  Google Scholar 

  • Patel, S. S., Wacholtz, M. C., et al. (1989). Analysis of the functional capabilities of CD3+CD4-CD8- and CD3+CD4+CD8+ human T cell clones. Journal of Immunology, 143(4), 1108–1117.

    CAS  Google Scholar 

  • Paulos, C. M., & June, C. H. (2010). Putting the brakes on BTLA in T cell-mediated cancer immunotherapy. Journal of Clinical Investigation, 120(1), 76–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegram, H. J., Lee, J. C., et al. (2012). Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood, 119(18), 4133–4141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, G., Wang, H. Y., et al. (2007). Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity, 27(2), 334–348.

    Article  CAS  PubMed  Google Scholar 

  • Peters, C., Oberg, H. H., et al. (2014). Phenotype and regulation of immunosuppressive Vdelta2-expressing gammadelta T cells. Cellular and Molecular Life Sciences, 71(10), 1943–1960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips, J. H., & Lanier, L. L. (1986). Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. Journal of Experimental Medicine, 164(3), 814–825.

    Article  CAS  PubMed  Google Scholar 

  • Platten, M., & Offringa, R. (2015). Cancer immunotherapy: Exploiting neoepitopes. Cell Research, 25(8), 887–888.

    Article  CAS  PubMed  Google Scholar 

  • Polyak, K., Haviv, I., et al. (2009). Co-evolution of tumor cells and their microenvironment. Trends in Genetics, 25(1), 30–38.

    Article  CAS  PubMed  Google Scholar 

  • Pouw, N., Treffers-Westerlaken, E., et al. (2010). Combination of IL-21 and IL-15 enhances tumour-specific cytotoxicity and cytokine production of TCR-transduced primary T cells. Cancer Immunology, Immunotherapy, 59(6), 921–931.

    Article  CAS  PubMed  Google Scholar 

  • Powell, D. J., Jr., Dudley, M. E., et al. (2005). Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood, 105(1), 241–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provasi, E., Genovese, P., et al. (2012). Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nature Medicine, 18(5), 807–815.

    Article  CAS  PubMed  Google Scholar 

  • Pulè, M. A., Straathof, K. C., et al. (2005). A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Molecular Therapy, 12(5), 933–941.

    Article  PubMed  CAS  Google Scholar 

  • Pulido, J., Kottke, T., et al. (2012). Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma. Nature Biotechnology, 30(4), 337–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quezada, S. A., Simpson, T. R., et al. (2010). Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. Journal of Experimental Medicine, 207(3), 637–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovich, G. A., Gabrilovich, D., et al. (2007). Immunosuppressive strategies that are mediated by tumor cells. Annual Review of Immunology, 25, 267–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radvanyi, L. G., Bernatchez, C., et al. (2012). Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clinical Cancer Research, 18(24), 6758–6770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahbar, M., Naraghi, Z. S., et al. (2015). Tumor-infiltrating CD8+ lymphocytes effect on clinical outcome of muco-cutaneous melanoma. Indian Journal of Dermatology, 60(2), 212.

    PubMed  PubMed Central  Google Scholar 

  • Ralainirina, N., Poli, A., et al. (2007). Control of NK cell functions by CD4+CD25+ regulatory T cells. Journal of Leukocyte Biology, 81(1), 144–153.

    Article  CAS  PubMed  Google Scholar 

  • Rapoport, A. P., Stadtmauer, E. A., et al. (2015). NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nature Medicine, 21(8), 914–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas, A., & Wolchok, J. D. (2013). Combining cancer immunotherapy and targeted therapy. Current Opinion in Immunology, 25(2), 291–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riddell, S. R., Jensen, M. C., et al. (2013). Chimeric antigen receptor modified T cells–clinical translation in stem cell transplantation and beyond. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation, 19(10), S2.

    Article  CAS  Google Scholar 

  • Ritchie, D. S., Neeson, P. J., et al. (2013). Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Molecular Therapy, 21(11), 2122–2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi, N. A., Hellmann, M. D., et al. (2015). Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 348(6230), 124–128.

    Article  CAS  PubMed  Google Scholar 

  • Robbins, P. F., Dudley, M. E., et al. (2004). Cutting edge: Persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. Journal of Immunology, 173(12), 7125–7130.

    Article  CAS  Google Scholar 

  • Robbins, P. F., Li, Y. F., et al. (2008). Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. Journal of Immunology, 180(9), 6116–6131.

