Skip to main content

Dynamic Modelling of the Annual Cycle

  • Chapter
  • First Online:
Boreal and Temperate Trees in a Changing Climate

Part of the book series: Biometeorology ((BIOMET))

  • 970 Accesses

Abstract

A hypothetico-deductive framework for dynamic ecophysiological modelling of the annual cycle of boreal and temperate trees is described and discussed. In the framework used, the modelling is closely associated with experimental and observational empirical studies, so that inductive (‘empirical’) and deductive (‘theoretical’) phases alternate in the research. Computer simulations are deductive, and their results therefore contain nothing but implications of the assumptions of the model used in the simulations. Empirical data are used either for inductive formulation of the models or for testing the models after deducing their predictions by means of simulations. In dynamic modelling, the time courses of seasonal ecophysiological processes are simulated by first calculating the momentary rate of development on the basis of the input data of environmental factors, such as air temperature and night length. After that, the time course of the state of development is obtained by mathematical integration of the rate of development with respect to time. A unifying notation is described for the rate and state variables of different aspects of the annual cycle. Diverse model categories, based on major differences in the ecophysiological phenomena addressed, are described and compared. Finally, the realism, accuracy, and generality of the models are discussed. A novel concept of coverage is introduced for use in the assessment of the realism of the models. Biological levels of organisation, vertical reduction, and emergent properties are briefly discussed in relation to the realism of the models. The framework described and discussed in this chapter forms the basis for the subsequent chapters, in which different aspects of the annual cycle in boreal and temperate trees are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The concept “development” is used here in a broad sense, including all biophysical, physiological, and morphological changes involved in the annual cycle of the boreal and temperate trees (Hänninen and Kramer 2007). In textbooks of plant physiology and plant developmental biology, the concept “development” is classically used in a more restricted sense, referring only to the irreversible anatomical and organological changes (ontogenesis) taking place in plants.

  2. 2.

    Levins originally used the concept of “precision” instead of “accuracy”, and that nomenclature has been used later by several other authors (e.g., Sharpe 1990; Hänninen 1995b). However, in the present volume the concept of “precision” is used only when referring to the exactness of the data with the concept of “precision of measurement”, so that in the comparisons of model output with empirical data, the concept of “accuracy” is used.

  3. 3.

    Following its standard usage, the concept of whole-tree ecophysiology is used in the present volume when different tree organs, such as buds or leaves, are discussed.

References

  • Arnold, C. Y. (1959). The determination and significance of the base temperature in a linear heat unit system. Proceedings of the American Society of Horticultural Science, 74, 430–445.

    Google Scholar 

  • Ayala, F. J., & Dobzhansky, T. (1974). Studies in the philosophy of biology. Reduction and related problems. London: The Macmillan Press Limited. 390 p.

    Book  Google Scholar 

  • Bergh, J., McMurtrie, R. E., & Linder, S. (1998). Climatic factors controlling the productivity of Norway spruce: A model-based analysis. Forest Ecology and Management, 110, 127–139.

    Article  Google Scholar 

  • Boyer, W. D. (1973). Air temperature, heat sums, and pollen shedding phenology of longleaf pine. Ecology, 54, 420–426.

    Article  Google Scholar 

  • Cannell, M. G. R. (1985). Analysis of risks of frost damage to forest trees in Britain. In P. M. A. Tigerstedt, P. Puttonen, & V. Koski (Eds.), Crop physiology of forest trees (pp. 153–166). Helsinki: Helsinki University Press.

    Google Scholar 

  • Chuine, I. (2000). A unified model for budburst of trees. Journal of Theoretical Biology, 207, 337–347.

    Article  CAS  Google Scholar 

  • Chuine, I., Cour, P., & Rousseau, D. D. (1998). Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant, Cell and Environment, 21, 455–466.

    Article  Google Scholar 

  • de Réaumur, M. (1735). Observations du thermomètre faites à Paris pendant l’année 1735 comparées avec celles qui ont été faites sous la ligne à l’ Ile de France, à Alger et en quelques-unes de nos îles de l’Amérique. Académie royale des sciences – Année 1735.

    Google Scholar 

  • Diekman, M. (1996). Relationship between flowering phenology of perennial herbs and meteorological data in deciduous forests of Sweden. Canadian Journal of Botany, 74, 528–537.

