Skip to main content

Abstract

The linearized theory of rotation for viscoelastic planetary bodies, like the Earth, is developed. The MacCullagh’s formula linking the inertia and gravitational perturbations is self-consistently derived within our formalism. The concept of True Polar Wander (TPW) is introduced, and attention is devoted to the physics of viscoelastic, rotational bulge readjustment. Different rotation theories that appeared in the literature are compared, including the effects of non-hydrostatic bulge contribution and compressible versus incompressible rotational bulge readjustment. The long-term behavior of the rotation equation is considered, and a linearized theory for TPW driven by mantle convection is provided. The Earth, Mars and Venus are compared in terms of the ability of their rotation axis to wander.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, D.L. (1980). “Tectonics and composition of Venus”. In: Geophys. Res. Lett. 7, pp. 101–102.

    Google Scholar 

  • Anderson, D.L. (1981). “Plate Tectonics on Venus”. In: Geophys. Res. Lett. 8, pp. 309–311.

    Google Scholar 

  • Balmino, G., B. Moynot, and Valés N. (1982). “Gravity field model of Mars in spherical harmonics up to degree and order eighteen”. In: J. Geophys. Res. 87, pp. 9753–9746.

    Google Scholar 

  • Becker, T.W. and L. Boschi (2002). “A comparison of tomographic and geodynamic mantle models”. In: Geochem. Geophys. Geosyst. 3, 2001GC000168.

    Google Scholar 

  • Ben-Menahem, A. and S.J. Singh (2000). Seismic waves and sources. 2nd. Dover Publications, Inc., Mineola, New York.

    Google Scholar 

  • Besse, J. and V. Courtillot (1991). “Revised and synthetic apparent polar wander paths of the African, Eurasian, North American, and Indian Plates, and true polar wander since 200 Ma”. In: J. Geophys. Res. 96, pp. 4029–4050.

    Google Scholar 

  • Besse, J. and V. Courtillot (2002). “Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr”. In: J. Geophys. Res. 107, p. 2300.

    Google Scholar 

  • Bills, B.G. (1989). “The moments of inertia of Mars”. In: Geophys. Res. Lett. 16, pp. 385–388.

    Google Scholar 

  • Bills, B.G. and A.J. Ferrari (1977). “A lunar density model consistent with topographic, gravitational, librational, and seismic data”. In: J. Geo-phys. Res. 82, pp. 1306–1314.

    Google Scholar 

  • Bills, B.G. and A.J. Ferrari (1978). “Mars topography harmonics and geophysical implications”. In: J. Geophys. Res. 83, pp. 3497–3508.

    Google Scholar 

  • Bills, B.G. and A.J. Ferrari (1980). “A harmonic analysis of lunar gravity”. In: J. Geophys. Res. 85, pp. 1013–1025.

    Google Scholar 

  • Bills, B.G. and M. Kobrick (1985). “Venus topography: A harmonic analysis”. In: J. Geophys. Res. 90, pp. 827–836.

    Google Scholar 

  • Burgers, J.M. (1955). “Rotational motion of a sphere subject to visco-elastic deformation. I, II and III”. In: vol. 58. Proc. Kon. Ned. Acad. Wet., pp. 219–237.

    Google Scholar 

  • Cambiotti, G., Y. Ricard, and R. Sabadini (2010). “Ice age true polar wander in a compressible and non-hydrostatic Earth”. In: Geophys. J. Int. 183, pp. 1248–1264.

    Google Scholar 

  • Cambiotti, G., Y. Ricard, and R. Sabadini (2011). “New insights into mantle convection true polar wander and rotational bulge readjustment”. In: Earth Planet. Sci. Lett. 310, pp. 538–543.

    Google Scholar 

  • Cambiotti, G. and R. Sabadini (2010). “The compressional and compositional stratifications in Maxwell Earth models: the gravitational overturning and the long-period tangential flux”. In: Geophys. J. Int. 180, pp. 475–500.

    Google Scholar 

  • Cambiotti, G., X. Wang, R. Sabadini, and D.A. Yuen (2016). “Residual polar motion caused by coseismic and interseismic deformations from 1900 to present”. In: Geophys. J. Int. 205, pp. 1165–1179.

    Google Scholar 

  • Cazenave, A.A., A. Souriau, and K. Dominh (1989). “Earth surface topography: Global coupling with hotspots, geoid and mantle heterogeneities”. In: Nature 340, pp. 54–57.