    Article  CAS  Google Scholar 

  • Robbins, P. F., Morgan, R. A., et al. (2011). Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. Journal of Clinical Oncology, 29(7), 917–924.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robbins, P. F., Lu, Y. C., et al. (2013). Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature Medicine, 19(6), 747–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg, S. A. (1988). Immunotherapy of patients with advanced cancer using interleukin-2 alone or in combination with lymphokine activated killer cells. Important Advances Oncology, 217–257.

    Google Scholar 

  • Rosenberg, S. A. (2014). Finding suitable targets is the major obstacle to cancer gene therapy. Cancer Gene Therapy, 21(2), 45–47.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S. A., & Dudley, M. E. (2009). Adoptive cell therapy for the treatment of patients with metastatic melanoma. Current Opinion in Immunology, 21(2), 233–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg, S. A., & Restifo, N. P. (2015). Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 348(6230), 62–68.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S. A., Lotze, M. T., et al. (1985). Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. New England Journal of Medicine, 313(23), 1485–1492.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S. A., Spiess, P., et al. (1986). A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science, 233(4770), 1318–1321.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S. A., Packard, B. S., et al. (1988). Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. New England Journal of Medicine, 319(25), 1676–1680.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S. A., Lotze, M. T., et al. (1993). Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. Journal of the National Cancer Institute, 85(8), 622–632.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S. A., Yang, J. C., et al. (2011). Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clinical Cancer Research, 17(13), 4550–4557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadelain, M., Brentjens, R., et al. (2013). The basic principles of chimeric antigen receptor design. Cancer Discovery, 3(4), 388–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadovnikova, E., Jopling, L. A., et al. (1998). Generation of human tumor-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. European Journal of Immunology, 28(1), 193–200.

    Article  CAS  PubMed  Google Scholar 

  • Sahm, C., Schonfeld, K., et al. (2012). Expression of IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modified effectors that carry a tumor-specific antigen receptor. Cancer Immunology, Immunotherapy, 61(9), 1451–1461.

    Article  CAS  PubMed  Google Scholar 

  • Saito, H., Ando, S., et al. (2014). A combined lymphokine-activated killer (LAK) cell immunotherapy and adenovirus-p53 gene therapy for head and neck squamous cell carcinoma. Anticancer Research, 34(7), 3365–3370.

    CAS  PubMed  Google Scholar 

  • Sangiolo, D., Martinuzzi, E., et al. (2008). Alloreactivity and anti-tumor activity segregate within two distinct subsets of cytokine-induced killer (CIK) cells: Implications for their infusion across major HLA barriers. International Immunology, 20(7), 841–848.

    Article  CAS  PubMed  Google Scholar 

  • Sathish, J. G., Sethu, S., et al. (2013). Challenges and approaches for the development of safer immunomodulatory biologics. Nature Reviews Drug Discovery, 12(4), 306–324.

    Article  CAS  PubMed  Google Scholar 

  • Savas, B., Cole, S. P., et al. (1996). P-glycoprotein-mediated multidrug resistance and lymphokine-activated killer cell susceptibility in ovarian carcinoma. Journal of Clinical Immunology, 16(6), 348–357.

    Article  CAS  PubMed  Google Scholar 

  • Savas, B., Kerr, P. E., et al. (1998). Lymphokine-activated killer cell susceptibility and multidrug resistance in small cell lung carcinoma. Anticancer Research, 18(6A), 4355–4361.

    CAS  PubMed  Google Scholar 

  • Savas, B., Arslan, G., et al. (1999). Multidrug resistant malignant melanoma with intracranial metastasis responding to immunotherapy. Anticancer Research, 19(5C), 4413–4420.

    CAS  PubMed  Google Scholar 

  • Savoldo, B., Ramos, C. A., et al. (2011). CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. The Journal of Clinical Investigation, 121(5), 1822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schade, A. E., Schieven, G. L., et al. (2008). Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood, 111(3), 1366–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaft, N., Lankiewicz, B., et al. (2006). T cell re-targeting to EBV antigens following TCR gene transfer: CD28-containing receptors mediate enhanced antigen-specific IFNgamma production. International Immunology, 18(4), 591–601.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, D. A., Irving, M. B., et al. (2010). Evidence for a TCR affinity threshold delimiting maximal CD8 T cell function. Journal of Immunology, 184(9), 4936–4946.