    Article  Google Scholar 

  • Fuchigami, L. H., Weiser, C. J., Kobayashi, K., Timmis, R., & Gusta, L. V. (1982). A degree growth stage (°GS) model and cold acclimation in temperate woody plants. In P. H. Li & A. Sakai (Eds.), Plant cold hardiness and freezing stress (Mechanisms and crop implications, Vol. 2, pp. 93–116). New York: Academic Press.

    Chapter  Google Scholar 

  • Haila, Y. (1982). Hypothetico-deductivism and the competition controversy in ecology. Annales Zoologici Fennici, 19, 255–263.

    Google Scholar 

  • Häkkinen, R., Linkosalo, T., & Hari, P. (1998). Effects of dormancy and environmental factors on timing of bud burst in Betula pendula. Tree Physiology, 18, 707–712.

    Article  Google Scholar 

  • Hänninen, H. (1990a). Modelling the annual growth rhythm of trees: Conceptual, experimental, and applied aspects. In H. Jozefek (Ed.), Modelling to understand forest functions. Silva Carelica, 15, 35–45.

    Google Scholar 

  • Hänninen, H. (1990b). Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica, 213, 1–47.

    Google Scholar 

  • Hänninen, H. (1991). Does climatic warming increase the risk of frost damage in northern trees? Plant, Cell and Environment, 14, 449–454.

    Article  Google Scholar 

  • Hänninen, H. (1995a). Effects of climatic change on trees from cool and temperate regions: An ecophysiological approach to modelling of bud burst phenology. Canadian Journal of Botany, 73, 183–199.

    Article  Google Scholar 

  • Hänninen, H. (1995b). Assessing ecological implications of climatic change: Can we rely on our simulation models? Climatic Change, 31, 1–4.

    Article  Google Scholar 

  • Hänninen, H., & Kramer, K. (2007). A framework for modelling the annual cycle of trees in boreal and temperate regions. Silva Fennica, 41, 167–205.

    Google Scholar 

  • Hänninen, H., & Lundell, R. (2007). Dynamic models in plant ecophysiology. In E. Taulavuori & K. Taulavuori (Eds.), Physiology of northern plants under changing environment (pp. 157–175). Kerala: Research Signpost.

    Google Scholar 

  • Hänninen, H., Leinonen, I., Repo, T., & Kellomäki, S. (1996). Overwintering and productivity of Scots pine in a changing climate. Silva Fennica, 30, 229–237.

    Article  Google Scholar 

  • Hänninen, H., Luoranen, J., Rikala, R., & Smolander, H. (2009). Late termination of freezer storage increases the risk of autumn frost damage to Norway spruce seedlings. Silva Fennica, 43, 817–830.

    Article  Google Scholar 

  • Hänninen, H., Zhang, G., Rikala, R., Luoranen, J., Konttinen, K., & Repo, T. (2013). Frost hardening of Scots pine seedlings in relation to the climatic year-to-year variation in air temperature. Agricultural and Forest Meteorology, 177, 1–9.

    Article  Google Scholar 

  • Hanski, I., & Henttonen, H. (2002). Population cycles of small rodents in Fennoscandia. In A. Berryman (Ed.), Populations cycles: The case for trophic interactions (pp. 44–68). New York: Oxford University Press.

    Google Scholar 

  • Hari, P. (1968). A growth model for a biological population, applied to a stand of pine. Communicationes Instituti Forestalis Fenniae, 66(7), 1–16.

    Google Scholar 

  • Hari, P. (1972). Physiological stage of development in biological models of growth and maturation. Annales Botanici Fennici, 9, 107–115.

    Google Scholar 

  • Hari, P. (2013). The approach to construct and test the theory of forest ecology. In P. Hari, K. Heliövaara, & L. Kulmala (Eds.), Physical and physiological forest ecology (pp. 7–25). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hari, P., & Häkkinen, R. (1991). The utilization of old phenological time series of budburst to compare models describing annual cycles of plants. Tree Physiology, 8, 281–287.

    Article  Google Scholar 

  • Hari, P., Leikola, M., & Räsänen, P. (1970). A dynamic model of the daily height increment of plants. Annales Botanici Fennici, 7, 375–378.

    Google Scholar 

  • Hari, P., Kolari, P., Bäck, J., Mäkelä, A., & Nikinmaa, E. (2008). Photosynthesis. In P. Hari & L. Kulmala (Eds.), Boreal forest and climate change (pp. 231–242). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hari, P., Hänninen, H., Berninger, F., Kolari, P., Nikinmaa, E., & Mäkelä, A. (2009). Predicting boreal conifer photosynthesis in field conditions. Boreal Environment Research, 14(suppl. A), 19–28.

