Skip to main content

Clinical Bioinformatics for Biomarker Discovery in Targeted Metabolomics

  • Chapter
  • First Online:
Application of Clinical Bioinformatics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 11))

Abstract

In this chapter, methods of clinical bioinformatics in targeted metabolomics are discussed, with an emphasis on the discovery of metabolic biomarkers. The reader is introduced to general aspects such as initiatives in metabolomics standardization, regulatory guidelines and software validation, and is presented an overview of the bioinformatics workflow in metabolomics. Engineering-based concepts of clinical bioinformatics in supporting the storage and automated analysis of samples, the integration of data in public repositories, and in the management of data using metabolomics application software are discussed. Chemometrics algorithms for data processing are summarized, modalities of biostatistics and data analysis presented, as well as data mining and machine learning approaches, aiming at the discovery of biomarkers in targeted metabolomics. Methods of data interpretation in the context of annotated biochemical pathways are suggested, theoretical concepts of metabolic modeling and engineering are introduced, and the in-silico modeling and simulation of molecular processes is briefly touched. Finally, a short outlook on future perspectives in the application of clinical bioinformatics in targeted metabolomics is given, e.g. on the development of integrated mass spectrometry solutions, ready for routine clinical usage in laboratory medicine, or on the application of concepts of artificial intelligence in laboratory automation – liquid handling robots, autonomously performing experiments and generating hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACToR:

Aggregated Computational Toxicology Resource

ANN:

artificial neural network

ANOVA:

analysis-of-variance

ArMet:

Architecture for a Metabolomics Experiment

ATP:

adenosine triphosphate

BBMRI:

Biobanking and Biomolecular Resources Research Infrastructure

BGI:

Beijing Genomics Institute

ChEBI:

Chemical Entities of Biological Interest

COSMOS:

COordination Of Standards In MetabOlomicS

CO2 :

carbon dioxide

CV:

coefficient of variation

C2:

acetylcarnitine

C5:

valerylcarnitine

DBSCAN:

density-based spatial clustering of applications with noise

DRCC:

Data Repository and Coordination Centre

ELIXIR:

European life-sciences Infrastructure for biological Information

EMA:

European Medicines Agency

EPA:

Environmental Protection Agency

FDA:

Food and Drug Administration

GAMP:

Good Automated Manufacturing Practice

GWAS:

genome-wide association studies

HMDB:

Human Metabolome Database

H2O:

water

ICH:

International Conference on Harmonization

ISA:

Investigation Study Assay

ISO:

International Organization of Standardization

ISPE:

International Society for Pharmaceutical Engineering

JDAMP:

Joint Committee on Atomic and Molecular Physical Data

KDD:

knowledge discovery in databases

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LIMS:

laboratory information management systems

LLOQ:

lower limit of quantitation

MBRole:

Metabolite Biological Role

MeMo:

Metabolic Modeling

MFC:

maximum fold change

MIBBI:

Minimum Information for Biological and Biomedical investigations

MIAMET:

Minimum Information About METabolomics experiments

MS:

mass spectrometry

MSEA:

Metabolite Set Enrichment Analysis

MSI:

Metabolomics Standards Initiative

NADH:

nicotinamide adenine dinucleotide

netCDF:

Network Common Data Format

NH3 :

ammonia

ODE:

ordinary differential equation

OMIM:

Online Mendelian Inheritance in Man

ORA:

overrepresentation analysis

PCA:

principal component analysis

PLS:

partial least squares

PRIMe:

Platform for RIKEN Metabolomics

QC:

quality control

RCMRC:

Regional Comprehensive Metabolomics Research Cores

RF:

random forest

SFR:

stacked feature ranking

SMPDB:

Small Molecule Pathway Database

SOP:

Standard Operating Procedure

SSP:

single sample profiling

SVM:

support vector machines

T3DB:

Toxin Target/Target Database

XML:

eXtensible Markup Language.

References

  • Alpaydin E. Introduction to machine learning. 2nd ed. Cambridge: The MIT Press; 2009.

    Google Scholar 

  • Bakshi BR. Multiscale pca with application to multivariate statistical process monitoring. AIChE J. 1998;44:1596–610.

    Article  CAS  Google Scholar 

  • Baumgartner C, Graber A. Data mining and knowledge discovery in metabolomics. In: Masseglia F, Poncelet P, Teisseire M, editors. Successes and new directions in data mining. London: Information Science Reference; 2008. p. 141–66.

    Chapter  Google Scholar 

  • Baumgartner C, Lewis GD, Netzer M, Pfeifer B, Gerszten RE. A new data mining approach for profiling and categorizing kinetic patterns of metabolic biomarkers after myocardial injury. Bioinformatics. 2010;26(14):1745–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgartner C, Osl M, Netzer M, Baumgartner D. Bioinformatic-driven search for metabolic biomarkers in disease. J Clin Bioinforma. 2011;1(1):2. doi:10.1186/2043-9113-1-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann M, Parker D, Enot DP, Duval E, Draper J. High-throughput, nontargeted metabolite fingerprinting using nominal mass flow injection electrospray mass spectrometry. Nat Protoc. 2008;3(3):486–504.

