Skip to main content

Climatic Adaptation of Boreal and Temperate Tree Species

  • Chapter
  • First Online:
Boreal and Temperate Trees in a Changing Climate

Part of the book series: Biometeorology ((BIOMET))

Abstract

Boreal and temperate trees grow under climatic conditions in which the ambient air temperature displays pronounced seasonal variation. Unlike herbs and grasses, trees overwinter without a sheltering snow cover, so that they are exposed to all the harsh climatic conditions. That is why their climatic adaptation is based on their annual cycle of development, whereby the frost-hardy dormant phase and the susceptible growth phase are synchronised with the seasonality of the climate. The main aspects of this adaptive strategy of trees are briefly discussed, emphasising both the geographical and the year-to-year variation of the seasonal air temperature conditions. Many boreal and temperate tree species have large ranges of geographical distribution, so that their different provenances have adapted to the particular local climate prevailing at their native growing site. The extent of the geographical variation in air temperature crucial for this adaptation is highlighted by examining the climatic records of four locations within the European distribution range of Pinus sylvestris. The extent of the year-to-year variation is similarly highlighted by examining a 92-year climatic record from Jyväskylä, central Finland. In the coolest summer, the temperature sum in Jyväskylä was similar to the average temperature sum 600 km north of Jyväskylä; and in the warmest summer it was similar to the average temperature sum 600 km south of Jyväskylä. This limited analysis suffices to reveal the extent of the climatic year-to-year variation that trees need to acclimate to at their native growing site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the present volume, the concept of adaptation is used for the genetic adjustment of the tree populations to their native environments, the adjustment being caused by natural selection working over evolutionary time scales. Correspondingly, the concept of acclimation is used for the physiological adjustment of individual trees to the environmental conditions prevailing at their growing site during their life cycle.

  2. 2.

    This essential concept is defined in Sect. 2.3, and its ecophysiological interpretation is discussed in Sect. 3.2.1.2.

  3. 3.

    In evolutionary terms, there is a trade-off involved in the life form of phanerophytes, i.e., trees have traded off the benefits of a sheltering snow cover in winter for superiority in the competition for light during the growing season. As freezing stress has a lot in common with drought stress at the cellular level, Larcher (1995) put forward the interesting hypothesis that the frost hardiness of plants has its evolutionary origin in drought hardiness.

References

  • Aitken, S. N., & Hannerz, M. (2001). Genecology and gene resource management strategies for conifer cold hardiness. In F. J. Bigras & S. J. Colombo (Eds.), Conifer cold hardiness (pp. 23–53). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Archibold, O. W. (1995). Ecology of world vegetation. London: Chapman & Hall. 510 p.

    Book  Google Scholar 

  • Bakkenes, M., Alkemade, J. R. M., Ihle, F., Leemans, R., & Latour, J. B. (2002). Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology, 8, 390–407.

    Article  Google Scholar 

  • Bonan, G. (2008). Ecological climatology. Concepts and applications. Cambridge: Cambridge University Press. 550 p.

    Book  Google Scholar 

  • Breckle, S.-W. (2002). Walter’s vegetation of the Earth. The ecological systems of the geo-biosphere (4th ed.). Berlin: Springer-Verlag. 527 p.

    Google Scholar 

  • Caffarra, A., Donnelly, A., Chuine, I., & Jones, M. B. (2011a). Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: a conceptual model. Climate Research, 46, 147–157.

    Article  Google Scholar 

  • Caffarra, A., Donnelly, A., & Chuine, I. (2011b). Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Climate Research, 46, 159–170.

    Article  Google Scholar 

  • Campbell, R. K. (1974). Use of phenology for examining provenance transfers in reforestation of Douglas-fir. Journal of Applied Ecology, 11, 1069–1080.

    Article  Google Scholar 

  • Cannell, M. G. R. (1985). Analysis of risks of frost damage to forest trees in Britain. In P. M. A. Tigerstedt, P. Puttonen, & V. Koski (Eds.), Crop physiology of forest trees (pp. 153–166). Helsinki: Helsinki University Press.

    Google Scholar 

  • Cannell, M. G. R., Murray, M. B., & Sheppard, L. J. (1985). Frost avoidance by selection for late budburst in Picea sitchensis. Journal of Applied Ecology, 22, 931–941.

    Article  Google Scholar 

  • Chuine, I., de Cortazar-Atauri, I. G., Kramer, K., & Hänninen, H. (2013). Plant development models. In: M. D. Schwartz (Ed.), Phenology: An integrative environmental science, Second Edition (pp. 275–293). Dordrecht: Springer.

    Google Scholar 

  • Crawford, R. M. M. (2008). Plants at the margin. Ecological limits and climate change. Cambridge: Cambridge University Press. 478 p.

    Book  Google Scholar 

  • Delbart, N., & Picard, G. (2007). Modeling the date of leaf appearance in low-arctic tundra. Global Change Biology, 13, 2551–2562.

    Article  Google Scholar 

  • Ekberg, I., Eriksson, G., & Dormling, I. (1979). Photoperiodic reactions in conifer species. Holarctic Ecology, 2, 255–263.