    Article  CAS  Google Scholar 

  • Schmidt, J., Eisold, S., et al. (2004). Dendritic cells reduce number and function of CD4+ CD25+ cells in cytokine-induced killer cells derived from patients with pancreatic carcinoma. Cancer Immunology, Immunotherapy, 53(11), 1018–1026.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Wolf, I., Negrin, R. S., et al. (1991). Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. The Journal of Experimental Medicine, 174(1), 139–149.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Wolf, I., Lefterova, P., et al. (1993). Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Experimental Hematology, 21(13), 1673–1679.

    CAS  PubMed  Google Scholar 

  • Schmidt-Wolf, I., Finke, S., et al. (1999). Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma. British Journal of Cancer, 81(6), 1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholten, K. B., Kramer, D., et al. (2006). Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clinical Immunology, 119(2), 135–145.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, R. D., Old, L. J., et al. (2011). Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science, 331(6024), 1565–1570.

    Article  CAS  PubMed  Google Scholar 

  • Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science, 348(6230), 69–74.

    Article  CAS  PubMed  Google Scholar 

  • Semino, C., Martini, L., et al. (1998). Adoptive immunotherapy of advanced solid tumors: An eight year clinical experience. Anticancer Research, 19(6C), 5645–5649.

    Google Scholar 

  • Seung, S. K., Curti, B. D., et al. (2012). Phase 1 study of stereotactic body radiotherapy and interleukin-2 – Tumor and immunological responses. Science Translational Medicine, 4(137), 137ra174.

    Article  CAS  Google Scholar 

  • Sharma, P., & Allison, J. P. (2015). Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell, 161(2), 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Sharpe, M., & Mount, N. (2015). Genetically modified T cells in cancer therapy: Opportunities and challenges. Disease Models & Mechanisms, 8(4), 337–350.

    Article  CAS  Google Scholar 

  • Shen, X., Zhou, J., et al. (2007). Persistence of tumor infiltrating lymphocytes in adoptive immunotherapy correlates with telomere length. Journal of Immunotherapy, 30(1), 123–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherry, R. M., Rosenberg, S. A., et al. (1991). Relapse after response to interleukin-2-based immunotherapy: Patterns of progression and response to retreatment. Journal Immunotherapy, 10(5), 371–375.

    Article  CAS  Google Scholar 

  • Shi, G., Zhou, C., et al. (2014). Antitumor enhancement by adoptive transfer of tumor antigen primed, inactivated MHC-haploidentical lymphocytes. Cancer Letters, 343(1), 42–50.

    Article  CAS  PubMed  Google Scholar 

  • Shirasu, N., Shibaguci, H., et al. (2010). Construction and molecular characterization of human chimeric T-cell antigen receptors specific for carcinoembryonic antigen. Anticancer Research, 30(7), 2731–2738.

    CAS  PubMed  Google Scholar 

  • Shurin, G. V., Tourkova, I. L., et al. (2009). Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. Journal of Immunology, 183(1), 137–144.

    Article  CAS  Google Scholar 

  • Skoberne, M., Beignon, A. S., et al. (2004). Danger signals: A time and space continuum. Trends in Molecular Medicine, 10(6), 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Snyder, A., Makarov, V., et al. (2014). Genetic basis for clinical response to CTLA-4 blockade in melanoma. New England Journal of Medicine, 371(23), 2189–2199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Somerville, R. P., & Dudley, M. E. (2012). Bioreactors get personal. Oncoimmunology, 1(8), 1435–1437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, D.-G., Ye, Q., et al. (2011). In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Research, 71(13), 4617–4627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stauss, H. J., & Morris, E. C. (2013). Immunotherapy with gene-modified T cells: Limiting side effects provides new challenges. Gene Therapy, 20(11), 1029–1032.

    Article  CAS  PubMed  Google Scholar 

  • Suck, G., Oei, V. Y., et al. (2011). Interleukin-15 supports generation of highly potent clinical-grade natural killer cells in long-term cultures for targeting hematological malignancies. Experimental Hematology, 39(9), 904–914.

    Article  CAS  PubMed  Google Scholar 

  • Taieb, J., Chaput, N., et al. (2006). Chemoimmunotherapy of tumors: Cyclophosphamide synergizes with exosome based vaccines. Journal of Immunology, 176(5), 2722–2729.

    Article  CAS  Google Scholar 

  • Tamada, K., Geng, D., et al. (2012). Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clinical Cancer Research, 18(23), 6436–6445.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, T., Bai, Z., et al. (2005). Chemokines in tumor progression and metastasis. Cancer Science, 96(6), 317–322.