    Article  CAS  PubMed  Google Scholar 

  • Beger RD. A review of applications of metabolomics in cancer. Metabolites. 2013;3(3):552–74. doi:10.3390/metabo3030552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellazzi R, Masseroli M, Murphy S, Shabo A, Romano P. Clinical bioinformatics: challenges and opportunities. BMC Bioinformatics. 2012;13(Suppl 14):S1. doi:10.1186/1471-2105-13-S14-S1. Epub 2012 Sep 7.

  • Berk M, Ebbels T, Montana G. A statistical framework for biomarker discovery in metabolomic time course data. Bioinformatics. 2011;27(14):1979–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstam EV, Smith JW, Johnson TR. What is biomedical informatics? J Biomed Inform. 2010;43(1):104–10. doi:10.1016/j.jbi.2009.08.006. Epub 2009 Aug 13. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertalanffy L. General system theory: foundations, development, applications. New York: George Braziller; 1968.

    Google Scholar 

  • Bicciato S. Artificial neural network technologies to identify biomarkers for therapeutic intervention. Curr Opin Mol Ther. 2004;6(6):616–23.

    CAS  PubMed  Google Scholar 

  • Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, van Ommen B, Smilde AK. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem. 2006;78(2):567–74.

    Article  CAS  PubMed  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, et al. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 2004;9(9):418–25.

    Article  CAS  PubMed  Google Scholar 

  • Blum T, Kohlbacher O. MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization. Bioinformatics. 2008;24(18):2108–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Board Members MSI, Sansone SA, Fan T, Goodacre R, Griffin JL, Hardy NW, et al. The metabolomics standards initiative. Nat Biotechnol. 2007;25(8):846–8.

    Google Scholar 

  • Bourne PE, Brenner SE, Eisen MB. Ten years of PLoS computational biology: a decade of appreciation and innovation. PLoS Comput Biol. 2015;11(6), e1004317. doi:10.1371/journal.pcbi.1004317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Breit M. Sensitivity analysis of biological pathways. Master’s thesis. Hall in Tirol: University for Health Sciences Medical Informatics and Technology (UMIT), 2004.

    Google Scholar 

  • Breit M, Graber A, Tilg B. Development of an integrated bioinformatics platform for the identification of metabolic markers. Presented at: BMT annual meeting 2006; 2006 Sept 6–9; Zurich, Switzerland.

    Google Scholar 

  • Breit M, Bichteler F, Urban M, Bellus TH, Winter A, Weinberger KM. Standardized preparation of a mass spectrometry-based research kit for targeted metabolomics on a liquid handling robot. Poster session presented at: Advances in Separation Technology (AST2011), European Lab Automation (ELA2011); 2011 June 30–July 1; Hamburg, Germany.

    Google Scholar 

  • Breit M, Baumgartner C, Weinberger KM. Data handling and analysis in metabolomics. In: Khanmohammadi M, editor. Current applications of chemometrics. New York: Nova Science Publishers; 2015a. p. 181–203.

    Google Scholar 

  • Breit M, Netzer M, Weinberger KM, Baumgartner C. Modeling and classification of kinetic patterns of dynamic metabolic biomarkers in physical activity. PLoS Comput Biol. 2015b;11(8):e1004454. doi:10.1371/journal.pcbi.1004454. eCollection 2015.

    Google Scholar 

  • Butte AJ. Translational bioinformatics: coming of age. J Am Med Inform Assoc. 2008;15(6):709–14. doi:10.1197/jamia.M2824. Epub 2008 Aug 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bylund D. Chemometric tools for enhanced performance in liquid chromatography-mass spectrometry. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. Uppsala: Uppsala University; 2001.

    Google Scholar 

  • Byvatov E, Schneider G. Support vector machine applications in bioinformatics. Appl Bioinformatics. 2003;2(2):67–77.

    PubMed  Google Scholar 

  • Camacho D, de la Fuente A, Mendes P. The origin of correlations in metabolomics data. Metabolomics. 2005;1(1):53–63.

    Article  CAS  Google Scholar 

  • Chagoyen M, Pazos F. MBRole: enrichment analysis of metabolomic data. Bioinformatics. 2011;27(5):730–1.

    Article  CAS  PubMed  Google Scholar 

  • Chagoyen M, Pazos F. Tools for the functional interpretation of metabolomic experiments. Brief Bioinform. 2013;14(6):737–44.

    Article  PubMed  Google Scholar 

  • Chang PL. Clinical bioinformatics. Chang Gung Med J. 2005;28(4):201–11. Review.

    PubMed  Google Scholar 

  • Crews B, Wikoff WR, Patti GJ, Woo HK, Kalisiak E, Heideker J, Siuzdak G. Variability analysis of human plasma and cerebral spinal fluid reveals statistical significance of changes in mass spectrometry-based metabolomics data. Anal Chem. 2009;81(20):8538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. doi:10.1093/nar/gkn923. Epub 2008 Nov 25.