    Google Scholar 

  • Cazenave, A.A. and C. Thoraval (1994). “Mantle dynamics constrained by degree 6 surface topography, seismic tomography and geoid: inference on the origin of the South Pacific superswell”. In: Earth Planet. Sci. Lett. 122, pp. 207–219.

    Google Scholar 

  • Chambat, F., Y. Ricard, and B. Valette (2010). “Flattening of the Earth: further from hydrostaticity than previously estimated”. In: Geophys. J. Int. 183, pp. 727–732.

    Google Scholar 

  • Chambat, F. and B. Valette (2001). “Mean radius, mass, and inertia for reference Earth models”. In: Phys. Earth Planet. Inter. 124, pp. 237–253.

    Google Scholar 

  • Chinnery, M.A. (1975). “The static deformation of an earth with a fluid core: a physical approach”. In: Geophys. J. R. astr. Soc. 42, pp. 461–475.

    Google Scholar 

  • Cole, G.H.A. (1978). The Structure of the Planets. Wykeham, London, p. 232.

    Google Scholar 

  • Dickman, S.R. (1977). “Secular trend of the Earth’s rotation pole: Consideration of motion of the latitude observatories”. In: Geophys. J. R. Astron. Soc. 51, pp. 229–244.

    Google Scholar 

  • Dziewonski, A.M. and D.L. Anderson (1981). “Preliminary reference Earth model”. In: Phys. Earth Planet. Inter. 25, pp. 297–356.

    Google Scholar 

  • Fang, M. and B.H. Hager (1995). “The singularity mystery associated with a radially continuous Maxwell viscoelastic structure”. In: Geophys. J. Int. 123, pp. 849–865.

    Google Scholar 

  • Gold, T. (1955). “Instability of the earth’s axis of rotation”. In: Nature 175, pp. 526–529.

    Google Scholar 

  • Head, J.W. and S.C. Solomon (1981). “Tectonic evolution of the terrestrial planets”. In: Science 213, pp. 62–75.

    Google Scholar 

  • James, T.S. and E.R. Ivins (1997). “Global geodetic signatures of the Antarctic ice sheet”. In: J. Geophys. Res. 102, pp. 605–633.

    Google Scholar 

  • Jeffreys, H. (1976). The Earth: Its Origin, History and Physical Constitution. Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  • Johnston, D.H., T.R. McGetchin, and M.N. Toksöz (1974). “The thermal state and internal structure of Mars”. In: J. Geophys. Res. 79, pp. 3959–3971.

    Google Scholar 

  • Jurdy, D.M. (1978). “An alternative model for early Tertiary absolute plate motions”. In: Geology 6, pp. 469–472.

    Google Scholar 

  • Kiefer, W.S., M.A. Richards, B.H. Hager, and B.G. Bills (1986). “A dynamic model of Venus’s gravity field”. In: Geophys. Res. Lett. 13, pp. 14–17.

    Google Scholar 

  • Konopliv, A.S. and W.L. Sjogren (1994). “Venus spherical harmonic gravity model to degree and order 60”. In: Icarus 112, pp. 42–54.

    Google Scholar 

  • Lambeck, K. (1980). The Earth’s Variable Rotation: Geophysical Causes and Consequences. Cambridge Univ. Press, Cambridge, UK, p. 449.

    Google Scholar 

  • Lambert, W.D. (1922). “The interpretation of apparent changes in mean latitude and the International Latitude Stations”. In: Astron. J. p. 904.

    Google Scholar 

  • Lithgow-Bertelloni, C., M.A. Richards, Y. Ricard, R. O’Connell, and D.C. Engebreston (1993). “Torodial-Poloidal partitioning of plate motions since 120 MA”. In: Geophys. Res. Lett. 20, pp. 375–378.

    Google Scholar 

  • McCarthy, D.D. and B.J. Luzum (1996). “Path of the mean rotational pole from 1899 to 1994”. In: Geophys. J. Int. 25, pp. 623–629.

    Google Scholar 

  • Meer, D.G. van der, W. Spakman, D.J.J. van Hinsbergen, M.L. Amaru, and T.H. Torsvik (2010). “Towards absolute plate motions constrained by lower-mantle slab remnants”. In: Nat. Geosci. 3, pp. 36–40.

    Google Scholar 

  • Milne, G.A. and J.X. Mitrovica (1996). “Post-glacial sea level change on a rotating Earth: First results from a gravitationally self-consistent sealevel equation”. In: Geophys. J. Int. 126, pp. F13–F20.