    CAS  Google Scholar 

  • Jeffers, J. N. R. (1978). An introduction to systems analysis: With ecological applications. London: Edward Arnold (Publishers) Limited. 198 p.

    Google Scholar 

  • Katz, Y. H. (1952). The relationship between heat unit accumulation and the planting and harvesting of canning peas. Agronomy Journal, 44, 74–78.

    Article  Google Scholar 

  • Kellomäki, S., Väisänen, H., Hänninen, H., Kolström, T., Lauhanen, R., Mattila, U., & Pajari, B. (1992). A simulation model for the succession of the boreal forest ecosystem. Silva Fennica, 26, 1–18.

    Article  Google Scholar 

  • Kellomäki, S., Hänninen, H., & Kolström, M. (1995). Computations on frost damage to Scots pine under climatic warming in boreal conditions. Ecological Applications, 5, 42–52.

    Article  Google Scholar 

  • Kobayashi, K. D., & Fuchigami, L. H. (1983a). Modelling temperature effects in breaking rest in red-osier dogwood (Cornus sericea L.). Annals of Botany, 52, 205–215.

    Google Scholar 

  • Kobayashi, K. D., & Fuchigami, L. H. (1983b). Modeling bud development during the quiescent phase in red-osier dogwood (Cornus sericea L.). Agricultural Meteorology, 28, 75–84.

    Article  Google Scholar 

  • Kramer, K. (1994a). Selecting a model to predict the onset of growth of Fagus sylvatica. Journal of Applied Ecology, 31, 172–181.

    Article  Google Scholar 

  • Kramer, K. (1994b). A modelling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in The Netherlands and Germany. Plant, Cell and Environment, 17, 367–377.

    Article  Google Scholar 

  • Landsberg, J. J. (1974). Apple fruit bud development and growth; analysis and an empirical model. Annals of Botany, 38, 1013–1023.

    Google Scholar 

  • Landsberg, J. J. (1977). Effects of weather on plant development. In J. J. Landsberg & C. V. Cutting (Eds.), Environmental effects on crop physiology (pp. 289–307). London: Academic Press.

    Google Scholar 

  • Landsberg, J. J. (1986). Physiological ecology of forest production. London: Academic Press. 198 p.

    Google Scholar 

  • Lappalainen, H. (2010). Role of temperature in the biological activity of a boreal forest (Helsinki:Finnish Meteorological Institute Contributions, Vol. 84, 52 p).

    Google Scholar 

  • Leinonen, I., Repo, T., & Hänninen, H. (1997). Changing environmental effects on frost hardiness of Scots pine during dehardening. Annals of Botany, 79, 133–138.

    Article  Google Scholar 

  • Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54, 421–431.

    Google Scholar 

  • Levins, R. (1968). Evolution in changing environments. Some theoretical explorations. Princeton: Princeton University Press. 120 p.

    Google Scholar 

  • Linkosalo, T., Lappalainen, H. K., & Hari, P. (2008). A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiology, 28, 1873–1882.

    Article  Google Scholar 

  • Mäkelä, A., Hari, P., Berninger, F., Hänninen, H., & Nikinmaa, E. (2004). Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature. Tree Physiology, 24, 369–376.

    Article  Google Scholar 

  • Mesarovic, M. D., & Takahara, Y. (1975). General systems theory: Mathematical foundations. New York: Academic Press. 268 p.

    Google Scholar 

  • Niiniluoto, I. (1983). Tieteellinen päättely ja selittäminen. Helsinki: Kustannusosakeyhtiö Otava. 416 p.

    Google Scholar 

  • Olsen, A., Bale, J. S., Leadbeater, B. S. C., Callow, M. E., & Holden, J. B. (2003). Developmental thresholds and day-degree requirements of Paratanytarsus grimmii and Corynoneura scutellata (Diptera: Chironomidae): Two midges associated with potable water treatment. Physiological Entomology, 28, 315–322.

    Article  Google Scholar 

  • Pelkonen, P. (1980). The uptake of carbon dioxide in Scots pine during spring. Flora, 169, 386–397.

    Google Scholar 

  • Pelkonen, P. (1981a). Recovery and cessation of CO 2 uptake in Scots pine at the beginning and at the end of the annual photosynthetic period (Research notes, Vol. 30. 95 p). Helsinki: University of Helsinki, Department of Silviculture.