    Article  PubMed Central  CAS  Google Scholar 

  • Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, et al. ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 2008;36(Database issue):D344–50. Epub 2007 Oct 11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeNardo GL, DeNardo SJ. Concepts, consequences, and implications of theranosis. Semin Nucl Med. 2012;42(3):147–50. doi:10.1053/j.semnuclmed.2011.12.003.

    Article  PubMed  Google Scholar 

  • Devlin TM, editor. Textbook of biochemistry with clinical correlations. 6th ed. Hoboken: Wiley-Liss; 2006.

    Google Scholar 

  • Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 2006;78:4281–90.

    Article  CAS  PubMed  Google Scholar 

  • Domingos P. A few useful things to know about machine learning. Commun ACM. 2012;55(10):78–87.

    Article  Google Scholar 

  • Draper J, Enot DP, Parker D, Beckmann M, Snowdon S, Lin W, Zubair H. Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour ‘rules’. BMC Bioinformatics. 2009;10:227.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudik JM, Kurosu A, Coyle JL, Sejdic E. A comparative analysis of DBSCAN, K-means, and quadratic variation algorithms for automatic identification of swallows from swallowing accelerometry signals. Comput Biol Med. 2015;59:10–8. doi:10.1016/j.compbiomed.2015.01.007. Epub 2015 Jan 17.

    Article  PubMed  Google Scholar 

  • Eibl G, Bernardo K, Koal T, Ramsay SL, Weinberger KM, Graber A. Isotope correction of mass spectrometry profiles. Rapid Commun Mass Spectrom. 2008;22(14):2248–52.

    Article  CAS  PubMed  Google Scholar 

  • Emmert-Streib F. Structural properties and complexity of a new network class: Collatz step graphs. PLoS One. 2013;8(2), e56461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmert-Streib F, Zhang SD, Hamilton P. Dry computational approaches for wet medical problems. J Transl Med. 2014;12:26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Enot DP, Beckmann M, Overy D, Draper J. Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals. Proc Natl Acad Sci U S A. 2006;103(40):14865–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enot DP, Lin W, Beckmann M, Parker D, Overy DP, Draper J. Preprocessing, classification modeling and feature selection using flow injection electrospray mass spectrometry metabolite fingerprint data. Nat Protoc. 2008;3(3):446–70.

    Article  CAS  PubMed  Google Scholar 

  • Enot DP, Haas B, Weinberger KM. Bioinformatics for mass spectrometry-based metabolomics. Methods Mol Biol. 2011;719:351–75. doi:10.1007/978-1-61779-027-0_16.

    Article  CAS  PubMed  Google Scholar 

  • EPA – Environmental Protection Agency. Guidance for preparing standard operating procedures (SOPs) (G-6). Washington, DC: Office of Environmental Information; 2007.

    Google Scholar 

  • Fayyad U, Piatetsky-Shapiro G, Smyth P. The KDD process for extracting useful knowledge from volumes of data. Commun ACM. 1996;39(11):27–34.

    Article  Google Scholar 

  • FDA – Food and Drug Administration. Guidance for industry – bioanalytical method validation. Rockville: Center for Drug Evaluation and Research (CDER); 2001.

    Google Scholar 

  • FDA – Food and Drug Administration. General principles of software validation; final guidance for industry and FDA staff. Rockville: Center for Biologics Evaluation and Research (CBER); 2002.

    Google Scholar 

  • Fogg CN, Kovats DE. Computational biology: moving into the future one click at a time. PLoS Comput Biol. 2015;11(6):e1004323. doi:10.1371/journal.pcbi.1004323. eCollection 2015 Jun.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fredriksson MJ, Petersson P, Axelsson BO, Bylund D. An automatic peak finding method for LC-MS data using Gaussian second derivative filtering. J Sep Sci. 2009;32(22):3906–18.

    Article  CAS  PubMed  Google Scholar 

  • Frolkis A, Knox C, Lim E, Jewison T, Law V, Hau DD, Liu P, Gautam B, Ly S, Guo AC, Xia J, Liang Y, Shrivastava S, Wishart DS. SMPDB: the small molecule pathway database. Nucleic Acids Res. 2010;38(Database issue):D480–7. doi:10.1093/nar/gkp1002. Epub 2009 Nov 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambin A, Slonimski PP. Hierarchical clustering based upon contextual alignment of proteins: a different way to approach phylogeny. C R Biol. 2005;328(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  • Gieger C, Geistlinger L, Altmaier E, Hrabé de Angelis M, Kronenberg F, Meitinger T. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 2008;4(11), e1000282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goecks J, Nekrutenko A, Taylor J. Galaxy Team. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11(8):R86. doi:10.1186/gb-2010-11-8-r86. Epub 2010 Aug 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan G, Kell DB. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 2004;22:245–52.