    Google Scholar 

  • Mitrovica, J.X. and G.A. Milne (1998). “Glaciation-induced perturbations in the Earth’s rotation: A new appraisal”. In: J. Geophys. Res. 103, pp. 985–1005.

    Google Scholar 

  • Mitrovica, J.X. and W.R. Peltier (1993). “Present-day secular variations in the zonal harmonics of the Earth’s geopotential”. In: J. Geophys. Res. 98, pp. 4509–4526.

    Google Scholar 

  • Mitrovica, J.X., J. Wahr, I. Matsuyama, and A. Paulson (2005). “The rotational stability of an ice-age earth”. In: Geophys. J. Int. 161, pp. 491–506.

    Google Scholar 

  • Mottinger, N.A., W.L. Sjogren, and B.G. Bills (1985). “Venus gravity: a harmonic analysis and geophysical implications”. In: J. Geophys. Res. 90, pp. 739–756.

    Google Scholar 

  • Munk, W.H. and G.J.F. MacDonald (1960). The Rotation of the Earth: A Geophysical Discussion. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Nakada, M. (2002). “Polar wander caused by the Quaternary glacial cycles and fluid Love number”. In: Earth Planet. Sci. Lett. 200, pp. 159–166.

    Google Scholar 

  • Nakamura, Y. (1983). “Seismic velocity structure of the lunar mantle”. In: J. Geophys. Res. 88, pp. 677–686.

    Google Scholar 

  • Nakiboglu, S.M. and K. Lambeck (1980). “Deglaciation effects on the rotation of the earth”. In: Geophys. J. R. Astron. Soc. 62, pp. 49–58.

    Google Scholar 

  • Nerem, R.S., B.G. Bills, and J.B. McNamee (1993). “A high resolution gravity model for Venus: GVM-1”. In: Geophys. Res. Lett. 20, pp. 599–602.

    Google Scholar 

  • Otha, K. (2010). Electrical and Thermal Conductivity of the Earth’s Lower Mantle. PhD. Thesis, Tokyo Institute of Technology.

    Google Scholar 

  • Peltier, W.R. (1985). “The LAGEOS constraint on deep mantle viscosity: results from a new normal mode method for the inversion of viscoelastic relaxation spectra”. In: J. Geophys. Res. 90, pp. 9411–9421.

    Google Scholar 

  • Peltier, W.R. and X. Jiang (1996). “Glacial isostatic adjustment and Earth rotation: Refined constraints on the viscosity of the deepest mantle”. In: J. Geophys. Res. 101, pp. 3269–3290.

    Google Scholar 

  • Phillips, R.J. and K. Lambeck (1980). “Gravity fields of the terrestrial planets: Long-wavelength anomalies and tectonics”. In: Rev. Geophys. 18, pp. 27–76.

    Google Scholar 

  • Plag, H.-P. and H.-U. Jüttner (1995). “Rayleigh-Taylor instabilities of a self-gravitating Earth”. In: J. Geodyn. 20, pp. 267–288.

    Google Scholar 

  • Ricard, Y., L. Fleitout, and C. Froidevaux (1984). “Geoid heights and lithospheric stresses for a dynamic Earth”. In: Ann. Geophysicae 2, pp. 267–286.

    Google Scholar 

  • Ricard, Y., M.A. Richards, C. Lithgow-Berteloni, and Y. Le Stunff (1993b). “A geodynamic model of mantle mass heterogeneities”. In: J. Geophys. Res. 98, pp. 21,895–21,909.

    Google Scholar 

  • Ricard, Y. and R. Sabadini (1990). “Rotational instabilities of the Earth induced by mantle density anomalies”. In: Geophys. Res. Lett. 17, pp. 627–630.

    Google Scholar 

  • Ricard, Y., R. Sabadini, and G. Spada (1992). “Isostatic deformations and polar wander induced by internal mass redistribution”. In: J. Geophys. Res. 97, pp. 14,223–14,236.

    Google Scholar 

  • Ricard, Y., G. Spada, and R. Sabadini (1993a). “Polar wandering of a dynamic Earth”. In: Geophys. J. Int. 113, pp. 284–298.

    Google Scholar 

  • Ricard, Y. and C. Vigny (1989). “Mantle dynamics with induced plate tectonics”. In: J. Geophys. Res. 94, pp. 17,543–17,559.

    Google Scholar 

  • Richards, M.A., H.-P. Bunge, Y. Ricard, and J.R. Baumgardner (1999). “Polar wandering in mantle convection models”. In: Geophys. Res. Lett. 26, pp. 1777–1780.