    Article  CAS  PubMed  Google Scholar 

  • Tarek, N., Le Luduec, J. B., et al. (2012). Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment. Journal of Clinical Investigation, 122(9), 3260–3270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tartour, E., Pere, H., et al. (2011). Angiogenesis and immunity: A bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Reviews, 30(1), 83–95.

    Article  CAS  PubMed  Google Scholar 

  • Tesniere, A., Apetoh, L., et al. (2008). Immunogenic cancer cell death: A key-lock paradigm. Current Opinion in Immunology, 20(5), 504–511.

    Article  CAS  PubMed  Google Scholar 

  • Tey, S. K. (2014). Adoptive T-cell therapy: Adverse events and safety switches. Clinical Translation Immunology, 3(6), e17.

    Article  CAS  Google Scholar 

  • Thomas, S., Xue, S. A., et al. (2011). Human T cells expressing affinity-matured TCR display accelerated responses but fail to recognize low density of MHC-peptide antigen. Blood, 118(2), 319–329.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, S., Klobuch, S., et al. (2012). Strong and sustained effector function of memory- versus naive-derived T cells upon T-cell receptor RNA transfer: Implications for cellular therapy. European Journal of Immunology, 42(12), 3442–3453.

    Article  CAS  PubMed  Google Scholar 

  • Till, B. G., Jensen, M. C., et al. (2008). Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood, 112(6), 2261–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Till, B. G., Jensen, M. C., et al. (2012). CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: Pilot clinical trial results. Blood, 119(17), 3940–3950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toda, A., & Piccirillo, C. A. (2006). Development and function of naturally occurring CD4+CD25+ regulatory T cells. Journal of Leukocyte Biology, 80(3), 458–470.

    Article  CAS  PubMed  Google Scholar 

  • Tonn, T., Schwabe, D., et al. (2013). Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy, 15(12), 1563–1570.

    Article  CAS  PubMed  Google Scholar 

  • Topalian, S. L., Hodi, F. S., et al. (2012). Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. New England Journal of Medicine, 366(26), 2443–2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran, K. Q., Zhou, J., et al. (2008). Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. Journal of Immunotherapy, 31(8), 742–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran, E., Turcotte, S., et al. (2014). Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science, 344(6184), 641–645.

    Article  CAS  PubMed  Google Scholar 

  • Trapani, J. A., Davis, J., et al. (2000). Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo. Current Opinion in Immunology, 12(3), 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Traxlmayr, M. W., Wesch, D., et al. (2010). Immune suppression by gammadelta T-cells as a potential regulatory mechanism after cancer vaccination with IL-12 secreting dendritic cells. Journal of Immunotherapy, 33(1), 40–52.

    Article  CAS  PubMed  Google Scholar 

  • Tseng, J., Citrin, D. E., et al. (2014). Thrombotic microangiopathy in metastatic melanoma patients treated with adoptive cell therapy and total body irradiation. Cancer, 120(9), 1426–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbanska, K., Lanitis, E., et al. (2012). A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Research, 72(7), 1844–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uyttenhove, C., Pilotte, L., et al. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Medicine, 9(10), 1269–1274.

    Article  CAS  PubMed  Google Scholar 

  • Valitutti, S., Muller, S., et al. (1995). Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature, 375(6527), 148–151.

    Article  CAS  PubMed  Google Scholar 

  • Valitutti, S., Muller, S., et al. (1997). Degradation of T cell receptor (TCR)-CD3-zeta complexes after antigenic stimulation. Journal of Experimental Medicine, 185(10), 1859–1864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valteau-Couanet, D., Leboulaire, C., et al. (2002). Dendritic cells for NK/LAK activation: Rationale for multicellular immunotherapy in neuroblastoma patients. Blood, 100(7), 2554–2561.

    Article  CAS  PubMed  Google Scholar 

  • van den Berg, J. H., Gomez-Eerland, R., et al. (2015). Case report of a fatal serious adverse event upon administration of T cells transduced with a MART-1-specific T-cell receptor. Molecular Therapy, 23, 1541.

    Article  PubMed  CAS  Google Scholar 

  • Vanneman, M., & Dranoff, G. (2012). Combining immunotherapy and targeted therapies in cancer treatment. Nature Reviews Cancer, 12(4), 237–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdegaal, E. M., Visser, M., et al. (2011). Successful treatment of metastatic melanoma by adoptive transfer of blood-derived polyclonal tumor-specific CD4+ and CD8+ T cells in combination with low-dose interferon-alpha. Cancer Immunology, Immunotherapy, 60(7), 953–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verneris, M. R., Kornacker, M., et al. (2000). Resistance of ex vivo expanded CD3+ CD56+ T cells to Fas-mediated apoptosis. Cancer Immunology, Immunotherapy, 49(6), 335–345.