    Article  CAS  PubMed  Google Scholar 

  • Guldberg CM, Waage P. Studier i affiniteten (Translation: Studies on affinities.) Forhandlinger i Videnskabs-Selskabet i Christiania; 1864.

    Google Scholar 

  • Guldberg CM, Waage P. Études sur les affinites chimiques (Translation: Studies on chemical affinities.) Christiania: Brøgger & Christie; 1867.

    Google Scholar 

  • Guldberg CM, Waage P. Über die chemische Affinität (Translation: On chemical affinity.) Erdmann’s Journal für practische Cehmie. 1879;127:69–114.

    Google Scholar 

  • Hamosh A, Scott AF, Amberger J, Valle D, McKusick VA. Online Mendelian Inheritance in Man (OMIM). Hum Mutat. 2000;15(1):57–61.

    Article  CAS  PubMed  Google Scholar 

  • Harris JR, Burton P, Knoppers BM, Lindpaintner K, Bledsoe M, Brookes AJ, et al. Toward a roadmap in global biobanking for health. Eur J Hum Genet. 2012;20(11):1105–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haug K, Salek RM, Conesa P, Hastings J, de Matos P, Rijnbeek M, et al. MetaboLights--an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2014;41(Database issue):D781–6. doi:10.1093/nar/gks1004. Epub 2012 Oct 29.

    Google Scholar 

  • Hogeweg P. The roots of bioinformatics in theoretical biology. PLoS Comput Biol. 2011;7(3), e1002021. doi:10.1371/journal.pcbi.1002021. Epub 2011 Mar 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ICH – International Conference on Harmonization. Guidance for industry – E6 good clinical practice: consolidated guidance. Rockville: Center for Drug Evaluation and Research (CDER); 1996.

    Google Scholar 

  • Illig T, Gieger C, Zhai G, Römisch-Margl W, Wang-Sattler R, Prehn C, et al. A genome-wide perspective of genetic variation in human metabolism. Nat Genet. 2010;42:137–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ISO – International Organization for Standardization. ISO 9001:2008 quality management systems – requirements. Geneva: ISO Headquarters; 2008.

    Google Scholar 

  • ISPE – International Society for Pharmaceutical Engineering. The good automated manufacturing practice (GAMP) – guide for validation of automated systems in pharmaceutical manufacture. Tampa: ISPE Headquarters; 2008.

    Google Scholar 

  • Jain RB, Caudill SP, Wang RY, Monsell E. Evaluation of maximum likelihood procedures to estimate left censored observations. Anal Chem. 2008;80(4):1124–32.

    Article  CAS  PubMed  Google Scholar 

  • Jansen JJ, Hoefsloot HC, Boelens HF, Van Der Greef J, Smilde AK. Analysis of longitudinal metabolomics data. Bioinformatics. 2004;20(15):2438–46.

    Article  CAS  PubMed  Google Scholar 

  • Jansen JJ, Szymanska E, Hoefsloot HC, Jacobs DM, Strassburg K, Smilde AK. Between metabolite relationships: an essential aspect of metabolic change. Metabolomics. 2012;8(3):422–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J, et al. A proposed framework for the description of plant metabolomics experiments and their results. Nat Biotechnol. 2004;22(12):1601–6.

    Article  CAS  PubMed  Google Scholar 

  • Jonsson P, Johansson AI, Gullberg J, Trygg J, Grung B. High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal Chem. 2005;77(17):5635–42.

    Article  CAS  PubMed  Google Scholar 

  • Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 2005;33(Database issue):D428–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judson R, Richard A, Dix D, Houck K, Elloumi F, Martin M, et al. ACToR—aggregated computational toxicology resource. Toxicol Appl Pharmacol. 2008;233(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahrén D, Tsoka S, Darzentas N, Kunin V, López-Bigas N. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res. 2005;33((19)):6083–9. Print 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpievitch YV, Hill EG, Smolka AJ, Morris JS, Coombes KR, Baggerly KA, Almeida JS. PrepMS: TOF MS data graphical preprocessing tool. Bioinformatics. 2007;23(2):264–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katajamaa M, Oresic M. Data processing for mass spectrometry-based metabolomics. J Chromatogr A. 2007;1158(1-2):318–28.

    Article  CAS  PubMed  Google Scholar 

  • Kitano H. Systems biology: toward system-level understanding of biological systems. In: Kitano H, editor. Foundations of systems biology. Cambridge, MA: MIT Press; 2001. p. 1–29.

    Google Scholar 

  • Kitano H. Computational systems biology. Nature. 2002;420(6912):206–10. Review.

    Article  CAS  PubMed  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D. GMD@CSB.DB: the golm metabolome database. Bioinformatics. 2005;21(8):1635–8. Epub 2004 Dec 21.