    Google Scholar 

  • Fuchigami, L. H., Weiser, C. J., Kobayashi, K., Timmis, R., & Gusta, L. V. (1982). A degree growth stage (°GS) model and cold acclimation in temperate woody plants. In P. H. Li & A. Sakai (Eds.), Plant cold hardiness and freezing stress. Mechanisms and crop implications (Vol. 2, pp. 93–116). New York: Academic Press.

    Chapter  Google Scholar 

  • Garner, W. W., & Allard, H. A. (1923). Further studies in photoperiodism, the response of the plant to relative length of day and night. Journal of Agricultural Research, 23, 871–920.

    Google Scholar 

  • Håbjørg, A. (1972). Effects of light quality, light intensity and night temperature on growth and development of three latitudinal populations of Betula pubescens Ehrh. Scientific Reports of the Agricultural University of Norway, 51(26), 1–17.

    Google Scholar 

  • Halaly, T., Zion, B., Arbel, A., Regev, R., Barak, M., & Or, E. (2011). Short exposure to sublethal heat shock facilitates dormancy release in grapevines. American Journal of Enology and Viticulture, 62, 106–112.

    Article  Google Scholar 

  • Hänninen, H., & Hari, P. (1996). The implications of geographical variation in climate for differentiation of bud dormancy ecotypes in Scots pine. In P. Hari, J. Ross, M. Mecke (Eds.), Production process of Scots pine; Geographical variation and models. Acta Forestalia Fennica, 254, 11–21.

    Google Scholar 

  • Hänninen, H., & Kramer, K. (2007). A framework for modelling the annual cycle of trees in boreal and temperate regions. Silva Fennica, 41, 167–205.

    Google Scholar 

  • Hänninen, H., Luoranen, J., Rikala, R., & Smolander, H. (2009). Late termination of freezer storage increases the risk of autumn frost damage to Norway spruce seedlings. Silva Fennica, 43, 817–830.

    Article  Google Scholar 

  • Hijmans, R. J., & Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272–2281.

    Article  Google Scholar 

  • Howe, G. T., Gardner, G., Hackett, W. P., & Furnier, G. R. (1996). Phytochrome control of short-day-induced bud set in black cottonwood. Physiologia Plantarum, 97, 95–103.

    Article  CAS  Google Scholar 

  • Jones, H. G., Gordon, S. L., & Brennan, R. M. (2015). Chilling requirement of Ribes cultivars. Frontiers in Plant Science, 5, Article 767. doi:10.3389/fpls.2014.00767.

  • Junttila, O. (2007). Regulation of annual shoot growth cycle in northern tree species. In E. Taulavuori & K. Taulavuori (Eds.), Physiology of northern plants under changing environment (pp. 177–210). Kerala: Research Signpost.

    Google Scholar 

  • Junttila, O., & Kaurin, Å. (1985). Climatic control of apical growth cessation in latitudinal ecotypes of Salix pentandra L. In Å. Kaurin, O. Junttila, & J. Nilsen (Eds.), Plant production in the north (pp. 83–91). Tromsø: Norwegian University Press.

    Google Scholar 

  • Junttila, O., & Kaurin, Å. (1990). Environmental control of cold acclimation in Salix pentandra. Scandinavian Journal of Forest Research, 5, 195–204.

    Article  Google Scholar 

  • Körner, C. (2003). Alpine plant life. Functional plant ecology of high mountain ecosystems (2nd ed.). Berlin: Springer-Verlag. 344 p.

    Google Scholar 

  • Koski, V., & Sievänen, R. (1985). Timing of growth cessation in relation to the variations in the growing season. In P. M. A. Tigerstedt, P. Puttonen, & V. Koski (Eds.), Crop physiology of forest trees (pp. 167–193). Helsinki: Helsinki University Press.

    Google Scholar 

  • Kramer, K., & Hänninen, H. (2009). The annual cycle of development of trees and process-based modelling of growth to scale up from the tree to the stand. In: A. Noormets (Ed.), Phenology of ecosystem processes (pp 201–227). Dordrecht: Springer.

    Google Scholar 

  • Langlet, O. (1971). Two hundred years genecology. Taxon, 20, 653–721.

    Article  Google Scholar 

  • Larcher, W. (1995). Physiological plant ecology. Ecophysiology and stress physiology of functional groups (3rd ed.). Berlin: Springer. 506 p.

    Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology. Ecophysiology and stress physiology of functional groups (4th ed.). Berlin: Springer-Verlag. 513 p.

    Google Scholar 

  • Levitt, J. (1980). Responses of plants to environmental stresses (Chilling, freezing, and high temperature stresses 2nd ed., Vol. I). New York: Academic Press. 497 p.

    Google Scholar 

  • Lundell, R., Saarinen, T., Åström, H., & Hänninen, H. (2008). The boreal dwarf shrub Vaccinium vitis-idaea retains its capacity for photosynthesis through the winter. Botany, 86, 491–500.