    Google Scholar 

  • Pelkonen, P. (1981b). Investigations on seasonal CO2 uptake in Scots pine. I CO2 exchange in Scots pine after wintering period. II The autumn fall in CO2 uptake in Scots pine. Communicationes Instituti Forestalis Fenniae, 99(5), 1–40.

    Google Scholar 

  • Pelkonen, P., & Hari, P. (1980). The dependence of the springtime recovery of CO2 uptake in Scots pine on temperature and internal factors. Flora, 169, 398–404.

    Google Scholar 

  • Pisek, A., & Winkler, E. (1958). Assimilationsvermögen und Respiration der Fichte (Picea excelsa Link) in verschiedener Höhenlage und der Zirbe (Pinus cembra L.) an der alpinen Waldgrenze. Planta, 51, 518–543.

    Article  CAS  Google Scholar 

  • Repo, T. (1991). Rehardening potential of scotch pine seedlings during dehardening. Silva Fennica, 25, 13–21.

    Article  Google Scholar 

  • Repo, T. (1993). Impedance spectroscopy and temperature acclimation of forest trees (Research notes, Vol. 9. 53 p). Joensuu: University of Joensuu, Faculty of Forestry.

    Google Scholar 

  • Repo, T., Mäkelä, A., & Hänninen, H. (1990). Modelling frost resistance of trees. In H. Jozefek (Ed.), Modelling to understand forest functions. Silva Carelica, 15, 61–74.

    Google Scholar 

  • Richardson, E. A., Seeley, S. D., & Walker, D. R. (1974). A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. HortScience, 9, 331–332.

    Google Scholar 

  • Sarvas, R. (1967). The annual period of development of forest trees. Proceedings of the Finnish Academy of Science and Letters, 1995, 211–231.

    Google Scholar 

  • Sarvas, R. (1972). Investigations on the annual cycle of development of forest trees. Active period. Communicationes Instituti Forestalis Fenniae, 76(3), 1–110.

    Google Scholar 

  • Sarvas, R. (1974). Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy. Communicationes Instituti Forestalis Fenniae, 84(1), 1–101.

    Google Scholar 

  • Sharpe, P. J. H. (1990). Forest modeling approaches: Compromises between generality and precision. In R. K. Dixon, R. S. Meldahl, G. A. Ruark, & W. G. Warren (Eds.), Process modeling of forest growth responses to environmental stress (pp. 180–190). Portland: Timber Press.

    Google Scholar 

  • Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Rasmussen, A., Rantio-Lehtimaki, A., Severova, E., & Kukkonen, J. (2013). A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. International Journal of Biometeorology, 57, 45–58.

    Article  CAS  Google Scholar 

  • Thornley, J. H. M., & Johnson, I. R. (1990). Plant and crop modelling. A mathematical approach to plant and crop physiology. Oxford: Clarendon Press. 669 p.

    Google Scholar 

  • Timmis, R., Flewelling, J., & Talbert, C. (1994). Frost injury prediction model for Douglas-fir seedlings in the Pasific Northwest. Tree Physiology, 14, 855–869.

    Article  Google Scholar 

  • Wang, J. Y. (1960). A critique of the heat unit approach to plant response studies. Ecology, 41, 785–790.

    Article  Google Scholar 

  • Winter, F. (1973). Ein Simulationsmodell über die Phänologie und den Verlauf der Frostresistenz von Apfelbäumen. Ecologia Plantarum, 8, 141–152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

List of Symbols

List of Symbols

t:

time

2.1.1 Time-Dependent Environmental Variables

E(t):

environmental factor(s)

T(t):

air temperature (°C)

Tmean(t):

daily mean air temperature (°C)

2.1.2 Time-Dependent Rate and State Variables

R(t):

rate of development

S(t):

state of development

Ri(t):

rate of development of ith attribute of the annual cycle

Si(t):

state of development of ith attribute of the annual cycle

Rdd(t):

accumulation rate of day degree units (dd day−1)

Sdd(t):

accumulated temperature sum (dd)

2.1.3 Model Parameters

Tthr :

air temperature threshold for accumulation of day degree units

Hcrit :

the high temperature requirement of growth onset (dd)

2.1.4 Other Symbols

dd:

day degree unit

f:

environmental response of the rate of development (function)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hänninen, H. (2016). Dynamic Modelling of the Annual Cycle. In: Boreal and Temperate Trees in a Changing Climate. Biometeorology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7549-6_2

Download citation

Publish with us

Policies and ethics