    Article  CAS  PubMed  Google Scholar 

  • Kraly JR, Holcomb RE, Guan Q, Henry CS. Review: microfluidic applications in metabolomics and metabolic profiling. Anal Chim Acta. 2009;653(1):23–35. doi:10.1016/j.aca.2009.08.037. Epub 2009 Sep 1. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann EL, Romano JP. Testing statistical hypotheses. 3rd ed. New York: Springer; 2005.

    Google Scholar 

  • Lim E, Pon A, Djoumbou Y, Knox C, Shrivastava S, Guo AC, Neveu V, Wishart DS. T3DB: a comprehensively annotated database of common toxins and their targets. Nucleic Acids Res. 2010;38(Database issue):D781–6. doi:10.1093/nar/gkp934. Epub 2009 Nov 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SM, Zhu L, Winter AQ, Sasinowski M, Kibbe WA. What is mzXML good for? Expert Rev Proteomics. 2005;2(6):839–45.

    Article  CAS  PubMed  Google Scholar 

  • Listgarten J, Emili A. Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics. 2005;4(4):419–34.

    Article  CAS  PubMed  Google Scholar 

  • Lu C, King RD. An investigation into the population abundance distribution of mRNAs, proteins, and metabolites in biological systems. Bioinformatics. 2009;25(16):2020–7.

    Article  CAS  PubMed  Google Scholar 

  • Markley JL, Anderson ME, Cui Q, Eghbalnia HR, Lewis IA, Hegeman AD, et al. New bioinformatics resources for metabolomics. Pac Symp Biocomput. 2007;157–68.

    Google Scholar 

  • McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth summer research project on artificial intelligence. 1955 Aug 31 [cited 2015 Apr 07] Available from: http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf

  • Mendes P, Camacho D, de la Fuente A. Modelling and simulation for metabolomics data analysis. Biochem Soc Trans. 2005;33(Pt 6):1427–9.

    Article  CAS  PubMed  Google Scholar 

  • Mesarovic MD. System theory and biology – view of a theoretician. In: Mesarovic MD, editor. Systems theory and biology. New York: Springer; 1968. p. 59–87.

    Chapter  Google Scholar 

  • Mettler T, Raptis DA. What constitutes the field of health information systems? Fostering a systematic framework and research agenda. Health Informatics J. 2012;18(2):147–56. doi:10.1177/1460458212452496.

    Article  PubMed  Google Scholar 

  • Michaelis L, Menten ML. Die Kinetik der Invertinwirkung. (Translation: The kinetics of invertase activity.). Biochem Z. 1913;49:333–69.

    CAS  Google Scholar 

  • Mishina EV, Straubinger RM, Pyszczynski NA, Jusko WJ. Enhancement of tissue delivery and receptor occupancy of methylprednisolone in rats by a liposomal formulation. Pharm Res. 1993;10(10):1402–10.

    Article  CAS  PubMed  Google Scholar 

  • Modre-Osprian R, Osprian I, Tilg B, Schreier G, Weinberger KM, Graber A. Dynamic simulations on the mitochondrial fatty acid beta-oxidation network. BMC Syst Biol. 2009;3:2. doi:10.1186/1752-0509-3-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  • Morris JS, Coombes KR, Koomen J, Baggerly KA, Kobayashi R. Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics. 2005;21(9):1764–75.

    Article  CAS  PubMed  Google Scholar 

  • Müller LAJ, Kugler KG, Netzer M, Graber A, Dehmer M. A network-based approach to classify the three domains of life. Biol Direct. 2011;6:53.

    Article  Google Scholar 

  • Navis GJ, Blankestijn PJ, Deegens J, De Fijter JW, Homan van der Heide JJ, Rabelink T, et al. The biobank of nephrological diseases in the Netherlands cohort: the string of pearls initiative collaboration on chronic kidney disease in the university medical centers in the Netherlands. Nephrol Dial Transplant. 2014;29(6):1145–50.

    Google Scholar 

  • Nelson DL, Cox MM. Lehninger principles of biochemistry. 5th ed. New York: W. H. Freeman and Company; 2008.

    Google Scholar 

  • Netzer M, Millonig G, Osl M, Pfeifer B, Praun S, Villinger J, Vogel W, Baumgartner C. A new ensemble-based algorithm for identifying breath gas marker candidates in liver disease using ion molecule reaction mass spectrometry. Bioinformatics. 2009;25(7):941–7.

    Article  CAS  PubMed  Google Scholar 

  • Netzer M, Weinberger KM, Handler M, Seger M, Fang X, Kugler KG, Graber A, Baumgartner C. Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers. J Clin Bioinforma. 2011;1(1):34. doi:10.1186/2043-9113-1-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netzer M, Kugler KG, Müller LA, Weinberger KM, Graber A, Baumgartner C, Dehmer M. A network-based feature selection approach to identify metabolic signatures in disease. J Theor Biol. 2012;310:216–22. doi:10.1016/j.jtbi.2012.06.003. Epub 2012 Jul 4.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J. Metabolic engineering. Appl Microbiol Biotechnol. 2001;55(3):263–83. Review.