    Article  CAS  Google Scholar 

  • Morin, X., Lechowicz, M. J., Augspurger, C., O’Keefe, J., Viner, D., & Chuine, I. (2009). Leaf phenology in 22 North American tree species during the 21st century. Global Change Biology, 15, 961–975.

    Article  Google Scholar 

  • Murray, M. B., Cannell, M. G. R., & Smith, R. I. (1989). Date of budburst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology, 26, 693–700.

    Article  Google Scholar 

  • Nitsch, J. P. (1957). Photoperiodism in woody plants. Proceedings of the American Society for Horticultural Science, 70, 526–544.

    CAS  Google Scholar 

  • Perry, T. O. (1971). Dormancy of trees in winter. Science, 171, 29–36.

    Article  CAS  Google Scholar 

  • Picard, G., Quegan, S., Delbart, N., Lomas, M. R., Le Toan, T., & Woodward, F. I. (2005). Bud-burst modelling in Siberia and its impact on quantifying the carbon budget. Global Change Biology, 11, 2164–2176.

    Article  Google Scholar 

  • Pop, E. W., Oberbauer, S. F., & Starr, G. (2000). Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana. Oecologia, 124, 176–184.

    Article  Google Scholar 

  • Rammig, A., Jönsson, A. M., Hickler, T., Smith, B., Bärring, L., & Sykes, M. T. (2010). Impacts of changing frost regimes on Swedish forests: Incorporating cold hardiness in a regional ecosystem model. Ecological Modelling, 221, 303–313.

    Article  Google Scholar 

  • Raunkiaer, C. (1934). The life forms of plants and statistical plant geography. Oxford: Clarendon Press. 632 p.

    Google Scholar 

  • Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L., & Hamilton, D. A., Jr. (1999). Genetic responses to climate in Pinus contorta: Niche breadth, climate change, and reforestation. Ecological Monographs, 69, 375–407.

    Article  Google Scholar 

  • Sakai, A., & Larcher, W. (1987). Frost survival of plants. Responses and adaptation to freezing stress. Berlin: Springer-Verlag. 321 pp.

    Book  Google Scholar 

  • Sarvas, R. (1964). Havupuut. Porvoo: Werner Söderström Osakeyhtiö. 531 p.

    Google Scholar 

  • Sarvas, R. (1972). Investigations on the annual cycle of development of forest trees. Active period. Communicationes Instituti Forestalis Fenniae, 76(3), 1–110.

    Google Scholar 

  • Sarvas, R. (1974). Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy. Communicationes Instituti Forestalis Fenniae, 84(1), 1–101.

    Google Scholar 

  • Saure, M. C. (1985). Dormancy release in deciduous fruit trees. Horticultural Reviews, 7, 239–300.

    Google Scholar 

  • Savolainen, O., Pyhäjärvi, T., & Knürr, T. (2007). Gene flow and local adaptation in trees. Annual Review of Ecology, Evolution, and Systematics, 38, 595–619.

    Article  Google Scholar 

  • Sutinen, M.-L., Palta, J. P., & Reich, P. B. (1992). Seasonal differences in freezing stress resistance of needles of Pinus nigra and Pinus resinosa: Evaluation of the electrolyte leakage method. Tree Physiology, 11, 241–254.

    Article  Google Scholar 

  • Sutinen, M.-L., Arora, R., Wisniewski, M., Ashworth, E., Strimbeck, R., & Palta, J. (2001). Mechanisms of frost survival and freeze-damage in nature. In F. J. Bigras & S. J. Colombo (Eds.), Conifer cold hardiness (pp. 89–120). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Tanino, K. K., Kalcsits, L., Silim, S., Kendall, E., & Gray, G. R. (2010). Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: A working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Molecular Biology, 73, 49–65.

    Article  CAS  Google Scholar 

  • Thomas, B., & Vince-Prue, D. (1977). Photoperiodism in plants (2nd ed.). San Diego: Academic Press. 428 p.

    Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427, 145–148.

    Article  CAS  Google Scholar 

  • Van Wijk, M. T., Williams, M., Laundre, J. A., & Shaver, G. R. (2003). Interannual variability of plant phenology in tussock tundra: Modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw. Global Change Biology, 9, 743–758.

    Article  Google Scholar 

  • Viherä-Aarnio, A., Häkkinen, R., Partanen, J., Luomajoki, A., & Koski, V. (2005). Effects of seed origin and sowing time on timing of height growth cessation of Betula pendula seedlings. Tree Physiology, 25, 101–108.

    Article  Google Scholar 

  • Weiser, C. J. (1970). Cold resistance and injury in woody plants. Science, 169, 1269–1278.

    Article  CAS  Google Scholar 

  • Whittaker, R. H. (1975). Communities and ecosystems (2nd ed.). New York: Macmillan Publishing Co. 385 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hänninen, H. (2016). Climatic Adaptation of Boreal and Temperate Tree Species. In: Boreal and Temperate Trees in a Changing Climate. Biometeorology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7549-6_1

Download citation

Publish with us

Policies and ethics