    Google Scholar 

  • Richards, M.A. and B.H. Hager (1984). “Geoid anomalies in a dynamic Earth”. In: J. Geophys. Res. 89, pp. 5987–6002.

    Google Scholar 

  • Richards, M.A., Y. Ricard, C. Lithgow-Bertelloni, G. Spada, and R. Sabadini (1997). “An explanation for Earth’s long-term rotational stability”. In: Science 275, pp. 372–375.

    Google Scholar 

  • Rouby, H., M. Greff-Lefftz, and J. Besse (2010). “Mantle dynamics, geoid, inertia and TPW since 120 Myr”. In: Earth Planet. Sci. Lett. 292, pp. 301–311.

    Google Scholar 

  • Sabadini, R. and W.R. Peltier (1981). “Pleistocene deglaciation and the Earth’s rotation: implications for mantle viscosity”. In: Geophys. J. R. Astron. Soc. 66, pp. 553–578.

    Google Scholar 

  • Sabadini, R., G. Spada, and Y. Ricard (1993). “Time-dependent density anomalies in a stratified, viscoelastic mantle: implications for the geoid, Earth’s rotation and sea-level fluctuations”. In: Surv. Geophys. 14, pp. 537–553.

    Google Scholar 

  • Sabadini, R. and D.A. Yuen (1989). “Mantle stratification and long-term polar wander”. In: Nature 339, pp. 373–375.

    Google Scholar 

  • Sabadini, R., D.A. Yuen, and E. Boschi (1982). “Polar wandering and the forced responses of a rotating, multilayered, viscoelastic planet”. In: J. Geophys. Res. 87, pp. 2885–2903.

    Google Scholar 

  • Sabadini, R., D.A. Yuen, and E. Boschi (1984). “A comparison of the complete and truncated versions of the polar wander equations”. In: J. Geo-phys. Res. 89, pp. 7609–7620.

    Google Scholar 

  • Sabadini, R., D.A. Yuen, and P. Gasperini (1988). “Mantle rheology and satellite signatures from present-day glacial forcings”. In: J. Geophys. Res. 93, pp. 437–447.

    Google Scholar 

  • Sabadini, R., R.E.M. Riva, and G. Dalla Via (2007). “Coseismic rotation changes from the 2004 Sumatra earthquake: the effects of Earth’s compressibility versus earthquake induced topography”. In: Geophys. J. Int. 171, pp. 231–243.

    Google Scholar 

  • Schaber, K., H.-P. Bunge, B.S.A. Schubert, R. Malservisi, and A. Horbach (2010). “Stability of the rotation axis in high-resolution mantle circulation models: weak polar wander despite strong core heating”. In: Geochem. Geophys. Geosyst. 10, p. Q11W04.

    Google Scholar 

  • Sjogren, W.L., J. Lorell, L. Wong, and W. Downs (1975). “Mars gravity field based on a short-art technique”. In: J. Geophys. Res. 80, pp. 2899–2908.

    Google Scholar 

  • Spada, G., Y. Ricard, and R. Sabadini (1992). “Excitation of true polar wander by subduction”. In: Nature 360, pp. 452–454.

    Google Scholar 

  • Spada, G., R. Sabadini, and E. Boschi (1994). “True polar wander affects the Earth dynamic topography and favours a highly viscous lower mantle”. In: Geophys. Res. Lett. 21, pp. 137–140.

    Google Scholar 

  • Spada, G., R. Sabadini, and E. Boschi (1996). “Long-term rotation and mantle dynamics of the Earth, Mars, and Venus”. In: J. Geophys. Res. 101, pp. 2253–2266.

    Google Scholar 

  • Spada, G., R. Sabadini, and D.A. Yuen (1991). “Viscoelastic responses of a hard transition zone: effects on postglacial uplifts and rotational signatures”. In: Earth Planet. Sci. Lett. 105, pp. 453–462.

    Google Scholar 

  • Spada, G., R. Sabadini, and Y. Ricard (1993). “On a particular solution of the nonlinear Liouville equations”. In Geophys. J. Int. 114, pp. 399–404.

    Google Scholar 

  • Spada, G., R. Sabadini, D.A. Yuen, and Y. Ricard (1992b). “Effects on post-glacial rebound from the hard rheology in the transition zone”. In: Geophys. J. Int. 109, pp. 683–700.