    Article  CAS  PubMed  Google Scholar 

  • Nishino T, Yachie-Kinoshita A, Hirayama A, Soga T, Suematsu M, Tomita M. Dynamic simulation and metabolome analysis of long-term erythrocyte storage in adenine-guanosine solution. PLoS One. 2013;8(8), e71060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nussinov R. Advancements and challenges in computational biology. PLoS Comput Biol. 2015;11(1):e1004053. doi:10.1371/journal.pcbi.1004053. eCollection 2015 Jan.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nussinov R, Bonhoeffer S, Papin JA, Sporns O. From “what is?” to “what Isn’t?” computational biology. PLoS Comput Biol. 2015;11(7):e1004318. doi:10.1371/journal.pcbi.1004318. eCollection 2015 Jul.

    Article  PubMed  PubMed Central  Google Scholar 

  • Osl M, Dreiseitl S, Pfeifer B, Weinberger K, Klocker H, Bartsch G, Schäfer G, Tilg B, Graber A, Baumgartner C. A new rule-based algorithm for identifying metabolic markers in prostate cancer using tandem mass spectrometry. Bioinformatics. 2008;24(24):2908–14.

    Article  CAS  PubMed  Google Scholar 

  • Palsson B. The challenges of in silico biology. Nat Biotechnol. 2000;18(11):1147–50.

    Article  CAS  PubMed  Google Scholar 

  • Parsons HM, Ekman DR, Collette TW, Viant MR. Spectral relative standard deviation: a practical benchmark in metabolomics. Analyst. 2009;134(3):478–85.

    Article  CAS  PubMed  Google Scholar 

  • Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13(4):263–9. doi:10.1038/nrm3314. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, et al. A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol. 2004;22(11):1459–66.

    Article  CAS  PubMed  Google Scholar 

  • Pence HE, Williams A. ChemSpider: an online chemical information resource. J Chem Educ. 2010;87(11):1123–4.

    Article  CAS  Google Scholar 

  • Phillips KA, Van Bebber S, Issa AM. Diagnostics and biomarker development: priming the pipeline. Nat Rev Drug Discov. 2006;5(6):463–9.

    Article  CAS  PubMed  Google Scholar 

  • Purohit PV, Rocke DM, Viant MR, Woodruff DL. Discrimination models using variance-stabilizing transformation of metabolomic NMR data. OMICS. 2004;8(2):118–30.

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2008.

    Google Scholar 

  • Ren S, Hinzman AA, Kang EL, Szczesniak RD, Lu LJ. Computational and statistical analysis of metabolomics data. Metabolomics. 2015;11(6):1492–513.

    Article  CAS  Google Scholar 

  • Rios-Estepa R, Lange BM. Experimental and mathematical approaches to modeling plant metabolic networks. Phytochemistry. 2007;68(16):2351–74.

    Article  CAS  PubMed  Google Scholar 

  • Röschinger W, Olgemöller B, Fingerhut R, Liebl B, Roscher AA. Advances in analytical mass spectrometry to improve screening for inherited metabolic diseases. Eur J Pediatr. 2003;162 Suppl 1:S67–76.

    Article  PubMed  CAS  Google Scholar 

  • Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507–17. Epub 2007 Aug 24.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Yamada Y, Sawada Y, Matsuda F, Akiyama K, Shinozaki K, Hirai MY, Saito K. PRIMe Update: innovative content for plant metabolomics and integration of gene expression and metabolite accumulation. Plant Cell Physiol. 2013;54(2), e5. doi:10.1093/pcp/pcs184. Epub 2013 Jan 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salek RM, Haug K, Steinbeck C. Dissemination of metabolomics results: role of MetaboLights and COSMOS. Gigascience. 2013;2(1):8. doi:10.1186/2047-217X-2-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salek RM, Neumann S, Schober D, Hummel J, Billiau K, Kopka J, et al. COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics. 2015;11(6):1587–97. Epub 2015 May 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev. 1959;3(3):210–29.

    Article  Google Scholar 

  • Sansone SA, Rocca-Serra P, Brandizi M, Brazma A, Field D, Fostel J, et al. The first RSBI (ISA-TAB) workshop: “can a simple format work for complex studies?”. OMICS. 2008;12(2):143–9. doi:10.1089/omi.2008.0019.

    Article  CAS  PubMed  Google Scholar 

  • Sansone SA, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O, et al. Toward interoperable bioscience data. Nat Genet. 2012;44(2):121–6. doi:10.1038/ng.1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz M, Fiehn O. SetupX—a public study design database for metabolomic projects. Pac Symp Biocomput. 2007;169–80.

    Google Scholar 

  • Sebag M. A tour of machine learning: An AI perspective. AI Commun. 2014;27(1):11–23.

    Google Scholar 

  • Smilde AK, Jansen JJ, Hoefsloot HC, Lamers RJA, Van Der Greef J, Timmerman ME. ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics. 2005;21(13):3043–8.