    Article  CAS  PubMed  Google Scholar 

  • Vershinina, M., Khalturina, E. O., et al. (2004). Characterization of lymphokine-activated killer cells obtained from the natural killers – T cells of patients with hepatic tumor lesion. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk (12), 32–36.

    Google Scholar 

  • Vesely, M. D., Kershaw, M. H., et al. (2011). Natural innate and adaptive immunity to cancer. Annual Review of Immunology, 29, 235–271.

    Article  CAS  PubMed  Google Scholar 

  • Viey, E., Lucas, C., et al. (2008). Chemokine receptors expression and migration potential of tumor-infiltrating and peripheral-expanded Vgamma9Vdelta2 T cells from renal cell carcinoma patients. Journal of Immunotherapy, 31(3), 313–323.

    Article  CAS  PubMed  Google Scholar 

  • Vivier, E., Tomasello, E., et al. (2008). Functions of natural killer cells. Nature Immunology, 9(5), 503–510.

    Article  CAS  PubMed  Google Scholar 

  • Vivier, E., Raulet, D. H., et al. (2011). Innate or adaptive immunity? The example of natural killer cells. Science, 331(6013), 44–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vonderheide, R. H., Bajor, D. L., et al. (2013). CD40 immunotherapy for pancreatic cancer. Cancer Immunology, Immunotherapy, 62(5), 949–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vukmanovic-Stejic, M., Zhang, Y., et al. (2006). Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. Journal of Clinical Investigation, 116(9), 2423–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q. J., Wang, H., et al. (2010). Comparative study on anti-tumor immune response of autologous cytokine-induced killer (CIK) cells, dendritic cells-CIK (DC-CIK), and semi-allogeneic DC-CIK. Chinese Journal of Cancer, 29(7), 641–648.

    Article  PubMed  Google Scholar 

  • Wang, X., Lei, Y., et al. (2013). PD‐1/PDL1 and CD28/CD80 pathways modulate natural killer T cell function to inhibit hepatitis B virus replication. Journal of Viral Hepatitis, 20(s1), 27–39.

    Article  CAS  PubMed  Google Scholar 

  • Weber, E., Anderson, W. F., et al. (2001). Recent advances in retrovirus vector-mediated gene therapy: Teaching an old vector new tricks. Current Opinion in Molecular Therapeutics, 3(5), 439–453.

    CAS  PubMed  Google Scholar 

  • Weng, D. S., Zhou, J., et al. (2008). Minimally invasive treatment combined with cytokine-induced killer cells therapy lower the short-term recurrence rates of hepatocellular carcinomas. Journal of Immunotherapy, 31(1), 63–71.

    Article  PubMed  Google Scholar 

  • West, E. J., Scott, K. J., et al. (2011). Immune activation by combination human lymphokine-activated killer and dendritic cell therapy. British Journal of Cancer, 105(6), 787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wherry, E. J. (2011). T cell exhaustion. Nature Immunology, 12(6), 492–499.

    Article  CAS  PubMed  Google Scholar 

  • Whitson, B. A., D’Cunha, J., et al. (2007). Minimally invasive cancer surgery improves patient survival rates through less perioperative immunosuppression. Medical Hypotheses, 68(6), 1328–1332.

    Article  CAS  PubMed  Google Scholar 

  • Wick, D. A., Webb, J. R., et al. (2014). Surveillance of the tumor mutanome by T cells during progression from primary to recurrent ovarian cancer. Clinical Cancer Research, 20(5), 1125–1134.

    Article  CAS  PubMed  Google Scholar 

  • Wistuba-Hamprecht, K., Di Benedetto, S. et al. (2015). Phenotypic characterization and prognostic impact of circulating gammadelta and alphabeta T-cells in metastatic malignant melanoma. International Journal Cancer, 138(3), 698–704.

    Google Scholar 

  • Wolchok, J. D., & Chan, T. A. (2014). Cancer: Antitumour immunity gets a boost. Nature, 515(7528), 496–498.

    Article  CAS  PubMed  Google Scholar 

  • Wrobel, P., Shojaei, H., et al. (2007). Lysis of a broad range of epithelial tumour cells by human gamma delta T cells: Involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition. Scandinavian Journal of Immunology, 66(2–3), 320–328.