    Google Scholar 

  • Steinberger, B. (2000). “Slabs in the lower mantle - results of dynamic modelling compared with tomographic images and the geoid”. In: Phys. Earth Planet. Inter. 118, pp. 241–257.

    Google Scholar 

  • Steinberger, B. and R.J. O’Connell (1997). “Changes of the Earth’s rotation axis owing to advection of mantle density heterogeneities”. In: Nature 387, pp. 169–173.

    Google Scholar 

  • Steinberger, B. and T.H. Torsvik (2010). “Toward an explanation for the present and past locations of the poles”. In: Geochem. Geophys. Geosyst. 11, p. Q06W06.

    Google Scholar 

  • Tanaka, Y., J. Okuno, and S. Okubo (2006). “A new method for the computation of global viscoelastic post-seismic deformation in a realistic Earth model (I) - vertical displacement and gravity variation”. In: Geophys. J. Int. 164, pp. 273–289.

    Google Scholar 

  • Toksöz, M.N. (1974). “Geophysical data and the interior of the Moon”. In: Ann. Rev. Earth Planet. Sci. 2, pp. 151–177.

    Google Scholar 

  • Torsvik, T.H., M.A. Smethurst, K. Borke, and B. Steinberger (2006). “Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle”. In: Geophys. J. Int. 167, pp. 1447–1460.

    Google Scholar 

  • Vermeersen, L.L.A., A. Fournier, and R. Sabadini (1997). “Changes in rotation induced by Pleistocene ice masses with stratified analytical Earth models”. In: J. Geophys. Res. 102, pp. 27,689–27,702.

    Google Scholar 

  • Vermeersen, L.L.A. and J.X. Mitrovica (2000). “Gravitational stability of spherical self-gravitating relaxation models”. In: Geophys. J. Int. 142, pp. 351–360.

    Google Scholar 

  • VermeersenSabadini96 Vermeersen, L.L.A. and R. Sabadini (1996). “Significance of the fundamental mantle rotational relaxation mode in polar wander simulations”. In: Geophys. J. Int. 127, pp. F5–F9.

    Google Scholar 

  • Vermeersen, L.L.A. and R. Sabadini (1999). “Polar wander, sea-level variations and Ice Age cycles”. In: Surv. Geophys. 20, pp. 415–440.

    Google Scholar 

  • Vermeersen, L.L.A., R. Sabadini, and G. Spada (1996a). “Analytical viscoelastic relaxation models”. In: Geophys. Res. Lett. 23, pp. 697–700.

    Google Scholar 

  • Vermeersen, L.L.A., R. Sabadini, and G. Spada (1996b). “Compressible rotational deformation”. In: Geophys. J. Int. 126, pp. 735–761.

    Google Scholar 

  • Vermeersen, L.L.A., R. Sabadini, G. Spada, and N.J. Vlaar (1994). “Mountain building and earth rotation”. In: Geophys. J. Int. 117, pp. 610–624.

    Google Scholar 

  • Wanach, B. (1927). “Eine fortschreitende Lagenänderung der Erdachse”. In: Zeitschr. Geophysik 3, p. 102.

    Google Scholar 

  • Willeman, R.J. and D.L. Turcotte (1982). “The role of lithospheric stress in the support of the Tharsis rise”. In: J. Geophys. Res. 87, pp. 9797–9801.

    Google Scholar 

  • Wu, P. and W.R. Peltier (1982). “Viscous gravitational relaxation”. In: Geophys. J. R. Astron. Soc. 70, pp. 435–485.

    Google Scholar 

  • Wu, P. and W.R. Peltier (1984). “Pleistocene deglaciation and the Earth’s rotation: A new analysis”. In: Geophys. J. R. Astron. Soc. 76, pp. 753–791.

    Google Scholar 

  • Yuen, D.A., R. Sabadini, P. Gasperini, and E. Boschi (1986). “On transient rheology and glacial isostasy”. In: J. Geophys. Res. 91, pp. 11,420–11,438.

    Google Scholar 

  • Zharkov, V.N. and V.P. Trubistyn (1978). “Interior structure of the planets”. In: Physics of Planetary Interiors. Ed. by W.B. Hubbard. Pachart, Tucson, Arizona.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Sabadini .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sabadini, R., Vermeersen, B., Cambiotti, G. (2016). Rotational Dynamics of Viscoelastic Planets: Linear Theory. In: Global Dynamics of the Earth: Applications of Viscoelastic Relaxation Theory to Solid-Earth and Planetary Geophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7552-6_3

Download citation

Publish with us

Policies and ethics