    Article  CAS  PubMed  Google Scholar 

  • Smilde AK, Westerhuis JA, Hoefsloot HCJ, Bijlsma S, Rubingh CM, Vis DJ, et al. Dynamic metabolomic data analysis: a tutorial review. Metabolomics. 2010;6(1):3–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27(6):747–51.

    Article  CAS  PubMed  Google Scholar 

  • Smolen P, Hardin PE, Lo BS, Baxter DA, Byrne JH. Simulation of Drosophila circadian oscillations, mutations, and light responses by a model with VRI, PDP-1, and CLK. Biophys J. 2004;86(5):2786–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomonoff RJ. An inductive inference machine. IRE Convention Record, Section on Information Theory. 1957;2:56–62.

    Google Scholar 

  • Solomonoff RJ. A formal theory of inductive inference. Part I. Information and control. 1964;7(1):1–22.

    Google Scholar 

  • Sparkes A, King RD, Aubrey W, Benway M, Byrne E, Clare A, et al. An integrated laboratory robotic system for autonomous discovery of gene function. J Assoc Lab Autom. 2010;15(1):33–40.

    Article  Google Scholar 

  • Spasić I, Dunn WB, Velarde G, Tseng A, Jenkins H, Hardy N, et al. MeMo: a hybrid SQL/XML approach to metabolomic data management for functional genomics. BMC Bioinformatics. 2006;7:281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. pcaMethods—a bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007;23(9):1164–7.

    Article  CAS  PubMed  Google Scholar 

  • Stanberry L, Mias GI, Haynes W, Higdon R, Snyder M, Kolker E. Integrative analysis of longitudinal metabolomics data from a personal multi-omics profile. Metabolites. 2013;3(3):741–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steinbeck C, Conesa P, Haug K, Mahendraker T, Williams M, Maguire E, et al. MetaboLights: towards a new COSMOS of metabolomics data management. Metabolomics. 2012;8(5):757–60. Epub 2012 Sep 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephanopoulos G. Metabolic fluxes and metabolic engineering. Metab Eng. 1999;1(1):1–11. Review.

    Article  CAS  PubMed  Google Scholar 

  • Steuer R. Review: on the analysis and interpretation of correlations in metabolomic data. Brief Bioinform. 2006;7(2):151–8.

    Article  CAS  PubMed  Google Scholar 

  • Steuer R, Junker BH. Computational models of metabolism: stability and regulation in metabolic networks. In: Rice SA, editor. Advances in chemical physics, vol. 142. Hoboken: Wiley; 2009.

    Chapter  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50. Epub 2005 Sep 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M. Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinform. 2012;7(1):96–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suhre K, Gieger C. Genetic variation in metabolic phenotypes: study designs and applications. Nat Rev Genet. 2012;13(11):759–69. doi:10.1038/nrg3314. Epub 2012 Oct 3. Review.

    Article  CAS  PubMed  Google Scholar 

  • Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wägele B, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477(7362):54–60.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Ishikawa N, Sadamoto Y, Sasamoto H, Ohta S, Shiozawa A, Miyoshi F, Naito Y, Nakayama Y, Tomita M. E-Cell 2: multi-platform E-Cell simulation system. Bioinformatics. 2003;19(13):1727–9.

    Article  CAS  PubMed  Google Scholar 

  • Tan CS, Ploner A, Quandt A, Lehtiö J, Pawitan Y. Finding regions of significance in SELDI measurements for identifying protein biomarkers. Bioinformatics. 2006;22(12):1515–23.

    Article  CAS  PubMed  Google Scholar 

  • Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, Siuzdak G. An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol. 2012;30(9):826–8. doi:10.1038/nbt.2348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, et al. Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol. 2008;26(8):889–96. doi:10.1038/nbt.1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibshirani R, Hastie T, Narasimhan B, Soltys S, Shi G, Koong A, Le QT. Sample classification from protein mass spectrometry, by peak probability contrasts. Bioinformatics. 2004;20(17):3034–44.

    Article  CAS  PubMed  Google Scholar 

  • Torgrip RJO, Aberg KM, Alm E, Schuppe-Koistinen I, Lindberg J. A note on normalization of biofluid 1D 1H-NMR data. Metabolomics. 2008;4:114–21.

    Article  CAS  Google Scholar 

  • Trent RJ, editor. Clinical bioinformatics. Totowa: Humana; 2008.

    Google Scholar 

  • Trietsch SJ, Hankemeier T, Van der Linden HJ. Lab-on-a-chip technologies for massive parallel data generation in the life sciences: A review. Chemom Intell Lab Syst. 2011;108(1):64–75.

    Article  CAS  Google Scholar 

  • Tripathi S, Dehmer M, Emmert-Streib F. NetBioV: an R package for visualizing large network data in biology and medicine. Bioinformatics. 2014;30(19):2834–6. doi:10.1093/bioinformatics/btu384. Epub 2014 Jun 12.

    Article  PubMed  Google Scholar 

  • Turing AM. Computing machinery and intelligence. Mind. 1950;49:433–60.