    Article  CAS  PubMed  Google Scholar 

  • Wrzesinski, C., & Restifo, N. P. (2005). Less is more: Lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy. Current Opinion in Immunology, 17(2), 195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrzesinski, C., Paulos, C. M., et al. (2010). Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. Journal of Immunotherapy (Hagerstown, Md.: 1997), 33(1), 1.

    Article  Google Scholar 

  • Wu, C., Jiang, J., et al. (2008). Prospective study of chemotherapy in combination with cytokine-induced killer cells in patients suffering from advanced non-small cell lung cancer. Anticancer Research, 28(6B), 3997–4002.

    CAS  PubMed  Google Scholar 

  • Wu, P., Wu, D., et al. (2014). gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity, 40(5), 785–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, D., Wu, P., et al. (2015). Expanded human circulating Vdelta1 gammadeltaT cells exhibit favorable therapeutic potential for colon cancer. Oncoimmunology, 4(3), e992749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi, Y., Hihara, J., et al. (2006). Postoperative immunosuppression cascade and immunotherapy using lymphokine-activated killer cells for patients with esophageal cancer: Possible application for compensatory anti-inflammatory response syndrome. Oncology Reports, 15(4), 895–901.

    CAS  PubMed  Google Scholar 

  • Yamamoto, Y., Backlin, K., et al. (1993). Cytotoxic activity and T cell receptor repertoire in tumor-infiltrating lymphocytes of adrenal cell carcinomas. Cancer Immunology, Immunotherapy, 37(3), 163–168.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Ren, B., et al. (2013). Enhanced antitumor effects of DC-activated CIKs to chemotherapy treatment in a single cohort of advanced non-small-cell lung cancer patients. Cancer Immunology, Immunotherapy, 62(1), 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Young, J. D., Liu, C. C., et al. (1988). Molecular mechanisms of lymphocyte-mediated killing. Brazilian Journal of Medical and Biological Research, 21(6), 1145–1153.

    CAS  PubMed  Google Scholar 

  • Zhang, Q., Yang, X., et al. (2005). Adoptive transfer of tumor-reactive transforming growth factor-beta-insensitive CD8+ T cells: Eradication of autologous mouse prostate cancer. Cancer Research, 65(5), 1761–1769.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Bowerman, N. A., et al. (2007). Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. The Journal of Experimental Medicine, 204(1), 49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Zheng, Z., et al. (2006). High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Molecular Therapy, 13(1), 151–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, H., Fan, Y., et al. (2013). Immunotherapy with cytokine-induced killer cells as an adjuvant treatment for advanced gastric carcinoma: A retrospective study of 165 patients. Cancer Biotherapy and Radiopharmaceuticals, 28(4), 303–309.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y. J., Jiang, N., et al. (2015). Continuous DC-CIK infusions restore CD8+ cellular immunity, physical activity and improve clinical efficacy in advanced cancer patients unresponsive to conventional treatments. Asian Pacific Journal of Cancer Prevention, 16(6), 2419–2423.

    Article  PubMed  Google Scholar 

  • Zheng, W., & Flavell, R. A. (1997). The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell, 89(4), 587–596.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, B. J., Chan, K. W., et al. (2001). Anti-tumor effects of human peripheral gammadelta T cells in a mouse tumor model. International Journal of Cancer, 92(3), 421–425.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, X.-S., Matsushita, M., et al. (2010). Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell–mediated tumor eradication. Molecular Therapy, 18(2), 413–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., Shen, X., et al. (2005). Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. Journal of Immunology, 175(10), 7046–7052.

    Article  CAS  Google Scholar 

  • Zhou, Q., Gil-Krzewska, A., et al. (2013). Matrix metalloproteinases inhibition promotes the polyfunctionality of human natural killer cells in therapeutic antibody-based anti-tumour immunotherapy. Clinical and Experimental Immunology, 173(1), 131–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zitvogel, L., & Kroemer, G. (2011). Anticancer effects of imatinib via immunostimulation. Nature Medicine, 17(9), 1050–1051.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiubao Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yang, F. et al. (2016). Adoptive Cellular Therapy (ACT) for Cancer Treatment. In: Zhang, S. (eds) Progress in Cancer Immunotherapy. Advances in Experimental Medicine and Biology, vol 909. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7555-7_4

Download citation

Publish with us

Policies and ethics