    Article  Google Scholar 

  • van Ommen GJ, Törnwall O, Bréchot C, Dagher G, Galli J, Hveem K, et al. BBMRI-ERIC as a resource for pharmaceutical and life science industries: the development of biobank-based Expert Centres. Eur J Hum Genet. 2015;23(7):893–900. doi:10.1038/ejhg.2014.235. Epub 2014 Nov 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vivó-Truyols G, Torres-Lapasió JR, van Nederkassel AM, Vander Heyden Y, Massart DL. Automatic program for peak detection and deconvolution of multi-overlapped chromatographic signals part I: peak detection. J Chromatogr A. 2005;1096(1-2):133–45.

    Article  PubMed  CAS  Google Scholar 

  • Vogeser M, Kirchhoff F. Progress in automation of LC-MS in laboratory medicine. Clin Biochem. 2011;44(1):4–13. doi:10.1016/j.clinbiochem.2010.06.005. Epub 2010 Jun 19. Review.

    Article  CAS  PubMed  Google Scholar 

  • Voit EO. Computational analysis of biochemical systems – a practical guide for biochemists and molecular biologists. Cambridge: Cambridge University Press; 2000.

    Google Scholar 

  • Voit E, Martens H, Omholt SW. 150 years of the mass action law. PLoS Comput Biol. 2015;11(1), e1004012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liotta L. Clinical bioinformatics: a new emerging science. J Clin Bioinforma. 2011;1(1):1. doi:10.1186/2043-9113-1-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhou H, Lin H, Roy S, Shaler TA, Hill LR, et al. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem. 2003;75(18):4818–26.

    Article  CAS  PubMed  Google Scholar 

  • Warrack BM, Hnatyshyn S, Ott KH, Reily MD, Sanders M, Zhang H, Drexler DM. Normalization strategies for metabonomic analysis of urine samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:547–52.

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth W, Morgenthal K. Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today. 2005;10(22):1551–8. Review.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger KM. [Metabolomics in diagnosing metabolic diseases]. Ther Umsch. 2008;65(9):487–91. doi:10.1024/0040-5930.65.9.487. [Article in German]

    Google Scholar 

  • Weinberger KM, Graber A. Using comprehensive metabolomics to identify novel biomarkers. Screen Trends Drug Discov. 2005;6:42–5.

    Google Scholar 

  • Weinberger KM, Ramsay SL, Graber A. Towards the biochemical fingerprint. Biosyst Solut. 2005;12:36–7.

    Google Scholar 

  • Wiener N. Cybernetics – control and communication in the animal and the machine. New York: Wiley; 1948.

    Google Scholar 

  • Wishart DS. Current progress in computational metabolomics. Brief Bioinform. 2007;8(5):279–93. Epub 2007 Jul 11. Review.

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS. Chapter 3: Small molecules and disease. PLoS Comput Biol. 2012;8(12), e1002805. doi:10.1371/journal.pcbi.1002805. Epub 2012 Dec 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009;37(Database issue):D603–10. doi:10.1093/nar/gkn810. Epub 2008 Oct 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801–7. doi:10.1093/nar/gks1065. Epub 2012 Nov 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolkenhauer O. Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinform. 2001;2:258–70.

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Wishart DS. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010;38(Web Server issue):W71–7.

    Google Scholar 

  • Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37(Web Server issue):W652–60. doi:10.1093/nar/gkp356. Epub 2009 May 8.

    Google Scholar 

  • Xia D, Zheng H, Liu Z, Li G, Li J, Hong J, Zhao K. MRSD: a web server for metabolic route search and design. Bioinformatics. 2011;27(11):1581–2. doi:10.1093/bioinformatics/btr160. Epub 2011 Mar 30.

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Mandal R, Sinelnikov IV, Broadhurst D, WishartDS. MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012;40(Web Server issue):W127–33.

    Google Scholar 

  • Yuille M, van Ommen GJ, Bréchot C, Cambon-Thomsen A, Dagher G, Landegren U, et al. Biobanking for Europe. Brief Bioinform. 2008;9(1):14–24.

    Article  PubMed  Google Scholar 

  • Zhao Q, Stoyanova R, Du S, Sajda P, Brown TR. HiRes—a tool for comprehensive assessment and interpretation of metabolomic data. Bioinformatics. 2006;22(20):2562–4.

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Wang X, Ma Y, Rao M, Glimm J, Kovach JS. Detection of cancer-specific markers amid massive mass spectral data. Proc Natl Acad Sci U S A. 2003;100(25):14666–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Breit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Breit, M., Baumgartner, C., Netzer, M., Weinberger, K.M. (2016). Clinical Bioinformatics for Biomarker Discovery in Targeted Metabolomics. In: Wang, X., Baumgartner, C., Shields, D., Deng, HW., Beckmann, J. (eds) Application of Clinical Bioinformatics. Translational Bioinformatics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7543-4_8

Download citation

Publish with us

Policies and ethics